qemu/block-migration.c
Jan Kiszka 575a58d763 block migration: Avoid large stack buffer
Move a potentially large buffer from stack to heap.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-12-03 10:48:52 -06:00

531 lines
14 KiB
C

/*
* QEMU live block migration
*
* Copyright IBM, Corp. 2009
*
* Authors:
* Liran Schour <lirans@il.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "qemu-common.h"
#include "block_int.h"
#include "hw/hw.h"
#include "block-migration.h"
#include <assert.h>
#define BLOCK_SIZE (BDRV_SECTORS_PER_DIRTY_CHUNK << BDRV_SECTOR_BITS)
#define BLK_MIG_FLAG_DEVICE_BLOCK 0x01
#define BLK_MIG_FLAG_EOS 0x02
#define MAX_IS_ALLOCATED_SEARCH 65536
#define MAX_BLOCKS_READ 10000
#define BLOCKS_READ_CHANGE 100
#define INITIAL_BLOCKS_READ 100
//#define DEBUG_BLK_MIGRATION
#ifdef DEBUG_BLK_MIGRATION
#define dprintf(fmt, ...) \
do { printf("blk_migration: " fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
typedef struct BlkMigDevState {
BlockDriverState *bs;
int bulk_completed;
int shared_base;
struct BlkMigDevState *next;
int64_t cur_sector;
int64_t total_sectors;
int64_t dirty;
} BlkMigDevState;
typedef struct BlkMigBlock {
uint8_t *buf;
BlkMigDevState *bmds;
int64_t sector;
struct iovec iov;
QEMUIOVector qiov;
BlockDriverAIOCB *aiocb;
int ret;
struct BlkMigBlock *next;
} BlkMigBlock;
typedef struct BlkMigState {
int bulk_completed;
int blk_enable;
int shared_base;
int no_dirty;
QEMUFile *load_file;
BlkMigDevState *bmds_first;
BlkMigBlock *first_blk;
BlkMigBlock *last_blk;
int submitted;
int read_done;
int transferred;
int64_t print_completion;
} BlkMigState;
static BlkMigState *block_mig_state = NULL;
static void blk_mig_read_cb(void *opaque, int ret)
{
BlkMigBlock *blk = opaque;
blk->ret = ret;
/* insert at the end */
if (block_mig_state->last_blk == NULL) {
block_mig_state->first_blk = blk;
block_mig_state->last_blk = blk;
} else {
block_mig_state->last_blk->next = blk;
block_mig_state->last_blk = blk;
}
block_mig_state->submitted--;
block_mig_state->read_done++;
assert(block_mig_state->submitted >= 0);
}
static int mig_read_device_bulk(QEMUFile *f, BlkMigDevState *bms)
{
int nr_sectors;
int64_t total_sectors, cur_sector = 0;
BlockDriverState *bs = bms->bs;
BlkMigBlock *blk;
blk = qemu_malloc(sizeof(BlkMigBlock));
blk->buf = qemu_malloc(BLOCK_SIZE);
cur_sector = bms->cur_sector;
total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
if (bms->shared_base) {
while (cur_sector < bms->total_sectors &&
!bdrv_is_allocated(bms->bs, cur_sector,
MAX_IS_ALLOCATED_SEARCH, &nr_sectors)) {
cur_sector += nr_sectors;
}
}
if (cur_sector >= total_sectors) {
bms->cur_sector = total_sectors;
qemu_free(blk->buf);
qemu_free(blk);
return 1;
}
if (cur_sector >= block_mig_state->print_completion) {
printf("Completed %" PRId64 " %%\r", cur_sector * 100 / total_sectors);
fflush(stdout);
block_mig_state->print_completion +=
(BDRV_SECTORS_PER_DIRTY_CHUNK * 10000);
}
/* we are going to transfer a full block even if it is not allocated */
nr_sectors = BDRV_SECTORS_PER_DIRTY_CHUNK;
cur_sector &= ~((int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK - 1);
if (total_sectors - cur_sector < BDRV_SECTORS_PER_DIRTY_CHUNK) {
nr_sectors = (total_sectors - cur_sector);
}
bms->cur_sector = cur_sector + nr_sectors;
blk->sector = cur_sector;
blk->bmds = bms;
blk->next = NULL;
blk->iov.iov_base = blk->buf;
blk->iov.iov_len = nr_sectors * BDRV_SECTOR_SIZE;
qemu_iovec_init_external(&blk->qiov, &blk->iov, 1);
blk->aiocb = bdrv_aio_readv(bs, cur_sector, &blk->qiov,
nr_sectors, blk_mig_read_cb, blk);
if (!blk->aiocb) {
printf("Error reading sector %" PRId64 "\n", cur_sector);
qemu_free(blk->buf);
qemu_free(blk);
return 0;
}
bdrv_reset_dirty(bms->bs, cur_sector, nr_sectors);
block_mig_state->submitted++;
return (bms->cur_sector >= total_sectors);
}
static int mig_save_device_bulk(QEMUFile *f, BlkMigDevState *bmds)
{
int len, nr_sectors;
