mirror of
https://github.com/qemu/qemu.git
synced 2024-12-14 06:53:43 +08:00
62083979b0
These will be used to support hotplug/unplug of PCI devices to the PCI bus associated with a particular PHB. We also set up device-tree properties in each PHBs initial FDT to describe the DRCs associated with them. This advertises to guests that each PHB is DR-capable device with physical hotpluggable slots, each managed by the corresponding DRC. This is necessary for allowing hotplugging of devices to it later via bus rescan or guest rpaphp hotplug module. Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alexander Graf <agraf@suse.de>
1282 lines
40 KiB
C
1282 lines
40 KiB
C
/*
|
|
* QEMU sPAPR PCI host originated from Uninorth PCI host
|
|
*
|
|
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
|
|
* Copyright (C) 2011 David Gibson, IBM Corporation.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "hw/hw.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/pci/msi.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "hw/pci/pci_host.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/pci-host/spapr.h"
|
|
#include "exec/address-spaces.h"
|
|
#include <libfdt.h>
|
|
#include "trace.h"
|
|
#include "qemu/error-report.h"
|
|
|
|
#include "hw/pci/pci_bus.h"
|
|
#include "hw/ppc/spapr_drc.h"
|
|
|
|
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
|
|
#define RTAS_QUERY_FN 0
|
|
#define RTAS_CHANGE_FN 1
|
|
#define RTAS_RESET_FN 2
|
|
#define RTAS_CHANGE_MSI_FN 3
|
|
#define RTAS_CHANGE_MSIX_FN 4
|
|
|
|
/* Interrupt types to return on RTAS_CHANGE_* */
|
|
#define RTAS_TYPE_MSI 1
|
|
#define RTAS_TYPE_MSIX 2
|
|
|
|
sPAPRPHBState *spapr_pci_find_phb(sPAPREnvironment *spapr, uint64_t buid)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
|
|
QLIST_FOREACH(sphb, &spapr->phbs, list) {
|
|
if (sphb->buid != buid) {
|
|
continue;
|
|
}
|
|
return sphb;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
PCIDevice *spapr_pci_find_dev(sPAPREnvironment *spapr, uint64_t buid,
|
|
uint32_t config_addr)
|
|
{
|
|
sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
|
|
PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
|
|
int bus_num = (config_addr >> 16) & 0xFF;
|
|
int devfn = (config_addr >> 8) & 0xFF;
|
|
|
|
if (!phb) {
|
|
return NULL;
|
|
}
|
|
|
|
return pci_find_device(phb->bus, bus_num, devfn);
|
|
}
|
|
|
|
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
|
|
{
|
|
/* This handles the encoding of extended config space addresses */
|
|
return ((arg >> 20) & 0xf00) | (arg & 0xff);
|
|
}
|
|
|
|
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
|
|
uint32_t addr, uint32_t size,
|
|
target_ulong rets)
|
|
{
|
|
PCIDevice *pci_dev;
|
|
uint32_t val;
|
|
|
|
if ((size != 1) && (size != 2) && (size != 4)) {
|
|
/* access must be 1, 2 or 4 bytes */
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
|
|
addr = rtas_pci_cfgaddr(addr);
|
|
|
|
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
|
|
/* Access must be to a valid device, within bounds and
|
|
* naturally aligned */
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
val = pci_host_config_read_common(pci_dev, addr,
|
|
pci_config_size(pci_dev), size);
|
|
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
rtas_st(rets, 1, val);
|
|
}
|
|
|
|
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args,
|
|
uint32_t nret, target_ulong rets)
|
|
{
|
|
uint64_t buid;
|
|
uint32_t size, addr;
|
|
|
|
if ((nargs != 4) || (nret != 2)) {
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
size = rtas_ld(args, 3);
|
|
addr = rtas_ld(args, 0);
|
|
|
|
finish_read_pci_config(spapr, buid, addr, size, rets);
|
|
}
|
|
|
|
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args,
|
|
uint32_t nret, target_ulong rets)
|
|
{
|
|
uint32_t size, addr;
|
|
|
|
