mirror of
https://github.com/qemu/qemu.git
synced 2024-12-12 21:23:36 +08:00
64654ded79
Move integer and vector ops to int_helper.c. Signed-off-by: Blue Swirl <blauwirbel@gmail.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
1539 lines
55 KiB
C
1539 lines
55 KiB
C
/*
|
|
* PowerPC integer and vector emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "cpu.h"
|
|
#include "dyngen-exec.h"
|
|
#include "host-utils.h"
|
|
#include "helper.h"
|
|
|
|
#include "helper_regs.h"
|
|
/*****************************************************************************/
|
|
/* Fixed point operations helpers */
|
|
#if defined(TARGET_PPC64)
|
|
|
|
/* multiply high word */
|
|
uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
muls64(&tl, &th, arg1, arg2);
|
|
return th;
|
|
}
|
|
|
|
/* multiply high word unsigned */
|
|
uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
mulu64(&tl, &th, arg1, arg2);
|
|
return th;
|
|
}
|
|
|
|
uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2)
|
|
{
|
|
int64_t th;
|
|
uint64_t tl;
|
|
|
|
muls64(&tl, (uint64_t *)&th, arg1, arg2);
|
|
/* If th != 0 && th != -1, then we had an overflow */
|
|
if (likely((uint64_t)(th + 1) <= 1)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
return (int64_t)tl;
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_cntlzw(target_ulong t)
|
|
{
|
|
return clz32(t);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_cntlzd(target_ulong t)
|
|
{
|
|
return clz64(t);
|
|
}
|
|
#endif
|
|
|
|
/* shift right arithmetic helper */
|
|
target_ulong helper_sraw(target_ulong value, target_ulong shift)
|
|
{
|
|
int32_t ret;
|
|
|
|
if (likely(!(shift & 0x20))) {
|
|
if (likely((uint32_t)shift != 0)) {
|
|
shift &= 0x1f;
|
|
ret = (int32_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int32_t)value;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int32_t)value >> 31;
|
|
if (ret) {
|
|
env->xer |= (1 << XER_CA);
|
|
} else {
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
}
|
|
return (target_long)ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_srad(target_ulong value, target_ulong shift)
|
|
{
|
|
int64_t ret;
|
|
|
|
if (likely(!(shift & 0x40))) {
|
|
if (likely((uint64_t)shift != 0)) {
|
|
shift &= 0x3f;
|
|
ret = (int64_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int64_t)value;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int64_t)value >> 63;
|
|
if (ret) {
|
|
env->xer |= (1 << XER_CA);
|
|
} else {
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntw(target_ulong val)
|
|
{
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
|
|
0x00ff00ff00ff00ffULL);
|
|
val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
|
|
0x0000ffff0000ffffULL);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntd(target_ulong val)
|
|
{
|
|
return ctpop64(val);
|
|
}
|
|
#else
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntw(target_ulong val)
|
|
{
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
|
|
val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC 601 specific instructions (POWER bridge) */
|
|
target_ulong helper_div(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
return tmp / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divo(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
tmp /= (int32_t)arg2;
|
|
if ((int32_t)tmp != tmp) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divs(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divso(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* 602 specific instructions */
|
|
/* mfrom is the most crazy instruction ever seen, imho ! */
|
|
/* Real implementation uses a ROM table. Do the same */
|
|
/* Extremely decomposed:
|
|
* -arg / 256
|
|
* return 256 * log10(10 + 1.0) + 0.5
|
|
*/
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
