mirror of
https://github.com/qemu/qemu.git
synced 2024-11-30 07:13:38 +08:00
67d8cec34b
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5274 c046a42c-6fe2-441c-8c8c-71466251a162
2279 lines
65 KiB
C
2279 lines
65 KiB
C
/*
|
|
* Intel XScale PXA255/270 processor support.
|
|
*
|
|
* Copyright (c) 2006 Openedhand Ltd.
|
|
* Written by Andrzej Zaborowski <balrog@zabor.org>
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "pxa.h"
|
|
#include "sysemu.h"
|
|
#include "pc.h"
|
|
#include "i2c.h"
|
|
#include "qemu-timer.h"
|
|
#include "qemu-char.h"
|
|
|
|
static struct {
|
|
target_phys_addr_t io_base;
|
|
int irqn;
|
|
} pxa255_serial[] = {
|
|
{ 0x40100000, PXA2XX_PIC_FFUART },
|
|
{ 0x40200000, PXA2XX_PIC_BTUART },
|
|
{ 0x40700000, PXA2XX_PIC_STUART },
|
|
{ 0x41600000, PXA25X_PIC_HWUART },
|
|
{ 0, 0 }
|
|
}, pxa270_serial[] = {
|
|
{ 0x40100000, PXA2XX_PIC_FFUART },
|
|
{ 0x40200000, PXA2XX_PIC_BTUART },
|
|
{ 0x40700000, PXA2XX_PIC_STUART },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
typedef struct PXASSPDef {
|
|
target_phys_addr_t io_base;
|
|
int irqn;
|
|
} PXASSPDef;
|
|
|
|
#if 0
|
|
static PXASSPDef pxa250_ssp[] = {
|
|
{ 0x41000000, PXA2XX_PIC_SSP },
|
|
{ 0, 0 }
|
|
};
|
|
#endif
|
|
|
|
static PXASSPDef pxa255_ssp[] = {
|
|
{ 0x41000000, PXA2XX_PIC_SSP },
|
|
{ 0x41400000, PXA25X_PIC_NSSP },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
#if 0
|
|
static PXASSPDef pxa26x_ssp[] = {
|
|
{ 0x41000000, PXA2XX_PIC_SSP },
|
|
{ 0x41400000, PXA25X_PIC_NSSP },
|
|
{ 0x41500000, PXA26X_PIC_ASSP },
|
|
{ 0, 0 }
|
|
};
|
|
#endif
|
|
|
|
static PXASSPDef pxa27x_ssp[] = {
|
|
{ 0x41000000, PXA2XX_PIC_SSP },
|
|
{ 0x41700000, PXA27X_PIC_SSP2 },
|
|
{ 0x41900000, PXA2XX_PIC_SSP3 },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
#define PMCR 0x00 /* Power Manager Control register */
|
|
#define PSSR 0x04 /* Power Manager Sleep Status register */
|
|
#define PSPR 0x08 /* Power Manager Scratch-Pad register */
|
|
#define PWER 0x0c /* Power Manager Wake-Up Enable register */
|
|
#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
|
|
#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
|
|
#define PEDR 0x18 /* Power Manager Edge-Detect Status register */
|
|
#define PCFR 0x1c /* Power Manager General Configuration register */
|
|
#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
|
|
#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
|
|
#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
|
|
#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
|
|
#define RCSR 0x30 /* Reset Controller Status register */
|
|
#define PSLR 0x34 /* Power Manager Sleep Configuration register */
|
|
#define PTSR 0x38 /* Power Manager Standby Configuration register */
|
|
#define PVCR 0x40 /* Power Manager Voltage Change Control register */
|
|
#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
|
|
#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
|
|
#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
|
|
#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
|
|
#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
|
|
|
|
static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->pm_base;
|
|
|
|
switch (addr) {
|
|
case PMCR ... PCMD31:
|
|
if (addr & 3)
|
|
goto fail;
|
|
|
|
return s->pm_regs[addr >> 2];
|
|
default:
|
|
fail:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->pm_base;
|
|
|
|
switch (addr) {
|
|
case PMCR:
|
|
s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
|
|
s->pm_regs[addr >> 2] |= value & 0x15;
|
|
break;
|
|
|
|
case PSSR: /* Read-clean registers */
|
|
case RCSR:
|
|
case PKSR:
|
|
s->pm_regs[addr >> 2] &= ~value;
|
|
break;
|
|
|
|
default: /* Read-write registers */
|
|
if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
|
|
s->pm_regs[addr >> 2] = value;
|
|
break;
|
|
}
|
|
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
|
|
pxa2xx_pm_read,
|
|
pxa2xx_pm_read,
|
|
pxa2xx_pm_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
|
|
pxa2xx_pm_write,
|
|
pxa2xx_pm_write,
|
|
pxa2xx_pm_write,
|
|
};
|
|
|
|
static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x40; i ++)
|
|
qemu_put_be32s(f, &s->pm_regs[i]);
|
|
}
|
|
|
|
static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x40; i ++)
|
|
qemu_get_be32s(f, &s->pm_regs[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define CCCR 0x00 /* Core Clock Configuration register */
|
|
#define CKEN 0x04 /* Clock Enable register */
|
|
#define OSCC 0x08 /* Oscillator Configuration register */
|
|
#define CCSR 0x0c /* Core Clock Status register */
|
|
|
|
static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->cm_base;
|
|
|
|
switch (addr) {
|
|
case CCCR:
|
|
case CKEN:
|
|
case OSCC:
|
|
return s->cm_regs[addr >> 2];
|
|
|
|
case CCSR:
|
|
return s->cm_regs[CCCR >> 2] | (3 << 28);
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->cm_base;
|
|
|
|
switch (addr) {
|
|
case CCCR:
|
|
case CKEN:
|
|
s->cm_regs[addr >> 2] = value;
|
|
break;
|
|
|
|
case OSCC:
|
|
s->cm_regs[addr >> 2] &= ~0x6c;
|
|
s->cm_regs[addr >> 2] |= value & 0x6e;
|
|
if ((value >> 1) & 1) /* OON */
|
|
s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
|
|
pxa2xx_cm_read,
|
|
pxa2xx_cm_read,
|
|
pxa2xx_cm_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
|
|
pxa2xx_cm_write,
|
|
pxa2xx_cm_write,
|
|
pxa2xx_cm_write,
|
|
};
|
|
|
|
static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i ++)
|
|
qemu_put_be32s(f, &s->cm_regs[i]);
|
|
qemu_put_be32s(f, &s->clkcfg);
|
|
qemu_put_be32s(f, &s->pmnc);
|
|
}
|
|
|
|
static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i ++)
|
|
qemu_get_be32s(f, &s->cm_regs[i]);
|
|
qemu_get_be32s(f, &s->clkcfg);
|
|
qemu_get_be32s(f, &s->pmnc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
switch (reg) {
|
|
case 6: /* Clock Configuration register */
|
|
return s->clkcfg;
|
|
|
|
case 7: /* Power Mode register */
|
|
return 0;
|
|
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
static const char *pwrmode[8] = {
|
|
"Normal", "Idle", "Deep-idle", "Standby",
|
|
"Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
|
|
};
|
|
|
|
switch (reg) {
|
|
case 6: /* Clock Configuration register */
|
|
s->clkcfg = value & 0xf;
|
|
if (value & 2)
|
|
printf("%s: CPU frequency change attempt\n", __FUNCTION__);
|
|
break;
|
|
|
|
case 7: /* Power Mode register */
|
|
if (value & 8)
|
|
printf("%s: CPU voltage change attempt\n", __FUNCTION__);
|
|
switch (value & 7) {
|
|
case 0:
|
|
/* Do nothing */
|
|
break;
|
|
|
|
case 1:
|
|
/* Idle */
|
|
if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
|
|
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case 2:
|
|
/* Deep-Idle */
|
|
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
|
|
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
|
|
goto message;
|
|
|
|
case 3:
|
|
s->env->uncached_cpsr =
|
|
ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
|
|
s->env->cp15.c1_sys = 0;
|
|
s->env->cp15.c1_coproc = 0;
|
|
s->env->cp15.c2_base0 = 0;
|
|
s->env->cp15.c3 = 0;
|
|
s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
|
|
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
|
|
|
|
/*
|
|
* The scratch-pad register is almost universally used
|
|
* for storing the return address on suspend. For the
|
|
* lack of a resuming bootloader, perform a jump
|
|
* directly to that address.