if ((nargs != 2) || (nret != 2)) {
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
size = rtas_ld(args, 1);
|
|
addr = rtas_ld(args, 0);
|
|
|
|
finish_read_pci_config(spapr, 0, addr, size, rets);
|
|
}
|
|
|
|
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
|
|
uint32_t addr, uint32_t size,
|
|
uint32_t val, target_ulong rets)
|
|
{
|
|
PCIDevice *pci_dev;
|
|
|
|
if ((size != 1) && (size != 2) && (size != 4)) {
|
|
/* access must be 1, 2 or 4 bytes */
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
|
|
addr = rtas_pci_cfgaddr(addr);
|
|
|
|
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
|
|
/* Access must be to a valid device, within bounds and
|
|
* naturally aligned */
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
|
|
val, size);
|
|
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
}
|
|
|
|
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args,
|
|
uint32_t nret, target_ulong rets)
|
|
{
|
|
uint64_t buid;
|
|
uint32_t val, size, addr;
|
|
|
|
if ((nargs != 5) || (nret != 1)) {
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
val = rtas_ld(args, 4);
|
|
size = rtas_ld(args, 3);
|
|
addr = rtas_ld(args, 0);
|
|
|
|
finish_write_pci_config(spapr, buid, addr, size, val, rets);
|
|
}
|
|
|
|
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args,
|
|
uint32_t nret, target_ulong rets)
|
|
{
|
|
uint32_t val, size, addr;
|
|
|
|
if ((nargs != 3) || (nret != 1)) {
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
|
|
val = rtas_ld(args, 2);
|
|
size = rtas_ld(args, 1);
|
|
addr = rtas_ld(args, 0);
|
|
|
|
finish_write_pci_config(spapr, 0, addr, size, val, rets);
|
|
}
|
|
|
|
/*
|
|
* Set MSI/MSIX message data.
|
|
* This is required for msi_notify()/msix_notify() which
|
|
* will write at the addresses via spapr_msi_write().
|
|
*
|
|
* If hwaddr == 0, all entries will have .data == first_irq i.e.
|
|
* table will be reset.
|
|
*/
|
|
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
|
|
unsigned first_irq, unsigned req_num)
|
|
{
|
|
unsigned i;
|
|
MSIMessage msg = { .address = addr, .data = first_irq };
|
|
|
|
if (!msix) {
|
|
msi_set_message(pdev, msg);
|
|
trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < req_num; ++i) {
|
|
msix_set_message(pdev, i, msg);
|
|
trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
|
|
if (addr) {
|
|
++msg.data;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
uint32_t config_addr = rtas_ld(args, 0);
|
|
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
unsigned int func = rtas_ld(args, 3);
|
|
unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
|
|
unsigned int seq_num = rtas_ld(args, 5);
|
|
unsigned int ret_intr_type;
|
|
unsigned int irq, max_irqs = 0, num = 0;
|
|
sPAPRPHBState *phb = NULL;
|
|
PCIDevice *pdev = NULL;
|
|
spapr_pci_msi *msi;
|
|
int *config_addr_key;
|
|
|
|
switch (func) {
|
|
case RTAS_CHANGE_MSI_FN:
|
|
case RTAS_CHANGE_FN:
|
|
ret_intr_type = RTAS_TYPE_MSI;
|
|
break;
|
|
case RTAS_CHANGE_MSIX_FN:
|
|
ret_intr_type = RTAS_TYPE_MSIX;
|
|
break;
|
|
default:
|
|
error_report("rtas_ibm_change_msi(%u) is not implemented", func);
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Fins sPAPRPHBState */
|
|
phb = spapr_pci_find_phb(spapr, buid);
|
|
if (phb) {
|
|
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
|
|
}
|
|
if (!phb || !pdev) {
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Releasing MSIs */
|
|
if (!req_num) {
|
|
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
|
|
if (!msi) {
|
|
trace_spapr_pci_msi("Releasing wrong config", config_addr);
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
xics_free(spapr->icp, msi->first_irq, msi->num);
|
|
if (msi_present(pdev)) {
|
|
spapr_msi_setmsg(pdev, 0, false, 0, num);
|
|
}
|
|
if (msix_present(pdev)) {
|
|
spapr_msi_setmsg(pdev, 0, true, 0, num);
