mirror of
https://github.com/qemu/qemu.git
synced 2024-11-25 11:53:39 +08:00
88b988c895
qtest_init() creates a new QTestState, and leaves @global_qtest alone. qtest_start() additionally assigns it to @global_qtest, but qtest_startf() additionally assigns NULL to @global_qtest. This makes no sense. Replace it by qtest_initf() that works like qtest_init(), i.e. leaves @global_qtest alone. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-Id: <20180806065344.7103-23-armbru@redhat.com>
270 lines
6.4 KiB
C
270 lines
6.4 KiB
C
/*
|
|
* QTest testcase for the M48T59 and M48T08 real-time clocks
|
|
*
|
|
* Based on MC146818 RTC test:
|
|
* Copyright IBM, Corp. 2012
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "libqtest.h"
|
|
|
|
#define RTC_SECONDS 0x9
|
|
#define RTC_MINUTES 0xa
|
|
#define RTC_HOURS 0xb
|
|
|
|
#define RTC_DAY_OF_WEEK 0xc
|
|
#define RTC_DAY_OF_MONTH 0xd
|
|
#define RTC_MONTH 0xe
|
|
#define RTC_YEAR 0xf
|
|
|
|
static uint32_t base;
|
|
static uint16_t reg_base = 0x1ff0; /* 0x7f0 for m48t02 */
|
|
static int base_year;
|
|
static const char *base_machine;
|
|
static bool use_mmio;
|
|
|
|
static uint8_t cmos_read_mmio(QTestState *s, uint8_t reg)
|
|
{
|
|
return qtest_readb(s, base + (uint32_t)reg_base + (uint32_t)reg);
|
|
}
|
|
|
|
static void cmos_write_mmio(QTestState *s, uint8_t reg, uint8_t val)
|
|
{
|
|
uint8_t data = val;
|
|
|
|
qtest_writeb(s, base + (uint32_t)reg_base + (uint32_t)reg, data);
|
|
}
|
|
|
|
static uint8_t cmos_read_ioio(QTestState *s, uint8_t reg)
|
|
{
|
|
qtest_outw(s, base + 0, reg_base + (uint16_t)reg);
|
|
return qtest_inb(s, base + 3);
|
|
}
|
|
|
|
static void cmos_write_ioio(QTestState *s, uint8_t reg, uint8_t val)
|
|
{
|
|
qtest_outw(s, base + 0, reg_base + (uint16_t)reg);
|
|
qtest_outb(s, base + 3, val);
|
|
}
|
|
|
|
static uint8_t cmos_read(QTestState *s, uint8_t reg)
|
|
{
|
|
if (use_mmio) {
|
|
return cmos_read_mmio(s, reg);
|
|
} else {
|
|
return cmos_read_ioio(s, reg);
|
|
}
|
|
}
|
|
|
|
static void cmos_write(QTestState *s, uint8_t reg, uint8_t val)
|
|
{
|
|
if (use_mmio) {
|
|
cmos_write_mmio(s, reg, val);
|
|
} else {
|
|
cmos_write_ioio(s, reg, val);
|
|
}
|
|
}
|
|
|
|
static int bcd2dec(int value)
|
|
{
|
|
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
|
|
}
|
|
|
|
static int tm_cmp(struct tm *lhs, struct tm *rhs)
|
|
{
|
|
time_t a, b;
|
|
struct tm d1, d2;
|
|
|
|
memcpy(&d1, lhs, sizeof(d1));
|
|
memcpy(&d2, rhs, sizeof(d2));
|
|
|
|
a = mktime(&d1);
|
|
b = mktime(&d2);
|
|
|
|
if (a < b) {
|
|
return -1;
|
|
} else if (a > b) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static void print_tm(struct tm *tm)
|
|
{
|
|
printf("%04d-%02d-%02d %02d:%02d:%02d %+02ld\n",
|
|
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
|
|
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
|
|
}
|
|
#endif
|
|
|
|
static void cmos_get_date_time(QTestState *s, struct tm *date)
|
|
{
|
|
int sec, min, hour, mday, mon, year;
|
|
time_t ts;
|
|
struct tm dummy;
|
|
|
|
sec = cmos_read(s, RTC_SECONDS);
|
|
min = cmos_read(s, RTC_MINUTES);
|
|
hour = cmos_read(s, RTC_HOURS);
|
|
mday = cmos_read(s, RTC_DAY_OF_MONTH);
|
|
mon = cmos_read(s, RTC_MONTH);
|
|
year = cmos_read(s, RTC_YEAR);
|
|
|
|
sec = bcd2dec(sec);
|
|
min = bcd2dec(min);
|
|
hour = bcd2dec(hour);
|
|
mday = bcd2dec(mday);
|
|
mon = bcd2dec(mon);
|
|
year = bcd2dec(year);
|
|
|
|
ts = time(NULL);
|
|
localtime_r(&ts, &dummy);
|
|
|
|
date->tm_isdst = dummy.tm_isdst;