|
|
*/
|
|
memset(s->env->regs, 0, 4 * 15);
|
|
s->env->regs[15] = s->pm_regs[PSPR >> 2];
|
|
|
|
#if 0
|
|
buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
|
|
cpu_physical_memory_write(0, &buffer, 4);
|
|
buffer = s->pm_regs[PSPR >> 2];
|
|
cpu_physical_memory_write(8, &buffer, 4);
|
|
#endif
|
|
|
|
/* Suspend */
|
|
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
|
|
|
|
goto message;
|
|
|
|
default:
|
|
message:
|
|
printf("%s: machine entered %s mode\n", __FUNCTION__,
|
|
pwrmode[value & 7]);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Performace Monitoring Registers */
|
|
#define CPPMNC 0 /* Performance Monitor Control register */
|
|
#define CPCCNT 1 /* Clock Counter register */
|
|
#define CPINTEN 4 /* Interrupt Enable register */
|
|
#define CPFLAG 5 /* Overflow Flag register */
|
|
#define CPEVTSEL 8 /* Event Selection register */
|
|
|
|
#define CPPMN0 0 /* Performance Count register 0 */
|
|
#define CPPMN1 1 /* Performance Count register 1 */
|
|
#define CPPMN2 2 /* Performance Count register 2 */
|
|
#define CPPMN3 3 /* Performance Count register 3 */
|
|
|
|
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
switch (reg) {
|
|
case CPPMNC:
|
|
return s->pmnc;
|
|
case CPCCNT:
|
|
if (s->pmnc & 1)
|
|
return qemu_get_clock(vm_clock);
|
|
else
|
|
return 0;
|
|
case CPINTEN:
|
|
case CPFLAG:
|
|
case CPEVTSEL:
|
|
return 0;
|
|
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
switch (reg) {
|
|
case CPPMNC:
|
|
s->pmnc = value;
|
|
break;
|
|
|
|
case CPCCNT:
|
|
case CPINTEN:
|
|
case CPFLAG:
|
|
case CPEVTSEL:
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
|
|
{
|
|
switch (crm) {
|
|
case 0:
|
|
return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
|
|
case 1:
|
|
return pxa2xx_perf_read(opaque, op2, reg, crm);
|
|
case 2:
|
|
switch (reg) {
|
|
case CPPMN0:
|
|
case CPPMN1:
|
|
case CPPMN2:
|
|
case CPPMN3:
|
|
return 0;
|
|
}
|
|
/* Fall through */
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
|
|
uint32_t value)
|
|
{
|
|
switch (crm) {
|
|
case 0:
|
|
pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
|
|
break;
|
|
case 1:
|
|
pxa2xx_perf_write(opaque, op2, reg, crm, value);
|
|
break;
|
|
case 2:
|
|
switch (reg) {
|
|
case CPPMN0:
|
|
case CPPMN1:
|
|
case CPPMN2:
|
|
case CPPMN3:
|
|
return;
|
|
}
|
|
/* Fall through */
|
|
default:
|
|
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define MDCNFG 0x00 /* SDRAM Configuration register */
|
|
#define MDREFR 0x04 /* SDRAM Refresh Control register */
|
|
#define MSC0 0x08 /* Static Memory Control register 0 */
|
|
#define MSC1 0x0c /* Static Memory Control register 1 */
|
|
#define MSC2 0x10 /* Static Memory Control register 2 */
|
|
#define MECR 0x14 /* Expansion Memory Bus Config register */
|
|
#define SXCNFG 0x1c /* Synchronous Static Memory Config register */
|
|
#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
|
|
#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
|
|
#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
|
|
#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
|
|
#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
|
|
#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
|
|
#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
|
|
#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
|
|
#define ARB_CNTL 0x48 /* Arbiter Control register */
|
|
#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
|
|
#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
|
|
#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
|
|
#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
|
|
#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
|
|
#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
|
|
#define SA1110 0x64 /* SA-1110 Memory Compatibility register */
|
|
|
|
static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->mm_base;
|
|
|
|
switch (addr) {
|
|
case MDCNFG ... SA1110:
|
|
if ((addr & 3) == 0)
|
|
return s->mm_regs[addr >> 2];
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->mm_base;
|
|
|
|
switch (addr) {
|
|
case MDCNFG ... SA1110:
|
|
if ((addr & 3) == 0) {
|
|
s->mm_regs[addr >> 2] = value;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
|
|
pxa2xx_mm_read,
|
|
pxa2xx_mm_read,
|
|
pxa2xx_mm_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
|
|
pxa2xx_mm_write,
|
|
pxa2xx_mm_write,
|
|
pxa2xx_mm_write,
|
|
};
|
|
|
|
static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x1a; i ++)
|
|
qemu_put_be32s(f, &s->mm_regs[i]);
|
|
}
|
|
|
|
static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x1a; i ++)
|
|
qemu_get_be32s(f, &s->mm_regs[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Synchronous Serial Ports */
|
|
struct pxa2xx_ssp_s {
|
|
target_phys_addr_t base;
|
|
qemu_irq irq;
|
|
int enable;
|
|
|
|
uint32_t sscr[2];
|
|
uint32_t sspsp;
|
|
uint32_t ssto;
|
|
uint32_t ssitr;
|
|
uint32_t sssr;
|
|
uint8_t sstsa;
|
|
uint8_t ssrsa;
|
|
uint8_t ssacd;
|
|
|
|
uint32_t rx_fifo[16];
|
|
int rx_level;
|
|
int rx_start;
|
|
|
|
uint32_t (*readfn)(void *opaque);
|
|
void (*writefn)(void *opaque, uint32_t value);
|
|
void *opaque;
|
|
};
|
|
|
|
#define SSCR0 0x00 /* SSP Control register 0 */
|
|
#define SSCR1 0x04 /* SSP Control register 1 */
|
|
#define SSSR 0x08 /* SSP Status register */
|
|
#define SSITR 0x0c /* SSP Interrupt Test register */
|
|
#define SSDR 0x10 /* SSP Data register */
|
|
#define SSTO 0x28 /* SSP Time-Out register */
|
|
#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
|
|
#define SSTSA 0x30 /* SSP TX Time Slot Active register */
|
|
#define SSRSA 0x34 /* SSP RX Time Slot Active register */
|
|
#define SSTSS 0x38 /* SSP Time Slot Status register */
|
|
#define SSACD 0x3c /* SSP Audio Clock Divider register */
|
|
|
|
/* Bitfields for above registers */
|
|
#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
|
|
#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
|
|
#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
|
|
#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
|
|
#define SSCR0_SSE (1 << 7)
|
|
#define SSCR0_RIM (1 << 22)
|
|
#define SSCR0_TIM (1 << 23)
|
|
#define SSCR0_MOD (1 << 31)
|
|
#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
|
|
#define SSCR1_RIE (1 << 0)
|
|
#define SSCR1_TIE (1 << 1)
|
|
#define SSCR1_LBM (1 << 2)
|
|
#define SSCR1_MWDS (1 << 5)
|
|
#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
|
|
#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
|
|
#define SSCR1_EFWR (1 << 14)
|
|
#define SSCR1_PINTE (1 << 18)
|
|
#define SSCR1_TINTE (1 << 19)
|
|
#define SSCR1_RSRE (1 << 20)
|
|
#define SSCR1_TSRE (1 << 21)
|
|
#define SSCR1_EBCEI (1 << 29)
|
|
#define SSITR_INT (7 << 5)
|
|
#define SSSR_TNF (1 << 2)
|
|
#define SSSR_RNE (1 << 3)
|
|
#define SSSR_TFS (1 << 5)
|
|
#define SSSR_RFS (1 << 6)
|
|
#define SSSR_ROR (1 << 7)
|
|
#define SSSR_PINT (1 << 18)
|
|
#define SSSR_TINT (1 << 19)
|
|
#define SSSR_EOC (1 << 20)
|
|