|
|
}
|
|
g_hash_table_remove(phb->msi, &config_addr);
|
|
|
|
trace_spapr_pci_msi("Released MSIs", config_addr);
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
rtas_st(rets, 1, 0);
|
|
return;
|
|
}
|
|
|
|
/* Enabling MSI */
|
|
|
|
/* Check if the device supports as many IRQs as requested */
|
|
if (ret_intr_type == RTAS_TYPE_MSI) {
|
|
max_irqs = msi_nr_vectors_allocated(pdev);
|
|
} else if (ret_intr_type == RTAS_TYPE_MSIX) {
|
|
max_irqs = pdev->msix_entries_nr;
|
|
}
|
|
if (!max_irqs) {
|
|
error_report("Requested interrupt type %d is not enabled for device %x",
|
|
ret_intr_type, config_addr);
|
|
rtas_st(rets, 0, -1); /* Hardware error */
|
|
return;
|
|
}
|
|
/* Correct the number if the guest asked for too many */
|
|
if (req_num > max_irqs) {
|
|
trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
|
|
req_num = max_irqs;
|
|
irq = 0; /* to avoid misleading trace */
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate MSIs */
|
|
irq = xics_alloc_block(spapr->icp, 0, req_num, false,
|
|
ret_intr_type == RTAS_TYPE_MSI);
|
|
if (!irq) {
|
|
error_report("Cannot allocate MSIs for device %x", config_addr);
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
|
|
spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
|
|
irq, req_num);
|
|
|
|
/* Add MSI device to cache */
|
|
msi = g_new(spapr_pci_msi, 1);
|
|
msi->first_irq = irq;
|
|
msi->num = req_num;
|
|
config_addr_key = g_new(int, 1);
|
|
*config_addr_key = config_addr;
|
|
g_hash_table_insert(phb->msi, config_addr_key, msi);
|
|
|
|
out:
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
rtas_st(rets, 1, req_num);
|
|
rtas_st(rets, 2, ++seq_num);
|
|
rtas_st(rets, 3, ret_intr_type);
|
|
|
|
trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
|
|
}
|
|
|
|
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token,
|
|
uint32_t nargs,
|
|
target_ulong args,
|
|
uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
uint32_t config_addr = rtas_ld(args, 0);
|
|
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
|
|
sPAPRPHBState *phb = NULL;
|
|
PCIDevice *pdev = NULL;
|
|
spapr_pci_msi *msi;
|
|
|
|
/* Find sPAPRPHBState */
|
|
phb = spapr_pci_find_phb(spapr, buid);
|
|
if (phb) {
|
|
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
|
|
}
|
|
if (!phb || !pdev) {
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Find device descriptor and start IRQ */
|
|
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
|
|
if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
|
|
trace_spapr_pci_msi("Failed to return vector", config_addr);
|
|
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
|
|
return;
|
|
}
|
|
intr_src_num = msi->first_irq + ioa_intr_num;
|
|
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
|
|
intr_src_num);
|
|
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
rtas_st(rets, 1, intr_src_num);
|
|
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
|
|
}
|
|
|
|
static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
uint32_t addr, option;
|
|
uint64_t buid;
|
|
int ret;
|
|
|
|
if ((nargs != 4) || (nret != 1)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
addr = rtas_ld(args, 0);
|
|
option = rtas_ld(args, 3);
|
|
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_set_option) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
ret = spc->eeh_set_option(sphb, addr, option);
|
|
rtas_st(rets, 0, ret);
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
PCIDevice *pdev;
|
|
uint32_t addr, option;
|
|
uint64_t buid;
|
|
|
|
if ((nargs != 4) || (nret != 2)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_set_option) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
/*
|
|
* We always have PE address of form "00BB0001". "BB"
|
|
* represents the bus number of PE's primary bus.