|
|
date->tm_sec = sec;
|
|
date->tm_min = min;
|
|
date->tm_hour = hour;
|
|
date->tm_mday = mday;
|
|
date->tm_mon = mon - 1;
|
|
date->tm_year = base_year + year - 1900;
|
|
#ifndef __sun__
|
|
date->tm_gmtoff = 0;
|
|
#endif
|
|
|
|
ts = mktime(date);
|
|
}
|
|
|
|
static QTestState *m48t59_qtest_start(void)
|
|
{
|
|
return qtest_initf("-M %s -rtc clock=vm", base_machine);
|
|
}
|
|
|
|
static void bcd_check_time(void)
|
|
{
|
|
struct tm start, date[4], end;
|
|
struct tm *datep;
|
|
time_t ts;
|
|
const int wiggle = 2;
|
|
QTestState *s = m48t59_qtest_start();
|
|
|
|
/*
|
|
* This check assumes a few things. First, we cannot guarantee that we get
|
|
* a consistent reading from the wall clock because we may hit an edge of
|
|
* the clock while reading. To work around this, we read four clock readings
|
|
* such that at least two of them should match. We need to assume that one
|
|
* reading is corrupt so we need four readings to ensure that we have at
|
|
* least two consecutive identical readings
|
|
*
|
|
* It's also possible that we'll cross an edge reading the host clock so
|
|
* simply check to make sure that the clock reading is within the period of
|
|
* when we expect it to be.
|
|
*/
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &start);
|
|
|
|
cmos_get_date_time(s, &date[0]);
|
|
cmos_get_date_time(s, &date[1]);
|
|
cmos_get_date_time(s, &date[2]);
|
|
cmos_get_date_time(s, &date[3]);
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &end);
|
|
|
|
if (tm_cmp(&date[0], &date[1]) == 0) {
|
|
datep = &date[0];
|
|
} else if (tm_cmp(&date[1], &date[2]) == 0) {
|
|
datep = &date[1];
|
|
} else if (tm_cmp(&date[2], &date[3]) == 0) {
|
|
datep = &date[2];
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
|
|
long t, s;
|
|
|
|
start.tm_isdst = datep->tm_isdst;
|
|
|
|
t = (long)mktime(datep);
|
|
s = (long)mktime(&start);
|
|
if (t < s) {
|
|
g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
|
|
} else {
|
|
g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
|
|
}
|
|
|
|
g_assert_cmpint(ABS(t - s), <=, wiggle);
|
|
}
|
|
|
|
qtest_quit(s);
|
|
}
|
|
|
|
/* success if no crash or abort */
|
|
static void fuzz_registers(void)
|
|
{
|
|
unsigned int i;
|
|
QTestState *s = m48t59_qtest_start();
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
uint8_t reg, val;
|
|
|
|
reg = (uint8_t)g_test_rand_int_range(0, 16);
|
|
val = (uint8_t)g_test_rand_int_range(0, 256);
|
|
|
|
if (reg == 7) {
|
|
/* watchdog setup register, may trigger system reset, skip */
|
|
continue;
|
|
}
|
|
|
|
cmos_write(s, reg, val);
|
|
cmos_read(s, reg);
|
|
}
|
|
|
|
qtest_quit(s);
|
|
}
|
|
|
|
static void base_setup(void)
|
|
{
|
|
const char *arch = qtest_get_arch();
|
|
|
|
if (g_str_equal(arch, "sparc")) {
|
|
/* Note: For sparc64, we'd need to map-in the PCI bridge memory first */
|
|
base = 0x71200000;
|
|
base_year = 1968;
|
|
base_machine = "SS-5";
|
|
use_mmio = true;
|
|
} else if (g_str_equal(arch, "ppc") || g_str_equal(arch, "ppc64")) {
|
|
base = 0xF0000000;
|
|
base_year = 1968;
|
|
base_machine = "ref405ep";
|
|
use_mmio = true;
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
base_setup();
|
|
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
if (g_test_slow()) {
|
|
/* Do not run this in timing-sensitive environments */
|
|
qtest_add_func("/rtc/bcd-check-time", bcd_check_time);
|
|
}
|
|
qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
|
|
return g_test_run();
|
|
}
|