#define SSSR_TUR (1 << 21)
|
|
#define SSSR_BCE (1 << 23)
|
|
#define SSSR_RW 0x00bc0080
|
|
|
|
static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
|
|
{
|
|
int level = 0;
|
|
|
|
level |= s->ssitr & SSITR_INT;
|
|
level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
|
|
level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
|
|
level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
|
|
level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
|
|
level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
|
|
level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
|
|
level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
|
|
level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
|
|
qemu_set_irq(s->irq, !!level);
|
|
}
|
|
|
|
static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
|
|
{
|
|
s->sssr &= ~(0xf << 12); /* Clear RFL */
|
|
s->sssr &= ~(0xf << 8); /* Clear TFL */
|
|
s->sssr &= ~SSSR_TNF;
|
|
if (s->enable) {
|
|
s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
|
|
if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
|
|
s->sssr |= SSSR_RFS;
|
|
else
|
|
s->sssr &= ~SSSR_RFS;
|
|
if (0 <= SSCR1_TFT(s->sscr[1]))
|
|
s->sssr |= SSSR_TFS;
|
|
else
|
|
s->sssr &= ~SSSR_TFS;
|
|
if (s->rx_level)
|
|
s->sssr |= SSSR_RNE;
|
|
else
|
|
s->sssr &= ~SSSR_RNE;
|
|
s->sssr |= SSSR_TNF;
|
|
}
|
|
|
|
pxa2xx_ssp_int_update(s);
|
|
}
|
|
|
|
static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
|
|
uint32_t retval;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case SSCR0:
|
|
return s->sscr[0];
|
|
case SSCR1:
|
|
return s->sscr[1];
|
|
case SSPSP:
|
|
return s->sspsp;
|
|
case SSTO:
|
|
return s->ssto;
|
|
case SSITR:
|
|
return s->ssitr;
|
|
case SSSR:
|
|
return s->sssr | s->ssitr;
|
|
case SSDR:
|
|
if (!s->enable)
|
|
return 0xffffffff;
|
|
if (s->rx_level < 1) {
|
|
printf("%s: SSP Rx Underrun\n", __FUNCTION__);
|
|
return 0xffffffff;
|
|
}
|
|
s->rx_level --;
|
|
retval = s->rx_fifo[s->rx_start ++];
|
|
s->rx_start &= 0xf;
|
|
pxa2xx_ssp_fifo_update(s);
|
|
return retval;
|
|
case SSTSA:
|
|
return s->sstsa;
|
|
case SSRSA:
|
|
return s->ssrsa;
|
|
case SSTSS:
|
|
return 0;
|
|
case SSACD:
|
|
return s->ssacd;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case SSCR0:
|
|
s->sscr[0] = value & 0xc7ffffff;
|
|
s->enable = value & SSCR0_SSE;
|
|
if (value & SSCR0_MOD)
|
|
printf("%s: Attempt to use network mode\n", __FUNCTION__);
|
|
if (s->enable && SSCR0_DSS(value) < 4)
|
|
printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
|
|
SSCR0_DSS(value));
|
|
if (!(value & SSCR0_SSE)) {
|
|
s->sssr = 0;
|
|
s->ssitr = 0;
|
|
s->rx_level = 0;
|
|
}
|
|
pxa2xx_ssp_fifo_update(s);
|
|
break;
|
|
|
|
case SSCR1:
|
|
s->sscr[1] = value;
|
|
if (value & (SSCR1_LBM | SSCR1_EFWR))
|
|
printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
|
|
pxa2xx_ssp_fifo_update(s);
|
|
break;
|
|
|
|
case SSPSP:
|
|
s->sspsp = value;
|
|
break;
|
|
|
|
case SSTO:
|
|
s->ssto = value;
|
|
break;
|
|
|
|
case SSITR:
|
|
s->ssitr = value & SSITR_INT;
|
|
pxa2xx_ssp_int_update(s);
|
|
break;
|
|
|
|
case SSSR:
|
|
s->sssr &= ~(value & SSSR_RW);
|
|
pxa2xx_ssp_int_update(s);
|
|
break;
|
|
|
|
case SSDR:
|
|
if (SSCR0_UWIRE(s->sscr[0])) {
|
|
if (s->sscr[1] & SSCR1_MWDS)
|
|
value &= 0xffff;
|
|
else
|
|
value &= 0xff;
|
|
} else
|
|
/* Note how 32bits overflow does no harm here */
|
|
value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
|
|
|
|
/* Data goes from here to the Tx FIFO and is shifted out from
|
|
* there directly to the slave, no need to buffer it.
|
|
*/
|
|
if (s->enable) {
|
|
if (s->writefn)
|
|
s->writefn(s->opaque, value);
|
|
|
|
if (s->rx_level < 0x10) {
|
|
if (s->readfn)
|
|
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
|
|
s->readfn(s->opaque);
|
|
else
|
|
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
|
|
} else
|
|
s->sssr |= SSSR_ROR;
|
|
}
|
|
pxa2xx_ssp_fifo_update(s);
|
|
break;
|
|
|
|
case SSTSA:
|
|
s->sstsa = value;
|
|
break;
|
|
|
|
case SSRSA:
|
|
s->ssrsa = value;
|
|
break;
|
|
|
|
case SSACD:
|
|
s->ssacd = value;
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
|
|
uint32_t (*readfn)(void *opaque),
|
|
void (*writefn)(void *opaque, uint32_t value), void *opaque)
|
|
{
|
|
if (!port) {
|
|
printf("%s: no such SSP\n", __FUNCTION__);
|
|
exit(-1);
|
|
}
|
|
|
|
port->opaque = opaque;
|
|
port->readfn = readfn;
|
|
port->writefn = writefn;
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
|
|
pxa2xx_ssp_read,
|
|
pxa2xx_ssp_read,
|
|
pxa2xx_ssp_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
|
|
pxa2xx_ssp_write,
|
|
pxa2xx_ssp_write,
|
|
pxa2xx_ssp_write,
|
|
};
|
|
|
|
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
|
|
int i;
|
|
|
|
qemu_put_be32(f, s->enable);
|
|
|
|
qemu_put_be32s(f, &s->sscr[0]);
|
|
qemu_put_be32s(f, &s->sscr[1]);
|
|
qemu_put_be32s(f, &s->sspsp);
|
|
qemu_put_be32s(f, &s->ssto);
|
|
qemu_put_be32s(f, &s->ssitr);
|
|
qemu_put_be32s(f, &s->sssr);
|
|
qemu_put_8s(f, &s->sstsa);
|
|
qemu_put_8s(f, &s->ssrsa);
|
|
qemu_put_8s(f, &s->ssacd);
|
|
|
|
qemu_put_byte(f, s->rx_level);
|
|
for (i = 0; i < s->rx_level; i ++)
|
|
qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
|
|
}
|
|
|
|
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
|
|
int i;
|
|
|
|
s->enable = qemu_get_be32(f);
|
|
|
|
qemu_get_be32s(f, &s->sscr[0]);
|
|
qemu_get_be32s(f, &s->sscr[1]);
|
|
qemu_get_be32s(f, &s->sspsp);
|
|
qemu_get_be32s(f, &s->ssto);
|
|
qemu_get_be32s(f, &s->ssitr);
|
|
qemu_get_be32s(f, &s->sssr);
|
|
qemu_get_8s(f, &s->sstsa);
|
|
qemu_get_8s(f, &s->ssrsa);
|
|
qemu_get_8s(f, &s->ssacd);
|
|
|
|
s->rx_level = qemu_get_byte(f);
|
|
s->rx_start = 0;
|
|
for (i = 0; i < s->rx_level; i ++)
|
|
s->rx_fifo[i] = qemu_get_byte(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Real-Time Clock */
|
|
#define RCNR 0x00 /* RTC Counter register */
|
|
#define RTAR 0x04 /* RTC Alarm register */
|
|
#define RTSR 0x08 /* RTC Status register */
|
|
#define RTTR 0x0c /* RTC Timer Trim register */
|
|
#define RDCR 0x10 /* RTC Day Counter register */
|
|
#define RYCR 0x14 /* RTC Year Counter register */
|
|
#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
|
|
#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
|
|
#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
|
|
#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
|
|
#define SWCR 0x28 /* RTC Stopwatch Counter register */
|
|
#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
|
|
#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
|
|
#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
|
|
#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
|
|
|
|
static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
|
|
{
|
|
qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
|
|
}
|
|
|
|
static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
|
|
{
|
|
int64_t rt = qemu_get_clock(rt_clock);
|
|