|
|
*/
|
|
option = rtas_ld(args, 3);
|
|
switch (option) {
|
|
case RTAS_GET_PE_ADDR:
|
|
addr = rtas_ld(args, 0);
|
|
pdev = spapr_pci_find_dev(spapr, buid, addr);
|
|
if (!pdev) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
|
|
break;
|
|
case RTAS_GET_PE_MODE:
|
|
rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
|
|
break;
|
|
default:
|
|
goto param_error_exit;
|
|
}
|
|
|
|
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
uint64_t buid;
|
|
int state, ret;
|
|
|
|
if ((nargs != 3) || (nret != 4 && nret != 5)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_get_state) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
ret = spc->eeh_get_state(sphb, &state);
|
|
rtas_st(rets, 0, ret);
|
|
if (ret != RTAS_OUT_SUCCESS) {
|
|
return;
|
|
}
|
|
|
|
rtas_st(rets, 1, state);
|
|
rtas_st(rets, 2, RTAS_EEH_SUPPORT);
|
|
rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
|
|
if (nret >= 5) {
|
|
rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
|
|
}
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
uint32_t option;
|
|
uint64_t buid;
|
|
int ret;
|
|
|
|
if ((nargs != 4) || (nret != 1)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
option = rtas_ld(args, 3);
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_reset) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
ret = spc->eeh_reset(sphb, option);
|
|
rtas_st(rets, 0, ret);
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
uint64_t buid;
|
|
int ret;
|
|
|
|
if ((nargs != 3) || (nret != 1)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_configure) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
ret = spc->eeh_configure(sphb);
|
|
rtas_st(rets, 0, ret);
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
/* To support it later */
|
|
static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
|
|
sPAPREnvironment *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
sPAPRPHBClass *spc;
|
|
int option;
|
|
uint64_t buid;
|
|
|
|
if ((nargs != 8) || (nret != 1)) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
|
|
sphb = spapr_pci_find_phb(spapr, buid);
|
|
if (!sphb) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
|
|
if (!spc->eeh_set_option) {
|
|
goto param_error_exit;
|
|
}
|
|
|
|
option = rtas_ld(args, 7);
|
|
switch (option) {
|
|
case RTAS_SLOT_TEMP_ERR_LOG:
|
|
case RTAS_SLOT_PERM_ERR_LOG:
|
|
break;
|
|
default:
|
|
goto param_error_exit;
|
|
}
|
|
|
|
/* We don't have error log yet */
|
|
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
|
|
return;
|
|
|
|
param_error_exit:
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
}
|
|
|
|
static int pci_spapr_swizzle(int slot, int pin)
|
|
{
|
|
return (slot + pin) % PCI_NUM_PINS;
|
|
}
|
|
|
|
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
|
|
{
|
|
/*
|
|
* Here we need to convert pci_dev + irq_num to some unique value
|
|
* which is less than number of IRQs on the specific bus (4). We
|
|
* use standard PCI swizzling, that is (slot number + pin number)
|
|
* % 4.
|
|
*/
|
|
return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
|
|
}
|
|
|
|
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
|
|
{
|
|
/*
|
|
* Here we use the number returned by pci_spapr_map_irq to find a
|
|
* corresponding qemu_irq.
|
|
*/
|
|
sPAPRPHBState *phb = opaque;
|
|
|
|
trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
|
|
qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
|
|
}
|
|
|
|
static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
|
|
{
|
|
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
|
|
PCIINTxRoute route;
|
|
|
|
route.mode = PCI_INTX_ENABLED;
|
|
route.irq = sphb->lsi_table[pin].irq;
|
|
|
|
return route;
|
|
}
|
|
|
|
/*
|
|
* MSI/MSIX memory region implementation.
|
|
* The handler handles both MSI and MSIX.
|
|
* For MSI-X, the vector number is encoded as a part of the address,
|
|
* data is set to 0.
|
|
* For MSI, the vector number is encoded in least bits in data.