target_ulong helper_602_mfrom(target_ulong arg)
|
|
{
|
|
if (likely(arg < 602)) {
|
|
#include "mfrom_table.c"
|
|
return mfrom_ROM_table[arg];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Altivec extension helpers */
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define HI_IDX 0
|
|
#define LO_IDX 1
|
|
#else
|
|
#define HI_IDX 1
|
|
#define LO_IDX 0
|
|
#endif
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = 0; index < ARRAY_SIZE(r->element); index++)
|
|
#else
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
|
|
#endif
|
|
|
|
/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
|
|
* execute the following block. */
|
|
#define DO_HANDLE_NAN(result, x) \
|
|
if (float32_is_any_nan(x)) { \
|
|
CPU_FloatU __f; \
|
|
__f.f = x; \
|
|
__f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
|
|
result = __f.f; \
|
|
} else
|
|
|
|
#define HANDLE_NAN1(result, x) \
|
|
DO_HANDLE_NAN(result, x)
|
|
#define HANDLE_NAN2(result, x, y) \
|
|
DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
|
|
#define HANDLE_NAN3(result, x, y, z) \
|
|
DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
|
|
|
|
/* Saturating arithmetic helpers. */
|
|
#define SATCVT(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x < (from_type)min) { \
|
|
r = min; \
|
|
*sat = 1; \
|
|
} else if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
#define SATCVTU(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
|
|
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
|
|
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
|
|
|
|
SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
|
|
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
|
|
#undef SATCVT
|
|
#undef SATCVTU
|
|
|
|
void helper_lvsl(ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
void helper_lvsr(ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = 0x10 - (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
void helper_mtvscr(ppc_avr_t *r)
|
|
{
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
env->vscr = r->u32[3];
|
|
#else
|
|
env->vscr = r->u32[0];
|
|
#endif
|
|
set_flush_to_zero(vscr_nj, &env->vec_status);
|
|
}
|
|
|
|
void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = ~a->u32[i] < b->u32[i];
|
|
}
|
|
}
|
|
|
|
#define VARITH_DO(name, op, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = a->element[i] op b->element[i]; \
|
|
} \
|
|
}
|
|
#define VARITH(suffix, element) \
|
|
VARITH_DO(add##suffix, +, element) \
|
|
VARITH_DO(sub##suffix, -, element)
|
|
VARITH(ubm, u8)
|
|
VARITH(uhm, u16)
|
|
VARITH(uwm, u32)
|
|
#undef VARITH_DO
|
|
#undef VARITH
|
|
|
|
#define VARITHFP(suffix, func) \
|
|
void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
|
|
r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
|
|
} \
|
|
} \
|
|
}
|
|
VARITHFP(addfp, float32_add)
|
|
VARITHFP(subfp, float32_sub)
|
|
#undef VARITHFP
|
|
|
|
#define VARITHSAT_CASE(type, op, cvt, element) \
|
|
{ \
|
|
type result = (type)a->element[i] op (type)b->element[i]; \
|
|
r->element[i] = cvt(result, &sat); \
|
|
}
|
|
|
|
#define VARITHSAT_DO(name, op, optype, cvt, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int sat = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
switch (sizeof(r->element[0])) { \
|
|
case 1: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
case 2: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
case 4: \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
break; \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
|
|
#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
|
|
VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
|
|
VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
|
|
VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
|
|
VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
|
|
VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
|
|
VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
|
|
#undef VARITHSAT_CASE
|
|
#undef VARITHSAT_DO
|
|
#undef VARITHSAT_SIGNED
|
|
#undef VARITHSAT_UNSIGNED
|
|
|
|
#define VAVG_DO(name, element, etype) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
|
|
r->element[i] = x >> 1; \
|
|
} \
|
|
}
|
|
|
|
#define VAVG(type, signed_element, signed_type, unsigned_element, \
|
|
unsigned_type) \
|
|
VAVG_DO(avgs##type, signed_element, signed_type) \
|
|
VAVG_DO(avgu##type, unsigned_element, unsigned_type)
|
|
VAVG(b, s8, int16_t, u8, uint16_t)
|
|
VAVG(h, s16, int32_t, u16, uint32_t)
|
|
VAVG(w, s32, int64_t, u32, uint64_t)
|
|
#undef VAVG_DO
|
|
#undef VAVG
|
|
|
|
#define VCF(suffix, cvt, element) \
|
|
void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
float32 t = cvt(b->element[i], &env->vec_status); \
|
|
r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
|
|
} \
|
|
}
|
|
VCF(ux, uint32_to_float32, u32)
|
|
VCF(sx, int32_to_float32, s32)
|
|
#undef VCF
|
|
|
|
#define VCMP_DO(suffix, compare, element, record) \
|
|
void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
uint32_t result = (a->element[i] compare b->element[i] ? \
|
|
ones : 0x0); \
|
|
switch (sizeof(a->element[0])) { \
|
|
case 4: \
|
|
r->u32[i] = result; \
|
|
break; \
|
|
case 2: \
|
|
r->u16[i] = result; \
|
|
break; \
|
|
case 1: \
|
|
r->u8[i] = result; \
|
|
break; \
|
|
} \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMP(suffix, compare, element) \
|
|
VCMP_DO(suffix, compare, element, 0) \
|
|
VCMP_DO(suffix##_dot, compare, element, 1)
|
|
VCMP(equb, ==, u8)
|
|
VCMP(equh, ==, u16)
|
|
VCMP(equw, ==, u32)
|
|
VCMP(gtub, >, u8)
|
|
VCMP(gtuh, >, u16)
|
|
VCMP(gtuw, >, u32)
|
|
VCMP(gtsb, >, s8)
|
|
VCMP(gtsh, >, s16)
|
|
VCMP(gtsw, >, s32)
|
|
#undef VCMP_DO
|
|
#undef VCMP
|
|
|
|
#define VCMPFP_DO(suffix, compare, order, record) \
|
|
void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
uint32_t result; \
|
|
int rel = float32_compare_quiet(a->f[i], b->f[i], \
|
|
&env->vec_status); \
|
|
if (rel == float_relation_unordered) { \
|
|
result = 0; \
|
|
} else if (rel compare order) { \
|
|
result = ones; \
|
|
} else { \
|
|
result = 0; \
|
|
} \
|
|
r->u32[i] = result; \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMPFP(suffix, compare, order) \
|
|
VCMPFP_DO(suffix, compare, order, 0) \
|
|
VCMPFP_DO(suffix##_dot, compare, order, 1)
|
|
VCMPFP(eqfp, ==, float_relation_equal)
|
|
VCMPFP(gefp, !=, float_relation_less)
|
|
VCMPFP(gtfp, ==, float_relation_greater)
|
|
#undef VCMPFP_DO
|
|
#undef VCMPFP
|
|
|
|
static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
int record)
|
|
{
|
|
int i;
|
|
int all_in = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
|
|
if (le_rel == float_relation_unordered) {
|
|
r->u32[i] = 0xc0000000;
|
|
/* ALL_IN does not need to be updated here. */
|
|
} else {
|
|
float32 bneg = float32_chs(b->f[i]);
|
|
int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
|
|
int le = le_rel != float_relation_greater;
|
|
int ge = ge_rel != float_relation_less;
|
|
|
|
r->u32[i] = ((!le) << 31) | ((!ge) << 30);
|
|
all_in |= (!le | !ge);
|
|
}
|
|
}
|
|
if (record) {
|
|
env->crf[6] = (all_in == 0) << 1;
|
|
}
|
|
}
|
|
|
|
void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(r, a, b, 0);
|
|
}
|
|
|
|
void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(r, a, b, 1);
|
|
}
|
|
|
|
#define VCT(suffix, satcvt, element) \
|
|
void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(float_round_to_zero, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
if (float32_is_any_nan(b->f[i])) { \
|
|
r->element[i] = 0; \
|
|
} else { \
|
|