s->last_rcnr += ((rt - s->last_hz) << 15) /
|
|
(1000 * ((s->rttr & 0xffff) + 1));
|
|
s->last_rdcr += ((rt - s->last_hz) << 15) /
|
|
(1000 * ((s->rttr & 0xffff) + 1));
|
|
s->last_hz = rt;
|
|
}
|
|
|
|
static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
|
|
{
|
|
int64_t rt = qemu_get_clock(rt_clock);
|
|
if (s->rtsr & (1 << 12))
|
|
s->last_swcr += (rt - s->last_sw) / 10;
|
|
s->last_sw = rt;
|
|
}
|
|
|
|
static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
|
|
{
|
|
int64_t rt = qemu_get_clock(rt_clock);
|
|
if (s->rtsr & (1 << 15))
|
|
s->last_swcr += rt - s->last_pi;
|
|
s->last_pi = rt;
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
|
|
uint32_t rtsr)
|
|
{
|
|
if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
|
|
qemu_mod_timer(s->rtc_hz, s->last_hz +
|
|
(((s->rtar - s->last_rcnr) * 1000 *
|
|
((s->rttr & 0xffff) + 1)) >> 15));
|
|
else
|
|
qemu_del_timer(s->rtc_hz);
|
|
|
|
if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
|
|
qemu_mod_timer(s->rtc_rdal1, s->last_hz +
|
|
(((s->rdar1 - s->last_rdcr) * 1000 *
|
|
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
|
|
else
|
|
qemu_del_timer(s->rtc_rdal1);
|
|
|
|
if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
|
|
qemu_mod_timer(s->rtc_rdal2, s->last_hz +
|
|
(((s->rdar2 - s->last_rdcr) * 1000 *
|
|
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
|
|
else
|
|
qemu_del_timer(s->rtc_rdal2);
|
|
|
|
if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
|
|
qemu_mod_timer(s->rtc_swal1, s->last_sw +
|
|
(s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
|
|
else
|
|
qemu_del_timer(s->rtc_swal1);
|
|
|
|
if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
|
|
qemu_mod_timer(s->rtc_swal2, s->last_sw +
|
|
(s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
|
|
else
|
|
qemu_del_timer(s->rtc_swal2);
|
|
|
|
if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
|
|
qemu_mod_timer(s->rtc_pi, s->last_pi +
|
|
(s->piar & 0xffff) - s->last_rtcpicr);
|
|
else
|
|
qemu_del_timer(s->rtc_pi);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_hz_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 0);
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 4);
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 6);
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 8);
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 10);
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static inline void pxa2xx_rtc_pi_tick(void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
s->rtsr |= (1 << 13);
|
|
pxa2xx_rtc_piupdate(s);
|
|
s->last_rtcpicr = 0;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
pxa2xx_rtc_int_update(s);
|
|
}
|
|
|
|
static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->rtc_base;
|
|
|
|
switch (addr) {
|
|
case RTTR:
|
|
return s->rttr;
|
|
case RTSR:
|
|
return s->rtsr;
|
|
case RTAR:
|
|
return s->rtar;
|
|
case RDAR1:
|
|
return s->rdar1;
|
|
case RDAR2:
|
|
return s->rdar2;
|
|
case RYAR1:
|
|
return s->ryar1;
|
|
case RYAR2:
|
|
return s->ryar2;
|
|
case SWAR1:
|
|
return s->swar1;
|
|
case SWAR2:
|
|
return s->swar2;
|
|
case PIAR:
|
|
return s->piar;
|
|
case RCNR:
|
|
return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
|
|
(1000 * ((s->rttr & 0xffff) + 1));
|
|
case RDCR:
|
|
return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
|
|
(1000 * ((s->rttr & 0xffff) + 1));
|
|
case RYCR:
|
|
return s->last_rycr;
|
|
case SWCR:
|
|
if (s->rtsr & (1 << 12))
|
|
return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
|
|
else
|
|
return s->last_swcr;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
addr -= s->rtc_base;
|
|
|
|
switch (addr) {
|
|
case RTTR:
|
|
if (!(s->rttr & (1 << 31))) {
|
|
pxa2xx_rtc_hzupdate(s);
|
|
s->rttr = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
}
|
|
break;
|
|
|
|
case RTSR:
|
|
if ((s->rtsr ^ value) & (1 << 15))
|
|
pxa2xx_rtc_piupdate(s);
|
|
|
|
if ((s->rtsr ^ value) & (1 << 12))
|
|
pxa2xx_rtc_swupdate(s);
|
|
|
|
if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
|
|
pxa2xx_rtc_alarm_update(s, value);
|
|
|
|
s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
|
|
pxa2xx_rtc_int_update(s);
|
|
break;
|
|
|
|
case RTAR:
|
|
s->rtar = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RDAR1:
|
|
s->rdar1 = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RDAR2:
|
|
s->rdar2 = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RYAR1:
|
|
s->ryar1 = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RYAR2:
|
|
s->ryar2 = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case SWAR1:
|
|
pxa2xx_rtc_swupdate(s);
|
|
s->swar1 = value;
|
|
s->last_swcr = 0;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case SWAR2:
|
|
s->swar2 = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case PIAR:
|
|
s->piar = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RCNR:
|
|
pxa2xx_rtc_hzupdate(s);
|
|
s->last_rcnr = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RDCR:
|
|
pxa2xx_rtc_hzupdate(s);
|
|
s->last_rdcr = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RYCR:
|
|
s->last_rycr = value;
|
|
break;
|
|
|
|
case SWCR:
|
|
pxa2xx_rtc_swupdate(s);
|
|
s->last_swcr = value;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
case RTCPICR:
|
|
pxa2xx_rtc_piupdate(s);
|
|
s->last_rtcpicr = value & 0xffff;
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
|
|
pxa2xx_rtc_read,
|
|
pxa2xx_rtc_read,
|
|
pxa2xx_rtc_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
|
|
pxa2xx_rtc_write,
|
|
pxa2xx_rtc_write,
|
|
pxa2xx_rtc_write,
|
|
};
|
|
|
|
static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
|
|
{
|
|
struct tm tm;
|
|
int wom;
|
|
|
|
s->rttr = 0x7fff;
|
|
s->rtsr = 0;
|
|
|
|
qemu_get_timedate(&tm, 0);
|
|
wom = ((tm.tm_mday - 1) / 7) + 1;
|
|
|
|
s->last_rcnr = (uint32_t) mktime(&tm);
|
|
s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
|
|
(tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
|
|
s->last_rycr = ((tm.tm_year + 1900) << 9) |
|
|
((tm.tm_mon + 1) << 5) | tm.tm_mday;
|
|
s->last_swcr = (tm.tm_hour << 19) |
|
|
(tm.tm_min << 13) | (tm.tm_sec << 7);
|
|
s->last_rtcpicr = 0;
|
|
s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
|
|
|
|
s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
|
|
s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
|
|
s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
|
|
s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
|
|
s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
|
|
s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
|
|
}
|
|
|
|
static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
pxa2xx_rtc_hzupdate(s);
|
|
pxa2xx_rtc_piupdate(s);
|
|
pxa2xx_rtc_swupdate(s);
|
|
|
|
qemu_put_be32s(f, &s->rttr);
|
|
qemu_put_be32s(f, &s->rtsr);
|
|
qemu_put_be32s(f, &s->rtar);
|
|
qemu_put_be32s(f, &s->rdar1);
|
|
qemu_put_be32s(f, &s->rdar2);
|
|
qemu_put_be32s(f, &s->ryar1);
|
|
qemu_put_be32s(f, &s->ryar2);