|
|
*/
|
|
static void spapr_msi_write(void *opaque, hwaddr addr,
|
|
uint64_t data, unsigned size)
|
|
{
|
|
uint32_t irq = data;
|
|
|
|
trace_spapr_pci_msi_write(addr, data, irq);
|
|
|
|
qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
|
|
}
|
|
|
|
static const MemoryRegionOps spapr_msi_ops = {
|
|
/* There is no .read as the read result is undefined by PCI spec */
|
|
.read = NULL,
|
|
.write = spapr_msi_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN
|
|
};
|
|
|
|
/*
|
|
* PHB PCI device
|
|
*/
|
|
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
|
|
{
|
|
sPAPRPHBState *phb = opaque;
|
|
|
|
return &phb->iommu_as;
|
|
}
|
|
|
|
static void spapr_phb_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SysBusDevice *s = SYS_BUS_DEVICE(dev);
|
|
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
|
|
PCIHostState *phb = PCI_HOST_BRIDGE(s);
|
|
sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
|
|
char *namebuf;
|
|
int i;
|
|
PCIBus *bus;
|
|
uint64_t msi_window_size = 4096;
|
|
|
|
if (sphb->index != (uint32_t)-1) {
|
|
hwaddr windows_base;
|
|
|
|
if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
|
|
|| (sphb->mem_win_addr != (hwaddr)-1)
|
|
|| (sphb->io_win_addr != (hwaddr)-1)) {
|
|
error_setg(errp, "Either \"index\" or other parameters must"
|
|
" be specified for PAPR PHB, not both");
|
|
return;
|
|
}
|
|
|
|
if (sphb->index > SPAPR_PCI_MAX_INDEX) {
|
|
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
|
|
SPAPR_PCI_MAX_INDEX);
|
|
return;
|
|
}
|
|
|
|
sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
|
|
sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
|
|
|
|
windows_base = SPAPR_PCI_WINDOW_BASE
|
|
+ sphb->index * SPAPR_PCI_WINDOW_SPACING;
|
|
sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
|
|
sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
|
|
}
|
|
|
|
if (sphb->buid == (uint64_t)-1) {
|
|
error_setg(errp, "BUID not specified for PHB");
|
|
return;
|
|
}
|
|
|
|
if (sphb->dma_liobn == (uint32_t)-1) {
|
|
error_setg(errp, "LIOBN not specified for PHB");
|
|
return;
|
|
}
|
|
|
|
if (sphb->mem_win_addr == (hwaddr)-1) {
|
|
error_setg(errp, "Memory window address not specified for PHB");
|
|
return;
|
|
}
|
|
|
|
if (sphb->io_win_addr == (hwaddr)-1) {
|
|
error_setg(errp, "IO window address not specified for PHB");
|
|
return;
|
|
}
|
|
|
|
if (spapr_pci_find_phb(spapr, sphb->buid)) {
|
|
error_setg(errp, "PCI host bridges must have unique BUIDs");
|
|
return;
|
|
}
|
|
|
|
sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
|
|
|
|
namebuf = alloca(strlen(sphb->dtbusname) + 32);
|
|
|
|
/* Initialize memory regions */
|
|
sprintf(namebuf, "%s.mmio", sphb->dtbusname);
|
|
memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
|
|
|
|
sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
|
|
memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
|
|
namebuf, &sphb->memspace,
|
|
SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
|
|
memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
|
|
&sphb->memwindow);
|
|
|
|
/* Initialize IO regions */
|
|
sprintf(namebuf, "%s.io", sphb->dtbusname);
|
|
memory_region_init(&sphb->iospace, OBJECT(sphb),
|
|
namebuf, SPAPR_PCI_IO_WIN_SIZE);
|
|
|
|
sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
|
|
memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
|
|
&sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
|
|
memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
|
|
&sphb->iowindow);
|
|
|
|
bus = pci_register_bus(dev, NULL,
|
|
pci_spapr_set_irq, pci_spapr_map_irq, sphb,
|
|
&sphb->memspace, &sphb->iospace,
|
|
PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
|
|
phb->bus = bus;
|
|
|
|
/*
|
|
* Initialize PHB address space.
|
|
* By default there will be at least one subregion for default
|
|
* 32bit DMA window.
|
|
* Later the guest might want to create another DMA window
|
|
* which will become another memory subregion.
|
|
*/
|
|
sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
|
|
|
|
memory_region_init(&sphb->iommu_root, OBJECT(sphb),
|
|
namebuf, UINT64_MAX);
|
|
address_space_init(&sphb->iommu_as, &sphb->iommu_root,
|
|
sphb->dtbusname);
|
|
|
|
/*
|
|
* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
|
|
* we need to allocate some memory to catch those writes coming
|
|
* from msi_notify()/msix_notify().