float64 t = float32_to_float64(b->f[i], &s); \
|
|
int64_t j; \
|
|
\
|
|
t = float64_scalbn(t, uim, &s); \
|
|
j = float64_to_int64(t, &s); \
|
|
r->element[i] = satcvt(j, &sat); \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
VCT(uxs, cvtsduw, u32)
|
|
VCT(sxs, cvtsdsw, s32)
|
|
#undef VCT
|
|
|
|
void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
|
|
/* Need to do the computation in higher precision and round
|
|
* once at the end. */
|
|
float64 af, bf, cf, t;
|
|
|
|
af = float32_to_float64(a->f[i], &env->vec_status);
|
|
bf = float32_to_float64(b->f[i], &env->vec_status);
|
|
cf = float32_to_float64(c->f[i], &env->vec_status);
|
|
t = float64_mul(af, cf, &env->vec_status);
|
|
t = float64_add(t, bf, &env->vec_status);
|
|
r->f[i] = float64_to_float32(t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMINMAX_DO(name, compare, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
if (a->element[i] compare b->element[i]) { \
|
|
r->element[i] = b->element[i]; \
|
|
} else { \
|
|
r->element[i] = a->element[i]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMINMAX(suffix, element) \
|
|
VMINMAX_DO(min##suffix, >, element) \
|
|
VMINMAX_DO(max##suffix, <, element)
|
|
VMINMAX(sb, s8)
|
|
VMINMAX(sh, s16)
|
|
VMINMAX(sw, s32)
|
|
VMINMAX(ub, u8)
|
|
VMINMAX(uh, u16)
|
|
VMINMAX(uw, u32)
|
|
#undef VMINMAX_DO
|
|
#undef VMINMAX
|
|
|
|
#define VMINMAXFP(suffix, rT, rF) \
|
|
void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
|
|
if (float32_lt_quiet(a->f[i], b->f[i], \
|
|
&env->vec_status)) { \
|
|
r->f[i] = rT->f[i]; \
|
|
} else { \
|
|
r->f[i] = rF->f[i]; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
VMINMAXFP(minfp, a, b)
|
|
VMINMAXFP(maxfp, b, a)
|
|
#undef VMINMAXFP
|
|
|
|
void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
r->s16[i] = (int16_t) (prod + c->s16[i]);
|
|
}
|
|
}
|
|
|
|
#define VMRG_DO(name, element, highp) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
ppc_avr_t result; \
|
|
int i; \
|
|
size_t n_elems = ARRAY_SIZE(r->element); \
|
|
\
|
|
for (i = 0; i < n_elems / 2; i++) { \
|
|
if (highp) { \
|
|
result.element[i*2+HI_IDX] = a->element[i]; \
|
|
result.element[i*2+LO_IDX] = b->element[i]; \
|
|
} else { \
|
|
result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
|
|
b->element[n_elems - i - 1]; \
|
|
result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
|
|
a->element[n_elems - i - 1]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define MRGHI 0
|
|
#define MRGLO 1
|
|
#else
|
|
#define MRGHI 1
|
|
#define MRGLO 0
|
|
#endif
|
|
#define VMRG(suffix, element) \
|
|
VMRG_DO(mrgl##suffix, element, MRGHI) \
|
|
VMRG_DO(mrgh##suffix, element, MRGLO)
|
|
VMRG(b, u8)
|
|
VMRG(h, u16)
|
|
VMRG(w, u32)
|
|
#undef VMRG_DO
|
|
#undef VMRG
|
|
#undef MRGHI
|
|
#undef MRGLO
|
|
|
|
void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
|
|
prod[i] = (int32_t)a->s8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = (int32_t)a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint16_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
prod[i] = a->u8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMUL_DO(name, mul_element, prod_element, evenp) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, prod_element) { \
|
|
if (evenp) { \
|
|
r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \
|
|
b->mul_element[i * 2 + HI_IDX]; \
|
|
} else { \
|
|
r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \
|
|
b->mul_element[i * 2 + LO_IDX]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMUL(suffix, mul_element, prod_element) \
|
|
VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
|
|
VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
|
|
VMUL(sb, s8, s16)
|
|
VMUL(sh, s16, s32)
|
|
VMUL(ub, u8, u16)
|
|
VMUL(uh, u16, u32)
|
|