|
|
qemu_put_be32s(f, &s->swar1);
|
|
qemu_put_be32s(f, &s->swar2);
|
|
qemu_put_be32s(f, &s->piar);
|
|
qemu_put_be32s(f, &s->last_rcnr);
|
|
qemu_put_be32s(f, &s->last_rdcr);
|
|
qemu_put_be32s(f, &s->last_rycr);
|
|
qemu_put_be32s(f, &s->last_swcr);
|
|
qemu_put_be32s(f, &s->last_rtcpicr);
|
|
qemu_put_sbe64s(f, &s->last_hz);
|
|
qemu_put_sbe64s(f, &s->last_sw);
|
|
qemu_put_sbe64s(f, &s->last_pi);
|
|
}
|
|
|
|
static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
qemu_get_be32s(f, &s->rttr);
|
|
qemu_get_be32s(f, &s->rtsr);
|
|
qemu_get_be32s(f, &s->rtar);
|
|
qemu_get_be32s(f, &s->rdar1);
|
|
qemu_get_be32s(f, &s->rdar2);
|
|
qemu_get_be32s(f, &s->ryar1);
|
|
qemu_get_be32s(f, &s->ryar2);
|
|
qemu_get_be32s(f, &s->swar1);
|
|
qemu_get_be32s(f, &s->swar2);
|
|
qemu_get_be32s(f, &s->piar);
|
|
qemu_get_be32s(f, &s->last_rcnr);
|
|
qemu_get_be32s(f, &s->last_rdcr);
|
|
qemu_get_be32s(f, &s->last_rycr);
|
|
qemu_get_be32s(f, &s->last_swcr);
|
|
qemu_get_be32s(f, &s->last_rtcpicr);
|
|
qemu_get_sbe64s(f, &s->last_hz);
|
|
qemu_get_sbe64s(f, &s->last_sw);
|
|
qemu_get_sbe64s(f, &s->last_pi);
|
|
|
|
pxa2xx_rtc_alarm_update(s, s->rtsr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* I2C Interface */
|
|
struct pxa2xx_i2c_s {
|
|
i2c_slave slave;
|
|
i2c_bus *bus;
|
|
target_phys_addr_t base;
|
|
qemu_irq irq;
|
|
|
|
uint16_t control;
|
|
uint16_t status;
|
|
uint8_t ibmr;
|
|
uint8_t data;
|
|
};
|
|
|
|
#define IBMR 0x80 /* I2C Bus Monitor register */
|
|
#define IDBR 0x88 /* I2C Data Buffer register */
|
|
#define ICR 0x90 /* I2C Control register */
|
|
#define ISR 0x98 /* I2C Status register */
|
|
#define ISAR 0xa0 /* I2C Slave Address register */
|
|
|
|
static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
|
|
{
|
|
uint16_t level = 0;
|
|
level |= s->status & s->control & (1 << 10); /* BED */
|
|
level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
|
|
level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
|
|
level |= s->status & (1 << 9); /* SAD */
|
|
qemu_set_irq(s->irq, !!level);
|
|
}
|
|
|
|
/* These are only stubs now. */
|
|
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
|
|
|
|
switch (event) {
|
|
case I2C_START_SEND:
|
|
s->status |= (1 << 9); /* set SAD */
|
|
s->status &= ~(1 << 0); /* clear RWM */
|
|
break;
|
|
case I2C_START_RECV:
|
|
s->status |= (1 << 9); /* set SAD */
|
|
s->status |= 1 << 0; /* set RWM */
|
|
break;
|
|
case I2C_FINISH:
|
|
s->status |= (1 << 4); /* set SSD */
|
|
break;
|
|
case I2C_NACK:
|
|
s->status |= 1 << 1; /* set ACKNAK */
|
|
break;
|
|
}
|
|
pxa2xx_i2c_update(s);
|
|
}
|
|
|
|
static int pxa2xx_i2c_rx(i2c_slave *i2c)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
|
|
if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
|
|
return 0;
|
|
|
|
if (s->status & (1 << 0)) { /* RWM */
|
|
s->status |= 1 << 6; /* set ITE */
|
|
}
|
|
pxa2xx_i2c_update(s);
|
|
|
|
return s->data;
|
|
}
|
|
|
|
static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
|
|
if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
|
|
return 1;
|
|
|
|
if (!(s->status & (1 << 0))) { /* RWM */
|
|
s->status |= 1 << 7; /* set IRF */
|
|
s->data = data;
|
|
}
|
|
pxa2xx_i2c_update(s);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case ICR:
|
|
return s->control;
|
|
case ISR:
|
|
return s->status | (i2c_bus_busy(s->bus) << 2);
|
|
case ISAR:
|
|
return s->slave.address;
|
|
case IDBR:
|
|
return s->data;
|
|
case IBMR:
|
|
if (s->status & (1 << 2))
|
|
s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
|
|
else
|
|
s->ibmr = 0;
|
|
return s->ibmr;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
|
|
int ack;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case ICR:
|
|
s->control = value & 0xfff7;
|
|
if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
|
|
/* TODO: slave mode */
|
|
if (value & (1 << 0)) { /* START condition */
|
|
if (s->data & 1)
|
|
s->status |= 1 << 0; /* set RWM */
|
|
else
|
|
s->status &= ~(1 << 0); /* clear RWM */
|
|
ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
|
|
} else {
|
|
if (s->status & (1 << 0)) { /* RWM */
|
|
s->data = i2c_recv(s->bus);
|
|
if (value & (1 << 2)) /* ACKNAK */
|
|
i2c_nack(s->bus);
|
|
ack = 1;
|
|
} else
|
|
ack = !i2c_send(s->bus, s->data);
|
|
}
|
|
|
|
if (value & (1 << 1)) /* STOP condition */
|
|
i2c_end_transfer(s->bus);
|
|
|
|
if (ack) {
|
|
if (value & (1 << 0)) /* START condition */
|
|
s->status |= 1 << 6; /* set ITE */
|
|
else
|
|
if (s->status & (1 << 0)) /* RWM */
|
|
s->status |= 1 << 7; /* set IRF */
|
|
else
|
|
s->status |= 1 << 6; /* set ITE */
|
|
s->status &= ~(1 << 1); /* clear ACKNAK */
|
|
} else {
|
|
s->status |= 1 << 6; /* set ITE */
|
|
s->status |= 1 << 10; /* set BED */
|
|
s->status |= 1 << 1; /* set ACKNAK */
|
|
}
|
|
}
|
|
if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
|
|
if (value & (1 << 4)) /* MA */
|
|
i2c_end_transfer(s->bus);
|
|
pxa2xx_i2c_update(s);
|
|
break;
|
|
|
|
case ISR:
|
|
s->status &= ~(value & 0x07f0);
|
|
pxa2xx_i2c_update(s);
|
|
break;
|
|
|
|
case ISAR:
|
|
i2c_set_slave_address(&s->slave, value & 0x7f);
|
|
break;
|
|
|
|
case IDBR:
|
|
s->data = value & 0xff;
|
|
break;
|
|
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
|
|
pxa2xx_i2c_read,
|
|
pxa2xx_i2c_read,
|
|
pxa2xx_i2c_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
|
|
pxa2xx_i2c_write,
|
|
pxa2xx_i2c_write,
|
|
pxa2xx_i2c_write,
|
|
};
|
|
|
|
static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
|
|
|
|
qemu_put_be16s(f, &s->control);
|
|
qemu_put_be16s(f, &s->status);
|
|
qemu_put_8s(f, &s->ibmr);
|
|
qemu_put_8s(f, &s->data);
|
|
|
|
i2c_slave_save(f, &s->slave);
|
|
}
|
|
|
|
static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
qemu_get_be16s(f, &s->control);
|
|
qemu_get_be16s(f, &s->status);
|
|
qemu_get_8s(f, &s->ibmr);
|
|
qemu_get_8s(f, &s->data);
|
|
|
|
i2c_slave_load(f, &s->slave);
|
|
return 0;
|
|
}
|
|
|
|
struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
|
|
qemu_irq irq, uint32_t page_size)
|
|
{
|
|
int iomemtype;
|
|
/* FIXME: Should the slave device really be on a separate bus? */
|
|
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
|
|
i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
|
|
|
|
s->base = base;
|
|
s->irq = irq;
|
|
s->slave.event = pxa2xx_i2c_event;
|
|
s->slave.recv = pxa2xx_i2c_rx;
|
|
s->slave.send = pxa2xx_i2c_tx;
|
|
s->bus = i2c_init_bus();
|
|
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
|
|
pxa2xx_i2c_writefn, s);
|
|
cpu_register_physical_memory(s->base & ~page_size, page_size, iomemtype);
|
|
|
|
register_savevm("pxa2xx_i2c", base, 1,
|
|
pxa2xx_i2c_save, pxa2xx_i2c_load, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
|
|
{
|
|
return s->bus;
|
|
}
|
|
|
|
/* PXA Inter-IC Sound Controller */
|
|
static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
|
|
{
|
|
i2s->rx_len = 0;
|
|
i2s->tx_len = 0;
|
|
i2s->fifo_len = 0;
|
|
i2s->clk = 0x1a;