|
|
* As MSIMessage:addr is going to be the same and MSIMessage:data
|
|
* is going to be a VIRQ number, 4 bytes of the MSI MR will only
|
|
* be used.
|
|
*
|
|
* For KVM we want to ensure that this memory is a full page so that
|
|
* our memory slot is of page size granularity.
|
|
*/
|
|
#ifdef CONFIG_KVM
|
|
if (kvm_enabled()) {
|
|
msi_window_size = getpagesize();
|
|
}
|
|
#endif
|
|
|
|
memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
|
|
"msi", msi_window_size);
|
|
memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
|
|
&sphb->msiwindow);
|
|
|
|
pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
|
|
|
|
pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
|
|
|
|
QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
|
|
|
|
/* Initialize the LSI table */
|
|
for (i = 0; i < PCI_NUM_PINS; i++) {
|
|
uint32_t irq;
|
|
|
|
irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
|
|
if (!irq) {
|
|
error_setg(errp, "spapr_allocate_lsi failed");
|
|
return;
|
|
}
|
|
|
|
sphb->lsi_table[i].irq = irq;
|
|
}
|
|
|
|
/* allocate connectors for child PCI devices */
|
|
if (sphb->dr_enabled) {
|
|
for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
|
|
spapr_dr_connector_new(OBJECT(phb),
|
|
SPAPR_DR_CONNECTOR_TYPE_PCI,
|
|
(sphb->index << 16) | i);
|
|
}
|
|
}
|
|
|
|
if (!info->finish_realize) {
|
|
error_setg(errp, "finish_realize not defined");
|
|
return;
|
|
}
|
|
|
|
info->finish_realize(sphb, errp);
|
|
|
|
sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
|
|
}
|
|
|
|
static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
|
|
{
|
|
sPAPRTCETable *tcet;
|
|
uint32_t nb_table;
|
|
|
|
nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
|
|
tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
|
|
0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
|
|
if (!tcet) {
|
|
error_setg(errp, "Unable to create TCE table for %s",
|
|
sphb->dtbusname);
|
|
return ;
|
|
}
|
|
|
|
/* Register default 32bit DMA window */
|
|
memory_region_add_subregion(&sphb->iommu_root, 0,
|
|
spapr_tce_get_iommu(tcet));
|
|
}
|
|
|
|
static int spapr_phb_children_reset(Object *child, void *opaque)
|
|
{
|
|
DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
|
|
|
|
if (dev) {
|
|
device_reset(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_phb_reset(DeviceState *qdev)
|
|
{
|
|
/* Reset the IOMMU state */
|
|
object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
|
|
}
|
|
|
|
static Property spapr_phb_properties[] = {
|
|
DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
|
|
DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
|
|
DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
|
|
DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
|
|
DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
|
|
SPAPR_PCI_MMIO_WIN_SIZE),
|
|
DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
|
|
DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
|
|
SPAPR_PCI_IO_WIN_SIZE),
|
|
DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
|
|
true),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static const VMStateDescription vmstate_spapr_pci_lsi = {
|
|
.name = "spapr_pci/lsi",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
|
|
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_spapr_pci_msi = {
|
|
.name = "spapr_pci/msi",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT32(key, spapr_pci_msi_mig),
|
|
VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
|
|
VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
|
|
gpointer opaque)
|
|
{
|
|
sPAPRPHBState *sphb = opaque;
|
|
|
|
sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
|
|
sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
|
|
sphb->msi_devs_num++;
|
|
}
|
|
|
|
static void spapr_pci_pre_save(void *opaque)
|
|
{
|
|
sPAPRPHBState *sphb = opaque;
|
|
int msi_devs_num;
|
|
|
|
if (sphb->msi_devs) {
|
|
g_free(sphb->msi_devs);
|
|
sphb->msi_devs = NULL;
|
|
}
|
|
sphb->msi_devs_num = 0;
|
|
msi_devs_num = g_hash_table_size(sphb->msi);
|
|
if (!msi_devs_num) {
|
|
return;
|
|
}
|
|
sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
|
|
|
|
g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
|
|
assert(sphb->msi_devs_num == msi_devs_num);
|
|
}
|
|
|
|
static int spapr_pci_post_load(void *opaque, int version_id)
|
|
{
|
|
sPAPRPHBState *sphb = opaque;
|
|
gpointer key, value;