#undef VMUL_DO
|
|
#undef VMUL
|
|
|
|
void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
|
|
/* Need to do the computation is higher precision and round
|
|
* once at the end. */
|
|
float64 af, bf, cf, t;
|
|
|
|
af = float32_to_float64(a->f[i], &env->vec_status);
|
|
bf = float32_to_float64(b->f[i], &env->vec_status);
|
|
cf = float32_to_float64(c->f[i], &env->vec_status);
|
|
t = float64_mul(af, cf, &env->vec_status);
|
|
t = float64_sub(t, bf, &env->vec_status);
|
|
t = float64_chs(t);
|
|
r->f[i] = float64_to_float32(t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
int s = c->u8[i] & 0x1f;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
int index = s & 0xf;
|
|
#else
|
|
int index = 15 - (s & 0xf);
|
|
#endif
|
|
|
|
if (s & 0x10) {
|
|
result.u8[i] = b->u8[index];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define PKBIG 1
|
|
#else
|
|
#define PKBIG 0
|
|
#endif
|
|
void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
ppc_avr_t result;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
const ppc_avr_t *x[2] = { a, b };
|
|
#else
|
|
const ppc_avr_t *x[2] = { b, a };
|
|
#endif
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
VECTOR_FOR_INORDER_I(j, u32) {
|
|
uint32_t e = x[i]->u32[j];
|
|
|
|
result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
|
|
((e >> 6) & 0x3e0) |
|
|
((e >> 3) & 0x1f));
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#define VPK(suffix, from, to, cvt, dosat) \
|
|
void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
ppc_avr_t result; \
|
|
ppc_avr_t *a0 = PKBIG ? a : b; \
|
|
ppc_avr_t *a1 = PKBIG ? b : a; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, from) { \
|
|
result.to[i] = cvt(a0->from[i], &sat); \
|
|
result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
|
|
} \
|
|
*r = result; \
|
|
if (dosat && sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define I(x, y) (x)
|
|
VPK(shss, s16, s8, cvtshsb, 1)
|
|
VPK(shus, s16, u8, cvtshub, 1)
|
|
VPK(swss, s32, s16, cvtswsh, 1)
|
|
VPK(swus, s32, u16, cvtswuh, 1)
|
|
VPK(uhus, u16, u8, cvtuhub, 1)
|
|
VPK(uwus, u32, u16, cvtuwuh, 1)
|
|
VPK(uhum, u16, u8, I, 0)
|
|
VPK(uwum, u32, u16, I, 0)
|
|
#undef I
|
|
#undef VPK
|
|
#undef PKBIG
|
|
|
|
void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define VRFI(suffix, rounding) \
|
|
void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(rounding, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN1(r->f[i], b->f[i]) { \
|
|
r->f[i] = float32_round_to_int (b->f[i], &s); \
|
|
} \
|
|
} \
|
|
}
|
|
VRFI(n, float_round_nearest_even)
|
|
VRFI(m, float_round_down)
|
|
VRFI(p, float_round_up)
|
|
VRFI(z, float_round_to_zero)
|
|
#undef VRFI
|
|
|
|
#define VROTATE(suffix, element) \
|
|
void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << \
|
|
(3 + (sizeof(a->element[0]) >> 1))) \
|
|
- 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = (a->element[i] << shift) | \
|
|
(a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
|
|
} \
|
|
}
|
|
VROTATE(b, u8)
|
|
VROTATE(h, u16)
|
|
VROTATE(w, u32)
|
|
#undef VROTATE
|
|
|
|
void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
float32 t = float32_sqrt(b->f[i], &env->vec_status);
|
|
|
|
r->f[i] = float32_div(float32_one, t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
|
|
r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
|
|
}
|
|
|
|
void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_exp2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_log2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define LEFT 0
|
|
#define RIGHT 1
|
|
#else
|
|
#define LEFT 1
|
|
#define RIGHT 0
|
|
#endif
|
|
/* The specification says that the results are undefined if all of the
|
|
* shift counts are not identical. We check to make sure that they are