int64_t total_sectors = bmds->total_sectors, cur_sector = 0;
uint8_t *tmp_buf = NULL;
BlockDriverState *bs = bmds->bs;
tmp_buf = qemu_malloc(BLOCK_SIZE);
cur_sector = bmds->cur_sector;
if (bmds->shared_base) {
while (cur_sector < bmds->total_sectors &&
!bdrv_is_allocated(bmds->bs, cur_sector,
MAX_IS_ALLOCATED_SEARCH, &nr_sectors)) {
cur_sector += nr_sectors;
}
}
if (cur_sector >= total_sectors) {
bmds->cur_sector = total_sectors;
qemu_free(tmp_buf);
return 1;
}
if (cur_sector >= block_mig_state->print_completion) {
printf("Completed %" PRId64 " %%\r", cur_sector * 100 / total_sectors);
fflush(stdout);
block_mig_state->print_completion +=
(BDRV_SECTORS_PER_DIRTY_CHUNK * 10000);
}
cur_sector &= ~((int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK - 1);
/* we are going to transfer a full block even if it is not allocated */
nr_sectors = BDRV_SECTORS_PER_DIRTY_CHUNK;
if (total_sectors - cur_sector < BDRV_SECTORS_PER_DIRTY_CHUNK) {
nr_sectors = (total_sectors - cur_sector);
}
if (bdrv_read(bs, cur_sector, tmp_buf, nr_sectors) < 0) {
printf("Error reading sector %" PRId64 "\n", cur_sector);
}
bdrv_reset_dirty(bs, cur_sector, nr_sectors);
/* sector number and flags */
qemu_put_be64(f, (cur_sector << BDRV_SECTOR_BITS)
| BLK_MIG_FLAG_DEVICE_BLOCK);
/* device name */
len = strlen(bs->device_name);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)bs->device_name, len);
qemu_put_buffer(f, tmp_buf, BLOCK_SIZE);
bmds->cur_sector = cur_sector + BDRV_SECTORS_PER_DIRTY_CHUNK;
qemu_free(tmp_buf);
return (bmds->cur_sector >= total_sectors);
}
static void send_blk(QEMUFile *f, BlkMigBlock * blk)
{
int len;
/* sector number and flags */
qemu_put_be64(f, (blk->sector << BDRV_SECTOR_BITS)
| BLK_MIG_FLAG_DEVICE_BLOCK);
/* device name */
len = strlen(blk->bmds->bs->device_name);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)blk->bmds->bs->device_name, len);
qemu_put_buffer(f, blk->buf, BLOCK_SIZE);
}
static void blk_mig_save_dev_info(QEMUFile *f, BlkMigDevState *bmds)
{
}
static void set_dirty_tracking(int enable)
{
BlkMigDevState *bmds;
for (bmds = block_mig_state->bmds_first; bmds != NULL; bmds = bmds->next) {
bdrv_set_dirty_tracking(bmds->bs, enable);
}
}
static void init_blk_migration(QEMUFile *f)
{
BlkMigDevState **pbmds, *bmds;
BlockDriverState *bs;
for (bs = bdrv_first; bs != NULL; bs = bs->next) {
if (bs->type == BDRV_TYPE_HD) {
bmds = qemu_mallocz(sizeof(BlkMigDevState));
bmds->bs = bs;
bmds->bulk_completed = 0;
bmds->total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
bmds->shared_base = block_mig_state->shared_base;
if (bmds->shared_base) {
printf("Start migration for %s with shared base image\n",
bs->device_name);
} else {
printf("Start full migration for %s\n", bs->device_name);
}
/* insert at the end */
pbmds = &block_mig_state->bmds_first;
while (*pbmds != NULL) {
pbmds = &(*pbmds)->next;
}
*pbmds = bmds;
blk_mig_save_dev_info(f, bmds);
}
}
}
static int blk_mig_save_bulked_block(QEMUFile *f, int is_async)
{
BlkMigDevState *bmds;
for (bmds = block_mig_state->bmds_first; bmds != NULL; bmds = bmds->next) {
if (bmds->bulk_completed == 0) {
if (is_async) {
if (mig_read_device_bulk(f, bmds) == 1) {
/* completed bulk section for this device */
bmds->bulk_completed = 1;
}
} else {
if (mig_save_device_bulk(f, bmds) == 1) {
/* completed bulk section for this device */
bmds->bulk_completed = 1;
}
}
return 1;
}
}
/* we reached here means bulk is completed */
block_mig_state->bulk_completed = 1;
return 0;
}
#define MAX_NUM_BLOCKS 4
static void blk_mig_save_dirty_blocks(QEMUFile *f)
{
BlkMigDevState *bmds;
uint8_t *buf;
int64_t sector;
int len;
buf = qemu_malloc(BLOCK_SIZE);
for (bmds = block_mig_state->bmds_first; bmds != NULL; bmds = bmds->next) {
for (sector = 0; sector < bmds->cur_sector;) {
if (bdrv_get_dirty(bmds->bs, sector)) {
if (bdrv_read(bmds->bs, sector, buf,
BDRV_SECTORS_PER_DIRTY_CHUNK) < 0) {
/* FIXME: add error handling */
}