|
|
int i;
|
|
|
|
for (i = 0; i < sphb->msi_devs_num; ++i) {
|
|
key = g_memdup(&sphb->msi_devs[i].key,
|
|
sizeof(sphb->msi_devs[i].key));
|
|
value = g_memdup(&sphb->msi_devs[i].value,
|
|
sizeof(sphb->msi_devs[i].value));
|
|
g_hash_table_insert(sphb->msi, key, value);
|
|
}
|
|
if (sphb->msi_devs) {
|
|
g_free(sphb->msi_devs);
|
|
sphb->msi_devs = NULL;
|
|
}
|
|
sphb->msi_devs_num = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_pci = {
|
|
.name = "spapr_pci",
|
|
.version_id = 2,
|
|
.minimum_version_id = 2,
|
|
.pre_save = spapr_pci_pre_save,
|
|
.post_load = spapr_pci_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
|
|
VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
|
|
VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
|
|
VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
|
|
VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
|
|
VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
|
|
VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
|
|
vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
|
|
VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
|
|
VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
|
|
vmstate_spapr_pci_msi, spapr_pci_msi_mig),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
|
|
PCIBus *rootbus)
|
|
{
|
|
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
|
|
|
|
return sphb->dtbusname;
|
|
}
|
|
|
|
static void spapr_phb_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
|
|
|
|
hc->root_bus_path = spapr_phb_root_bus_path;
|
|
dc->realize = spapr_phb_realize;
|
|
dc->props = spapr_phb_properties;
|
|
dc->reset = spapr_phb_reset;
|
|
dc->vmsd = &vmstate_spapr_pci;
|
|
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
|
|
dc->cannot_instantiate_with_device_add_yet = false;
|
|
spc->finish_realize = spapr_phb_finish_realize;
|
|
}
|
|
|
|
static const TypeInfo spapr_phb_info = {
|
|
.name = TYPE_SPAPR_PCI_HOST_BRIDGE,
|
|
.parent = TYPE_PCI_HOST_BRIDGE,
|
|
.instance_size = sizeof(sPAPRPHBState),
|
|
.class_init = spapr_phb_class_init,
|
|
.class_size = sizeof(sPAPRPHBClass),
|
|
};
|
|
|
|
PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
|
|
{
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
qdev_prop_set_uint32(dev, "index", index);
|
|
qdev_init_nofail(dev);
|
|
|
|
return PCI_HOST_BRIDGE(dev);
|
|
}
|
|
|
|
/* Macros to operate with address in OF binding to PCI */
|
|
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
|
|
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
|
|
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
|
|
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
|
|
#define b_ss(x) b_x((x), 24, 2) /* the space code */
|
|
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
|
|
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
|
|
#define b_fff(x) b_x((x), 8, 3) /* function number */
|
|
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
|
|
|
|
int spapr_populate_pci_dt(sPAPRPHBState *phb,
|
|
uint32_t xics_phandle,
|
|
void *fdt)
|
|
{
|
|
int bus_off, i, j, ret;
|
|
char nodename[256];
|
|
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
|
|
const uint64_t mmiosize = memory_region_size(&phb->memwindow);
|
|
const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
|
|
const uint64_t w32size = MIN(w32max, mmiosize);
|
|
const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
|
|
struct {
|
|
uint32_t hi;
|
|
uint64_t child;
|
|
uint64_t parent;
|
|
uint64_t size;
|
|
} QEMU_PACKED ranges[] = {
|
|
{
|
|
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
|
|
cpu_to_be64(phb->io_win_addr),
|
|
cpu_to_be64(memory_region_size(&phb->iospace)),
|
|
},
|
|
{
|
|
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
|
|
cpu_to_be64(phb->mem_win_addr),
|
|
cpu_to_be64(w32size),
|
|
},
|
|
{
|
|
cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
|
|
cpu_to_be64(phb->mem_win_addr + w32size),
|
|
cpu_to_be64(w64size)
|
|
},
|
|
};
|
|
const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
|
|
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
|
|
uint32_t interrupt_map_mask[] = {
|
|
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
|
|
uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
|
|
sPAPRTCETable *tcet;
|
|
|
|
/* Start populating the FDT */
|
|
sprintf(nodename, "pci@%" PRIx64, phb->buid);
|
|
bus_off = fdt_add_subnode(fdt, 0, nodename);