|
|
* to conform to what real hardware appears to do. */
|
|
#define VSHIFT(suffix, leftp) \
|
|
void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int shift = b->u8[LO_IDX*15] & 0x7; \
|
|
int doit = 1; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
|
|
doit = doit && ((b->u8[i] & 0x7) == shift); \
|
|
} \
|
|
if (doit) { \
|
|
if (shift == 0) { \
|
|
*r = *a; \
|
|
} else if (leftp) { \
|
|
uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
|
|
\
|
|
r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
|
|
r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
|
|
} else { \
|
|
uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
|
|
\
|
|
r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
|
|
r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
|
|
} \
|
|
} \
|
|
}
|
|
VSHIFT(l, LEFT)
|
|
VSHIFT(r, RIGHT)
|
|
#undef VSHIFT
|
|
#undef LEFT
|
|
#undef RIGHT
|
|
|
|
#define VSL(suffix, element) \
|
|
void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << \
|
|
(3 + (sizeof(a->element[0]) >> 1))) \
|
|
- 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
\
|
|
r->element[i] = a->element[i] << shift; \
|
|
} \
|
|
}
|
|
VSL(b, u8)
|
|
VSL(h, u16)
|
|
VSL(w, u32)
|
|
#undef VSL
|
|
|
|
void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
|
|
{
|
|
int sh = shift & 0xf;
|
|
int i;
|
|
ppc_avr_t result;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = sh + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = b->u8[index - 0x10];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
#else
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = (16 - sh) + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = a->u8[index - 0x10];
|
|
} else {
|
|
result.u8[i] = b->u8[index];
|
|
}
|
|
}
|
|
#endif
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16-sh], 0, sh);
|
|
#else
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
/* Experimental testing shows that hardware masks the immediate. */
|
|
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
|
|
#else
|
|
#define SPLAT_ELEMENT(element) \
|
|
(ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
|
|
#endif
|
|
#define VSPLT(suffix, element) \
|
|
void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
|
|
{ \
|
|
uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = s; \
|
|
} \
|
|
}
|
|
VSPLT(b, u8)
|
|
VSPLT(h, u16)
|
|
VSPLT(w, u32)
|
|
#undef VSPLT
|
|
#undef SPLAT_ELEMENT
|
|
#undef _SPLAT_MASKED
|
|
|
|
#define VSPLTI(suffix, element, splat_type) \
|
|
void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
|
|
{ \
|
|
splat_type x = (int8_t)(splat << 3) >> 3; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = x; \
|
|
} \
|
|
}
|
|
VSPLTI(b, s8, int8_t)
|
|
VSPLTI(h, s16, int16_t)
|
|
VSPLTI(w, s32, int32_t)
|
|
#undef VSPLTI
|
|
|
|
#define VSR(suffix, element) \
|
|
void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << \
|
|
(3 + (sizeof(a->element[0]) >> 1))) \
|
|
- 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
\
|
|
r->element[i] = a->element[i] >> shift; \
|
|
} \
|
|
}
|
|
VSR(ab, s8)
|
|
VSR(ah, s16)
|
|
VSR(aw, s32)
|
|
VSR(b, u8)
|
|
VSR(h, u16)
|
|
VSR(w, u32)
|
|
#undef VSR
|
|
|
|
void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#else
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16 - sh], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = a->u32[i] >= b->u32[i];
|
|
}
|
|
}
|
|
|
|
void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int64_t t;
|
|
int i, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = ARRAY_SIZE(r->s32)-1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
t = (int64_t)b->s32[upper];
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
t += a->s32[i];
|
|
result.s32[i] = 0;
|
|
}
|
|
result.s32[upper] = cvtsdsw(t, &sat);