|
|
i2s->control[0] = 0x00;
|
|
i2s->control[1] = 0x00;
|
|
i2s->status = 0x00;
|
|
i2s->mask = 0x00;
|
|
}
|
|
|
|
#define SACR_TFTH(val) ((val >> 8) & 0xf)
|
|
#define SACR_RFTH(val) ((val >> 12) & 0xf)
|
|
#define SACR_DREC(val) (val & (1 << 3))
|
|
#define SACR_DPRL(val) (val & (1 << 4))
|
|
|
|
static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
|
|
{
|
|
int rfs, tfs;
|
|
rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
|
|
!SACR_DREC(i2s->control[1]);
|
|
tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
|
|
i2s->enable && !SACR_DPRL(i2s->control[1]);
|
|
|
|
pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
|
|
pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
|
|
|
|
i2s->status &= 0xe0;
|
|
if (i2s->fifo_len < 16 || !i2s->enable)
|
|
i2s->status |= 1 << 0; /* TNF */
|
|
if (i2s->rx_len)
|
|
i2s->status |= 1 << 1; /* RNE */
|
|
if (i2s->enable)
|
|
i2s->status |= 1 << 2; /* BSY */
|
|
if (tfs)
|
|
i2s->status |= 1 << 3; /* TFS */
|
|
if (rfs)
|
|
i2s->status |= 1 << 4; /* RFS */
|
|
if (!(i2s->tx_len && i2s->enable))
|
|
i2s->status |= i2s->fifo_len << 8; /* TFL */
|
|
i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
|
|
|
|
qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
|
|
}
|
|
|
|
#define SACR0 0x00 /* Serial Audio Global Control register */
|
|
#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
|
|
#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
|
|
#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
|
|
#define SAICR 0x18 /* Serial Audio Interrupt Clear register */
|
|
#define SADIV 0x60 /* Serial Audio Clock Divider register */
|
|
#define SADR 0x80 /* Serial Audio Data register */
|
|
|
|
static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case SACR0:
|
|
return s->control[0];
|
|
case SACR1:
|
|
return s->control[1];
|
|
case SASR0:
|
|
return s->status;
|
|
case SAIMR:
|
|
return s->mask;
|
|
case SAICR:
|
|
return 0;
|
|
case SADIV:
|
|
return s->clk;
|
|
case SADR:
|
|
if (s->rx_len > 0) {
|
|
s->rx_len --;
|
|
pxa2xx_i2s_update(s);
|
|
return s->codec_in(s->opaque);
|
|
}
|
|
return 0;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
|
|
uint32_t *sample;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case SACR0:
|
|
if (value & (1 << 3)) /* RST */
|
|
pxa2xx_i2s_reset(s);
|
|
s->control[0] = value & 0xff3d;
|
|
if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
|
|
for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
|
|
s->codec_out(s->opaque, *sample);
|
|
s->status &= ~(1 << 7); /* I2SOFF */
|
|
}
|
|
if (value & (1 << 4)) /* EFWR */
|
|
printf("%s: Attempt to use special function\n", __FUNCTION__);
|
|
s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
|
|
pxa2xx_i2s_update(s);
|
|
break;
|
|
case SACR1:
|
|
s->control[1] = value & 0x0039;
|
|
if (value & (1 << 5)) /* ENLBF */
|
|
printf("%s: Attempt to use loopback function\n", __FUNCTION__);
|
|
if (value & (1 << 4)) /* DPRL */
|
|
s->fifo_len = 0;
|
|
pxa2xx_i2s_update(s);
|
|
break;
|
|
case SAIMR:
|
|
s->mask = value & 0x0078;
|
|
pxa2xx_i2s_update(s);
|
|
break;
|
|
case SAICR:
|
|
s->status &= ~(value & (3 << 5));
|
|
pxa2xx_i2s_update(s);
|
|
break;
|
|
case SADIV:
|
|
s->clk = value & 0x007f;
|
|
break;
|
|
case SADR:
|
|
if (s->tx_len && s->enable) {
|
|
s->tx_len --;
|
|
pxa2xx_i2s_update(s);
|
|
s->codec_out(s->opaque, value);
|
|
} else if (s->fifo_len < 16) {
|
|
s->fifo[s->fifo_len ++] = value;
|
|
pxa2xx_i2s_update(s);
|
|
}
|
|
break;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
|
|
pxa2xx_i2s_read,
|
|
pxa2xx_i2s_read,
|
|
pxa2xx_i2s_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
|
|
pxa2xx_i2s_write,
|
|
pxa2xx_i2s_write,
|
|
pxa2xx_i2s_write,
|
|
};
|
|
|
|
static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
|
|
|
|
qemu_put_be32s(f, &s->control[0]);
|
|
qemu_put_be32s(f, &s->control[1]);
|
|
qemu_put_be32s(f, &s->status);
|
|
qemu_put_be32s(f, &s->mask);
|
|
qemu_put_be32s(f, &s->clk);
|
|
|
|
qemu_put_be32(f, s->enable);
|
|
qemu_put_be32(f, s->rx_len);
|
|
qemu_put_be32(f, s->tx_len);
|
|
qemu_put_be32(f, s->fifo_len);
|
|
}
|
|
|
|
static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
|
|
|
|
qemu_get_be32s(f, &s->control[0]);
|
|
qemu_get_be32s(f, &s->control[1]);
|
|
qemu_get_be32s(f, &s->status);
|
|
qemu_get_be32s(f, &s->mask);
|
|
qemu_get_be32s(f, &s->clk);
|
|
|
|
s->enable = qemu_get_be32(f);
|
|
s->rx_len = qemu_get_be32(f);
|
|
s->tx_len = qemu_get_be32(f);
|
|
s->fifo_len = qemu_get_be32(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
|
|
{
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
|
|
uint32_t *sample;
|
|
|
|
/* Signal FIFO errors */
|
|
if (s->enable && s->tx_len)
|
|
s->status |= 1 << 5; /* TUR */
|
|
if (s->enable && s->rx_len)
|
|
s->status |= 1 << 6; /* ROR */
|
|
|
|
/* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
|
|
* handle the cases where it makes a difference. */
|
|
s->tx_len = tx - s->fifo_len;
|
|
s->rx_len = rx;
|
|
/* Note that is s->codec_out wasn't set, we wouldn't get called. */
|
|
if (s->enable)
|
|
for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
|
|
s->codec_out(s->opaque, *sample);
|
|
pxa2xx_i2s_update(s);
|
|
}
|
|
|
|
static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
|
|
qemu_irq irq, struct pxa2xx_dma_state_s *dma)
|
|
{
|
|
int iomemtype;
|
|
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
|
|
qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
|
|
|
|
s->base = base;
|
|
s->irq = irq;
|
|
s->dma = dma;
|
|
s->data_req = pxa2xx_i2s_data_req;
|
|
|
|
pxa2xx_i2s_reset(s);
|
|
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
|
|
pxa2xx_i2s_writefn, s);
|
|
cpu_register_physical_memory(s->base & 0xfff00000, 0x100000, iomemtype);
|
|
|
|
register_savevm("pxa2xx_i2s", base, 0,
|
|
pxa2xx_i2s_save, pxa2xx_i2s_load, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* PXA Fast Infra-red Communications Port */
|
|
struct pxa2xx_fir_s {
|
|
target_phys_addr_t base;
|
|
qemu_irq irq;
|
|
struct pxa2xx_dma_state_s *dma;
|
|
int enable;
|
|
CharDriverState *chr;
|
|
|
|
uint8_t control[3];
|
|
uint8_t status[2];
|
|
|
|
int rx_len;
|
|
int rx_start;
|
|
uint8_t rx_fifo[64];
|
|
};
|
|
|
|
static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
|
|
{
|
|
s->control[0] = 0x00;
|
|
s->control[1] = 0x00;
|
|
s->control[2] = 0x00;
|
|
s->status[0] = 0x00;
|
|
s->status[1] = 0x00;
|
|
s->enable = 0;
|
|
}
|
|
|
|
static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
|
|
{
|
|
static const int tresh[4] = { 8, 16, 32, 0 };
|
|
int intr = 0;
|
|
if ((s->control[0] & (1 << 4)) && /* RXE */
|
|
s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
|
|
s->status[0] |= 1 << 4; /* RFS */
|
|
else
|
|
s->status[0] &= ~(1 << 4); /* RFS */
|
|
if (s->control[0] & (1 << 3)) /* TXE */
|
|
s->status[0] |= 1 << 3; /* TFS */
|
|
else
|
|
s->status[0] &= ~(1 << 3); /* TFS */
|
|
if (s->rx_len)
|
|
s->status[1] |= 1 << 2; /* RNE */