|
|
if (bus_off < 0) {
|
|
return bus_off;
|
|
}
|
|
|
|
#define _FDT(exp) \
|
|
do { \
|
|
int ret = (exp); \
|
|
if (ret < 0) { \
|
|
return ret; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Write PHB properties */
|
|
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
|
|
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
|
|
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
|
|
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
|
|
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
|
|
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
|
|
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
|
|
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
|
|
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
|
|
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
|
|
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
|
|
|
|
/* Build the interrupt-map, this must matches what is done
|
|
* in pci_spapr_map_irq
|
|
*/
|
|
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
|
|
&interrupt_map_mask, sizeof(interrupt_map_mask)));
|
|
for (i = 0; i < PCI_SLOT_MAX; i++) {
|
|
for (j = 0; j < PCI_NUM_PINS; j++) {
|
|
uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
|
|
int lsi_num = pci_spapr_swizzle(i, j);
|
|
|
|
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
|
|
irqmap[1] = 0;
|
|
irqmap[2] = 0;
|
|
irqmap[3] = cpu_to_be32(j+1);
|
|
irqmap[4] = cpu_to_be32(xics_phandle);
|
|
irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
|
|
irqmap[6] = cpu_to_be32(0x8);
|
|
}
|
|
}
|
|
/* Write interrupt map */
|
|
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
|
|
sizeof(interrupt_map)));
|
|
|
|
tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
|
|
spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
|
|
tcet->liobn, tcet->bus_offset,
|
|
tcet->nb_table << tcet->page_shift);
|
|
|
|
ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
|
|
SPAPR_DR_CONNECTOR_TYPE_PCI);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void spapr_pci_rtas_init(void)
|
|
{
|
|
spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
|
|
rtas_read_pci_config);
|
|
spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
|
|
rtas_write_pci_config);
|
|
spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
|
|
rtas_ibm_read_pci_config);
|
|
spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
|
|
rtas_ibm_write_pci_config);
|
|
if (msi_supported) {
|
|
spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
|
|
"ibm,query-interrupt-source-number",
|
|
rtas_ibm_query_interrupt_source_number);
|
|
spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
|
|
rtas_ibm_change_msi);
|
|
}
|
|
|
|
spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
|
|
"ibm,set-eeh-option",
|
|
rtas_ibm_set_eeh_option);
|
|
spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
|
|
"ibm,get-config-addr-info2",
|
|
rtas_ibm_get_config_addr_info2);
|
|
spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
|
|
"ibm,read-slot-reset-state2",
|
|
rtas_ibm_read_slot_reset_state2);
|
|
spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
|
|
"ibm,set-slot-reset",
|
|
rtas_ibm_set_slot_reset);
|
|
spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
|
|
"ibm,configure-pe",
|
|
rtas_ibm_configure_pe);
|
|
spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
|
|
"ibm,slot-error-detail",
|
|
rtas_ibm_slot_error_detail);
|
|
}
|
|
|
|
static void spapr_pci_register_types(void)
|
|
{
|
|
type_register_static(&spapr_phb_info);
|
|
}
|
|
|
|
type_init(spapr_pci_register_types)
|
|
|
|
static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
|
|
{
|
|
bool be = *(bool *)opaque;
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), "VGA")
|
|
|| object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
|
|
object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
|
|
&error_abort);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void spapr_pci_switch_vga(bool big_endian)
|
|
{
|
|
sPAPRPHBState *sphb;
|
|
|
|
/*
|
|
* For backward compatibility with existing guests, we switch
|
|
* the endianness of the VGA controller when changing the guest
|
|
* interrupt mode
|
|
*/
|
|
QLIST_FOREACH(sphb, &spapr->phbs, list) {
|
|
BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
|
|
qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
|
|
&big_endian);
|
|
}
|
|
}
|