|
|
*r = result;
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = 1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
int64_t t = (int64_t)b->s32[upper + i * 2];
|
|
|
|
result.u64[i] = 0;
|
|
for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
|
|
t += a->s32[2 * i + j];
|
|
}
|
|
result.s32[upper + i * 2] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
*r = result;
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
|
|
t += a->s8[4 * i + j];
|
|
}
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
t += a->s16[2 * i] + a->s16[2 * i + 1];
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
uint64_t t = (uint64_t)b->u32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
|
|
t += a->u8[4 * i + j];
|
|
}
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define UPKHI 1
|
|
#define UPKLO 0
|
|
#else
|
|
#define UPKHI 0
|
|
#define UPKLO 1
|
|
#endif
|
|
#define VUPKPX(suffix, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
|
|
uint16_t e = b->u16[hi ? i : i+4]; \
|
|
uint8_t a = (e >> 15) ? 0xff : 0; \
|
|
uint8_t r = (e >> 10) & 0x1f; \
|
|
uint8_t g = (e >> 5) & 0x1f; \
|
|
uint8_t b = e & 0x1f; \
|
|
\
|
|
result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPKPX(lpx, UPKLO)
|
|
VUPKPX(hpx, UPKHI)
|
|
#undef VUPKPX
|
|
|
|
#define VUPK(suffix, unpacked, packee, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
if (hi) { \
|
|
for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
|
|
result.unpacked[i] = b->packee[i]; \
|
|
} \
|
|
} else { \
|
|
for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
|
|
i++) { \
|
|
result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPK(hsb, s16, s8, UPKHI)
|
|
VUPK(hsh, s32, s16, UPKHI)
|
|
VUPK(lsb, s16, s8, UPKLO)
|
|
VUPK(lsh, s32, s16, UPKLO)
|
|
#undef VUPK
|
|
#undef UPKHI
|
|
#undef UPKLO
|
|
|
|
#undef DO_HANDLE_NAN
|
|
#undef HANDLE_NAN1
|
|
#undef HANDLE_NAN2
|
|
#undef HANDLE_NAN3
|
|
#undef VECTOR_FOR_INORDER_I
|
|
#undef HI_IDX
|
|
#undef LO_IDX
|
|
|
|
/*****************************************************************************/
|
|
/* SPE extension helpers */
|
|
/* Use a table to make this quicker */
|
|
static uint8_t hbrev[16] = {
|
|
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
|
|
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
|
|
};
|
|
|
|
static inline uint8_t byte_reverse(uint8_t val)
|
|
{
|
|
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
|
|
}
|
|
|
|
static inline uint32_t word_reverse(uint32_t val)
|
|
{
|
|
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
|
|
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
|
|
}
|
|
|
|
#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
|
|
target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint32_t a, b, d, mask;
|
|
|
|
mask = UINT32_MAX >> (32 - MASKBITS);
|
|
a = arg1 & mask;
|
|
b = arg2 & mask;
|
|
d = word_reverse(1 + word_reverse(a | ~b));
|
|
return (arg1 & ~mask) | (d & b);
|
|
}
|
|
|
|
uint32_t helper_cntlsw32(uint32_t val)
|
|
{
|
|
if (val & 0x80000000) {
|
|
return clz32(~val);
|
|
} else {
|
|
return clz32(val);
|
|
}
|
|
}
|
|
|
|
uint32_t helper_cntlzw32(uint32_t val)
|
|
{
|
|
return clz32(val);
|
|
}
|
|
|
|
/* 440 specific */
|
|
target_ulong helper_dlmzb(target_ulong high, target_ulong low,
|
|
uint32_t update_Rc)
|
|
{
|
|
target_ulong mask;
|
|
int i;
|
|
|
|
i = 1;
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((high & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x4;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((low & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x8;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x2;
|
|
}
|
|
done:
|
|
env->xer = (env->xer & ~0x7F) | i;
|
|
if (update_Rc) {
|
|
env->crf[0] |= xer_so;
|
|
}
|
|
return i;
|
|
}
|