|
|
else
|
|
s->status[1] &= ~(1 << 2); /* RNE */
|
|
if (s->control[0] & (1 << 4)) /* RXE */
|
|
s->status[1] |= 1 << 0; /* RSY */
|
|
else
|
|
s->status[1] &= ~(1 << 0); /* RSY */
|
|
|
|
intr |= (s->control[0] & (1 << 5)) && /* RIE */
|
|
(s->status[0] & (1 << 4)); /* RFS */
|
|
intr |= (s->control[0] & (1 << 6)) && /* TIE */
|
|
(s->status[0] & (1 << 3)); /* TFS */
|
|
intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
|
|
(s->status[0] & (1 << 6)); /* EOC */
|
|
intr |= (s->control[0] & (1 << 2)) && /* TUS */
|
|
(s->status[0] & (1 << 1)); /* TUR */
|
|
intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
|
|
|
|
pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
|
|
pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
|
|
|
|
qemu_set_irq(s->irq, intr && s->enable);
|
|
}
|
|
|
|
#define ICCR0 0x00 /* FICP Control register 0 */
|
|
#define ICCR1 0x04 /* FICP Control register 1 */
|
|
#define ICCR2 0x08 /* FICP Control register 2 */
|
|
#define ICDR 0x0c /* FICP Data register */
|
|
#define ICSR0 0x14 /* FICP Status register 0 */
|
|
#define ICSR1 0x18 /* FICP Status register 1 */
|
|
#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
|
|
|
|
static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
uint8_t ret;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case ICCR0:
|
|
return s->control[0];
|
|
case ICCR1:
|
|
return s->control[1];
|
|
case ICCR2:
|
|
return s->control[2];
|
|
case ICDR:
|
|
s->status[0] &= ~0x01;
|
|
s->status[1] &= ~0x72;
|
|
if (s->rx_len) {
|
|
s->rx_len --;
|
|
ret = s->rx_fifo[s->rx_start ++];
|
|
s->rx_start &= 63;
|
|
pxa2xx_fir_update(s);
|
|
return ret;
|
|
}
|
|
printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
|
|
break;
|
|
case ICSR0:
|
|
return s->status[0];
|
|
case ICSR1:
|
|
return s->status[1] | (1 << 3); /* TNF */
|
|
case ICFOR:
|
|
return s->rx_len;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
|
|
uint32_t value)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
uint8_t ch;
|
|
addr -= s->base;
|
|
|
|
switch (addr) {
|
|
case ICCR0:
|
|
s->control[0] = value;
|
|
if (!(value & (1 << 4))) /* RXE */
|
|
s->rx_len = s->rx_start = 0;
|
|
if (!(value & (1 << 3))) /* TXE */
|
|
/* Nop */;
|
|
s->enable = value & 1; /* ITR */
|
|
if (!s->enable)
|
|
s->status[0] = 0;
|
|
pxa2xx_fir_update(s);
|
|
break;
|
|
case ICCR1:
|
|
s->control[1] = value;
|
|
break;
|
|
case ICCR2:
|
|
s->control[2] = value & 0x3f;
|
|
pxa2xx_fir_update(s);
|
|
break;
|
|
case ICDR:
|
|
if (s->control[2] & (1 << 2)) /* TXP */
|
|
ch = value;
|
|
else
|
|
ch = ~value;
|
|
if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
|
|
qemu_chr_write(s->chr, &ch, 1);
|
|
break;
|
|
case ICSR0:
|
|
s->status[0] &= ~(value & 0x66);
|
|
pxa2xx_fir_update(s);
|
|
break;
|
|
case ICFOR:
|
|
break;
|
|
default:
|
|
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
|
|
pxa2xx_fir_read,
|
|
pxa2xx_fir_read,
|
|
pxa2xx_fir_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
|
|
pxa2xx_fir_write,
|
|
pxa2xx_fir_write,
|
|
pxa2xx_fir_write,
|
|
};
|
|
|
|
static int pxa2xx_fir_is_empty(void *opaque)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
return (s->rx_len < 64);
|
|
}
|
|
|
|
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
if (!(s->control[0] & (1 << 4))) /* RXE */
|
|
return;
|
|
|
|
while (size --) {
|
|
s->status[1] |= 1 << 4; /* EOF */
|
|
if (s->rx_len >= 64) {
|
|
s->status[1] |= 1 << 6; /* ROR */
|
|
break;
|
|
}
|
|
|
|
if (s->control[2] & (1 << 3)) /* RXP */
|
|
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
|
|
else
|
|
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
|
|
}
|
|
|
|
pxa2xx_fir_update(s);
|
|
}
|
|
|
|
static void pxa2xx_fir_event(void *opaque, int event)
|
|
{
|
|
}
|
|
|
|
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
int i;
|
|
|
|
qemu_put_be32(f, s->enable);
|
|
|
|
qemu_put_8s(f, &s->control[0]);
|
|
qemu_put_8s(f, &s->control[1]);
|
|
qemu_put_8s(f, &s->control[2]);
|
|
qemu_put_8s(f, &s->status[0]);
|
|
qemu_put_8s(f, &s->status[1]);
|
|
|
|
qemu_put_byte(f, s->rx_len);
|
|
for (i = 0; i < s->rx_len; i ++)
|
|
qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
|
|
}
|
|
|
|
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
|
|
int i;
|
|
|
|
s->enable = qemu_get_be32(f);
|
|
|
|
qemu_get_8s(f, &s->control[0]);
|
|
qemu_get_8s(f, &s->control[1]);
|
|
qemu_get_8s(f, &s->control[2]);
|
|
qemu_get_8s(f, &s->status[0]);
|
|
qemu_get_8s(f, &s->status[1]);
|
|
|
|
s->rx_len = qemu_get_byte(f);
|
|
s->rx_start = 0;
|
|
for (i = 0; i < s->rx_len; i ++)
|
|
s->rx_fifo[i] = qemu_get_byte(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
|
|
qemu_irq irq, struct pxa2xx_dma_state_s *dma,
|
|
CharDriverState *chr)
|
|
{
|
|
int iomemtype;
|
|
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
|
|
qemu_mallocz(sizeof(struct pxa2xx_fir_s));
|
|
|
|
s->base = base;
|
|
s->irq = irq;
|
|
s->dma = dma;
|
|
s->chr = chr;
|
|
|
|
pxa2xx_fir_reset(s);
|
|
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
|
|
pxa2xx_fir_writefn, s);
|
|
cpu_register_physical_memory(s->base, 0x1000, iomemtype);
|
|
|
|
if (chr)
|
|
qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
|
|
pxa2xx_fir_rx, pxa2xx_fir_event, s);
|
|
|
|
register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
static void pxa2xx_reset(void *opaque, int line, int level)
|
|
{
|
|
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
|
|
|
|
if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
|
|
cpu_reset(s->env);
|
|
/* TODO: reset peripherals */
|
|
}
|
|
}
|
|
|
|
/* Initialise a PXA270 integrated chip (ARM based core). */
|
|
struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
|
|
DisplayState *ds, const char *revision)
|
|
{
|
|
struct pxa2xx_state_s *s;
|
|
struct pxa2xx_ssp_s *ssp;
|
|
int iomemtype, i;
|
|
int index;
|
|
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
|
|
|
|
if (revision && strncmp(revision, "pxa27", 5)) {
|
|
fprintf(stderr, "Machine requires a PXA27x processor.\n");
|
|
exit(1);
|
|
}
|
|
if (!revision)
|
|
revision = "pxa270";
|
|
|
|
s->env = cpu_init(revision);
|
|
if (!s->env) {
|
|
fprintf(stderr, "Unable to find CPU definition\n");
|
|
exit(1);
|
|
}
|
|
s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
|
|
|
|
/* SDRAM & Internal Memory Storage */
|
|
cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
|
|
sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
|
|
cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
|
|
0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
|
|
|
|
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
|
|
|
|
s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
|
|
|
|
pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
|
|
s->pic[PXA27X_PIC_OST_4_11]);
|
|
|
|
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
|
|
|
|
index = drive_get_index(IF_SD, 0, 0);
|
|
if (index == -1) {
|
|
fprintf(stderr, "qemu: missing SecureDigital device\n");