/* sector number and flags */
qemu_put_be64(f, (sector << BDRV_SECTOR_BITS)
| BLK_MIG_FLAG_DEVICE_BLOCK);
/* device name */
len = strlen(bmds->bs->device_name);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)bmds->bs->device_name, len);
qemu_put_buffer(f, buf, BLOCK_SIZE);
bdrv_reset_dirty(bmds->bs, sector,
BDRV_SECTORS_PER_DIRTY_CHUNK);
}
sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
}
}
qemu_free(buf);
}
static void flush_blks(QEMUFile* f)
{
BlkMigBlock *blk, *next;
dprintf("%s Enter submitted %d read_done %d transfered\n", __FUNCTION__,
submitted, read_done, transfered);
for (blk = block_mig_state->first_blk;
blk != NULL && !qemu_file_rate_limit(f);
blk = next) {
send_blk(f, blk);
next = blk->next;
qemu_free(blk->buf);
qemu_free(blk);
block_mig_state->read_done--;
block_mig_state->transferred++;
assert(block_mig_state->read_done >= 0);
}
block_mig_state->first_blk = blk;
if (block_mig_state->first_blk == NULL) {
block_mig_state->last_blk = NULL;
}
dprintf("%s Exit submitted %d read_done %d transferred%d\n", __FUNCTION__,
block_mig_state->submitted, block_mig_state->read_done,
block_mig_state->transferred);
}
static int is_stage2_completed(void)
{
BlkMigDevState *bmds;
if (block_mig_state->submitted > 0) {
return 0;
}
for (bmds = block_mig_state->bmds_first; bmds != NULL; bmds = bmds->next) {
if (bmds->bulk_completed == 0) {
return 0;
}
}
return 1;
}
static int block_save_live(QEMUFile *f, int stage, void *opaque)
{
dprintf("Enter save live stage %d submitted %d transferred %d\n", stage,
submitted, transferred);
if (block_mig_state->blk_enable != 1) {
/* no need to migrate storage */
qemu_put_be64(f, BLK_MIG_FLAG_EOS);
return 1;
}
if (stage == 1) {
init_blk_migration(f);
/* start track dirty blocks */
set_dirty_tracking(1);
}
flush_blks(f);
/* control the rate of transfer */
while ((block_mig_state->submitted +
block_mig_state->read_done) * BLOCK_SIZE <
qemu_file_get_rate_limit(f)) {
if (blk_mig_save_bulked_block(f, 1) == 0) {
/* no more bulk blocks for now */
break;
}
}
flush_blks(f);
if (stage == 3) {
while (blk_mig_save_bulked_block(f, 0) != 0) {
/* empty */
}
blk_mig_save_dirty_blocks(f);
/* stop track dirty blocks */
set_dirty_tracking(0);
printf("\nBlock migration completed\n");
}
qemu_put_be64(f, BLK_MIG_FLAG_EOS);
return ((stage == 2) && is_stage2_completed());
}
static int block_load(QEMUFile *f, void *opaque, int version_id)
{
int len, flags;
char device_name[256];
int64_t addr;
BlockDriverState *bs;
uint8_t *buf;
do {
addr = qemu_get_be64(f);
flags = addr & ~BDRV_SECTOR_MASK;
addr >>= BDRV_SECTOR_BITS;
if (flags & BLK_MIG_FLAG_DEVICE_BLOCK) {
/* get device name */
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)device_name, len);
device_name[len] = '\0';
bs = bdrv_find(device_name);
buf = qemu_malloc(BLOCK_SIZE);
qemu_get_buffer(f, buf, BLOCK_SIZE);
if (bs != NULL) {
bdrv_write(bs, addr, buf, BDRV_SECTORS_PER_DIRTY_CHUNK);
} else {
printf("Error unknown block device %s\n", device_name);
/* FIXME: add error handling */
}
qemu_free(buf);
} else if (!(flags & BLK_MIG_FLAG_EOS)) {
printf("Unknown flags\n");
/* FIXME: add error handling */
}
} while (!(flags & BLK_MIG_FLAG_EOS));
return 0;
}
static void block_set_params(int blk_enable, int shared_base, void *opaque)
{
assert(opaque == block_mig_state);
block_mig_state->blk_enable = blk_enable;
block_mig_state->shared_base = shared_base;
/* shared base means that blk_enable = 1 */
block_mig_state->blk_enable |= shared_base;
}
void blk_mig_info(void)
{
BlockDriverState *bs;
for (bs = bdrv_first; bs != NULL; bs = bs->next) {
printf("Device %s\n", bs->device_name);
if (bs->type == BDRV_TYPE_HD) {
printf("device %s format %s\n",
bs->device_name, bs->drv->format_name);
}
}
}
void blk_mig_init(void)
{
block_mig_state = qemu_mallocz(sizeof(BlkMigState));
register_savevm_live("block", 0, 1, block_set_params, block_save_live,
NULL, block_load, block_mig_state);
}