|
|
exit(1);
|
|
}
|
|
s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
|
|
s->pic[PXA2XX_PIC_MMC], s->dma);
|
|
|
|
for (i = 0; pxa270_serial[i].io_base; i ++)
|
|
if (serial_hds[i])
|
|
serial_mm_init(pxa270_serial[i].io_base, 2,
|
|
s->pic[pxa270_serial[i].irqn], 14857000/16,
|
|
serial_hds[i], 1);
|
|
else
|
|
break;
|
|
if (serial_hds[i])
|
|
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
|
|
s->dma, serial_hds[i]);
|
|
|
|
if (ds)
|
|
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
|
|
|
|
s->cm_base = 0x41300000;
|
|
s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
|
|
s->clkcfg = 0x00000009; /* Turbo mode active */
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
|
|
pxa2xx_cm_writefn, s);
|
|
cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
|
|
|
|
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
|
|
|
|
s->mm_base = 0x48000000;
|
|
s->mm_regs[MDMRS >> 2] = 0x00020002;
|
|
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
|
|
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
|
|
pxa2xx_mm_writefn, s);
|
|
cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
|
|
|
|
s->pm_base = 0x40f00000;
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
|
|
pxa2xx_pm_writefn, s);
|
|
cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
|
|
register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
|
|
|
|
for (i = 0; pxa27x_ssp[i].io_base; i ++);
|
|
s->ssp = (struct pxa2xx_ssp_s **)
|
|
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
|
|
ssp = (struct pxa2xx_ssp_s *)
|
|
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
|
|
for (i = 0; pxa27x_ssp[i].io_base; i ++) {
|
|
s->ssp[i] = &ssp[i];
|
|
ssp[i].base = pxa27x_ssp[i].io_base;
|
|
ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
|
|
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
|
|
pxa2xx_ssp_writefn, &ssp[i]);
|
|
cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_ssp", i, 0,
|
|
pxa2xx_ssp_save, pxa2xx_ssp_load, s);
|
|
}
|
|
|
|
if (usb_enabled) {
|
|
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
|
|
}
|
|
|
|
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
|
|
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
|
|
|
|
s->rtc_base = 0x40900000;
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
|
|
pxa2xx_rtc_writefn, s);
|
|
cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
|
|
pxa2xx_rtc_init(s);
|
|
register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
|
|
|
|
s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
|
|
s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
|
|
|
|
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
|
|
|
|
s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
|
|
|
|
/* GPIO1 resets the processor */
|
|
/* The handler can be overridden by board-specific code */
|
|
pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
|
|
return s;
|
|
}
|
|
|
|
/* Initialise a PXA255 integrated chip (ARM based core). */
|
|
struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
|
|
DisplayState *ds)
|
|
{
|
|
struct pxa2xx_state_s *s;
|
|
struct pxa2xx_ssp_s *ssp;
|
|
int iomemtype, i;
|
|
int index;
|
|
|
|
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
|
|
|
|
s->env = cpu_init("pxa255");
|
|
if (!s->env) {
|
|
fprintf(stderr, "Unable to find CPU definition\n");
|
|
exit(1);
|
|
}
|
|
s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
|
|
|
|
/* SDRAM & Internal Memory Storage */
|
|
cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
|
|
qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
|
|
cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
|
|
qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
|
|
|
|
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
|
|
|
|
s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
|
|
|
|
pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
|
|
|
|
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
|
|
|
|
index = drive_get_index(IF_SD, 0, 0);
|
|
if (index == -1) {
|
|
fprintf(stderr, "qemu: missing SecureDigital device\n");
|
|
exit(1);
|
|
}
|
|
s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
|
|
s->pic[PXA2XX_PIC_MMC], s->dma);
|
|
|
|
for (i = 0; pxa255_serial[i].io_base; i ++)
|
|
if (serial_hds[i])
|
|
serial_mm_init(pxa255_serial[i].io_base, 2,
|
|
s->pic[pxa255_serial[i].irqn], 14745600/16,
|
|
serial_hds[i], 1);
|
|
else
|
|
break;
|
|
if (serial_hds[i])
|
|
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
|
|
s->dma, serial_hds[i]);
|
|
|
|
if (ds)
|
|
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
|
|
|
|
s->cm_base = 0x41300000;
|
|
s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
|
|
s->clkcfg = 0x00000009; /* Turbo mode active */
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
|
|
pxa2xx_cm_writefn, s);
|
|
cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
|
|
|
|
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
|
|
|
|
s->mm_base = 0x48000000;
|
|
s->mm_regs[MDMRS >> 2] = 0x00020002;
|
|
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
|
|
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
|
|
pxa2xx_mm_writefn, s);
|
|
cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
|
|
|
|
s->pm_base = 0x40f00000;
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
|
|
pxa2xx_pm_writefn, s);
|
|
cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
|
|
register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
|
|
|
|
for (i = 0; pxa255_ssp[i].io_base; i ++);
|
|
s->ssp = (struct pxa2xx_ssp_s **)
|
|
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
|
|
ssp = (struct pxa2xx_ssp_s *)
|
|
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
|
|
for (i = 0; pxa255_ssp[i].io_base; i ++) {
|
|
s->ssp[i] = &ssp[i];
|
|
ssp[i].base = pxa255_ssp[i].io_base;
|
|
ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
|
|
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
|
|
pxa2xx_ssp_writefn, &ssp[i]);
|
|
cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
|
|
register_savevm("pxa2xx_ssp", i, 0,
|
|
pxa2xx_ssp_save, pxa2xx_ssp_load, s);
|
|
}
|
|
|
|
if (usb_enabled) {
|
|
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
|
|
}
|
|
|
|
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
|
|
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
|
|
|
|
s->rtc_base = 0x40900000;
|
|
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
|
|
pxa2xx_rtc_writefn, s);
|
|
cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
|
|
pxa2xx_rtc_init(s);
|
|
register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
|
|
|
|
s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
|
|
s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
|
|
|
|
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
|
|
|
|
/* GPIO1 resets the processor */
|
|
/* The handler can be overridden by board-specific code */
|
|
pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
|
|
return s;
|
|
}
|