qemu/audio/audio.c
bellard 541e084426 VM state change support (malc)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1618 c046a42c-6fe2-441c-8c8c-71466251a162
2005-11-11 00:04:19 +00:00

1708 lines
41 KiB
C

/*
* QEMU Audio subsystem
*
* Copyright (c) 2003-2005 Vassili Karpov (malc)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#define AUDIO_CAP "audio"
#include "audio_int.h"
/* #define DEBUG_PLIVE */
/* #define DEBUG_LIVE */
/* #define DEBUG_OUT */
#define SW_NAME(sw) (sw)->name ? (sw)->name : "unknown"
static struct audio_driver *drvtab[] = {
#ifdef CONFIG_OSS
&oss_audio_driver,
#endif
#ifdef CONFIG_ALSA
&alsa_audio_driver,
#endif
#ifdef CONFIG_COREAUDIO
&coreaudio_audio_driver,
#endif
#ifdef CONFIG_DSOUND
&dsound_audio_driver,
#endif
#ifdef CONFIG_FMOD
&fmod_audio_driver,
#endif
#ifdef CONFIG_SDL
&sdl_audio_driver,
#endif
&no_audio_driver,
&wav_audio_driver
};
struct fixed_settings {
int enabled;
int nb_voices;
int greedy;
audsettings_t settings;
};
static struct {
struct fixed_settings fixed_out;
struct fixed_settings fixed_in;
union {
int hz;
int64_t ticks;
} period;
int plive;
int log_to_monitor;
} conf = {
{ /* DAC fixed settings */
1, /* enabled */
1, /* nb_voices */
1, /* greedy */
{
44100, /* freq */
2, /* nchannels */
AUD_FMT_S16 /* fmt */
}
},
{ /* ADC fixed settings */
1, /* enabled */
1, /* nb_voices */
1, /* greedy */
{
44100, /* freq */
2, /* nchannels */
AUD_FMT_S16 /* fmt */
}
},
{ 0 }, /* period */
0, /* plive */
0
};
static AudioState glob_audio_state;
volume_t nominal_volume = {
0,
#ifdef FLOAT_MIXENG
1.0,
1.0
#else
UINT_MAX,
UINT_MAX
#endif
};
/* http://www.df.lth.se/~john_e/gems/gem002d.html */
/* http://www.multi-platforms.com/Tips/PopCount.htm */
uint32_t popcount (uint32_t u)
{
u = ((u&0x55555555) + ((u>>1)&0x55555555));
u = ((u&0x33333333) + ((u>>2)&0x33333333));
u = ((u&0x0f0f0f0f) + ((u>>4)&0x0f0f0f0f));
u = ((u&0x00ff00ff) + ((u>>8)&0x00ff00ff));
u = ( u&0x0000ffff) + (u>>16);
return u;
}
inline uint32_t lsbindex (uint32_t u)
{
return popcount ((u&-u)-1);
}
#ifdef AUDIO_IS_FLAWLESS_AND_NO_CHECKS_ARE_REQURIED
#error No its not
#else
int audio_bug (const char *funcname, int cond)
{
if (cond) {
static int shown;
AUD_log (NULL, "Error a bug that was just triggered in %s\n", funcname);
if (!shown) {
shown = 1;
AUD_log (NULL, "Save all your work and restart without audio\n");
AUD_log (NULL, "Please send bug report to malc@pulsesoft.com\n");
AUD_log (NULL, "I am sorry\n");
}
AUD_log (NULL, "Context:\n");
#if defined AUDIO_BREAKPOINT_ON_BUG
# if defined HOST_I386
# if defined __GNUC__
__asm__ ("int3");
# elif defined _MSC_VER
_asm _emit 0xcc;
# else
abort ();
# endif
# else
abort ();
# endif
#endif
}
return cond;
}
#endif
void *audio_calloc (const char *funcname, int nmemb, size_t size)
{
int cond;
size_t len;
len = nmemb * size;
cond = !nmemb || !size;
cond |= nmemb < 0;
cond |= len < size;
if (audio_bug ("audio_calloc", cond)) {
AUD_log (NULL, "%s passed invalid arguments to audio_calloc\n",
funcname);
AUD_log (NULL, "nmemb=%d size=%zu (len=%zu)\n", nmemb, size, len);
return NULL;
}
return qemu_mallocz (len);
}
static char *audio_alloc_prefix (const char *s)
{
const char qemu_prefix[] = "QEMU_";
size_t len;
char *r;
if (!s) {
return NULL;
}
len = strlen (s);
r = qemu_malloc (len + sizeof (qemu_prefix));
if (r) {
size_t i;
char *u = r + sizeof (qemu_prefix) - 1;
strcpy (r, qemu_prefix);
strcat (r, s);
for (i = 0; i < len; ++i) {
u[i] = toupper (u[i]);
}
}
return r;
}
const char *audio_audfmt_to_string (audfmt_e fmt)
{
switch (fmt) {
case AUD_FMT_U8:
return "U8";
case AUD_FMT_U16:
return "U16";
case AUD_FMT_S8:
return "S8";
case AUD_FMT_S16:
return "S16";
}
dolog ("Bogus audfmt %d returning S16\n", fmt);
return "S16";
}
audfmt_e audio_string_to_audfmt (const char *s, audfmt_e defval, int *defaultp)
{
if (!strcasecmp (s, "u8")) {
*defaultp = 0;
return AUD_FMT_U8;
}
else if (!strcasecmp (s, "u16")) {
*defaultp = 0;
return AUD_FMT_U16;
}
else if (!strcasecmp (s, "s8")) {
*defaultp = 0;
return AUD_FMT_S8;
}
else if (!strcasecmp (s, "s16")) {
*defaultp = 0;
return AUD_FMT_S16;
}
else {
dolog ("Bogus audio format `%s' using %s\n",
s, audio_audfmt_to_string (defval));
*defaultp = 1;
return defval;
}
}
static audfmt_e audio_get_conf_fmt (const char *envname,
audfmt_e defval,
int *defaultp)
{
const char *var = getenv (envname);
if (!var) {
*defaultp = 1;
return defval;
}
return audio_string_to_audfmt (var, defval, defaultp);
}
static int audio_get_conf_int (const char *key, int defval, int *defaultp)
{
int val;
char *strval;
strval = getenv (key);
if (strval) {
*defaultp = 0;
val = atoi (strval);
return val;
}
else {
*defaultp = 1;
return defval;
}
}
static const char *audio_get_conf_str (const char *key,
const char *defval,
int *defaultp)
{
const char *val = getenv (key);
if (!val) {
*defaultp = 1;
return defval;
}
else {
*defaultp = 0;
return val;
}
}
void AUD_vlog (const char *cap, const char *fmt, va_list ap)
{
if (conf.log_to_monitor) {
if (cap) {
term_printf ("%s: ", cap);
}
term_vprintf (fmt, ap);
}
else {
if (cap) {
fprintf (stderr, "%s: ", cap);
}
vfprintf (stderr, fmt, ap);
}
}
void AUD_log (const char *cap, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
AUD_vlog (cap, fmt, ap);
va_end (ap);
}
static void audio_print_options (const char *prefix,
struct audio_option *opt)
{
char *uprefix;
if (!prefix) {
dolog ("No prefix specified\n");
return;
}
if (!opt) {
dolog ("No options\n");
return;
}
uprefix = audio_alloc_prefix (prefix);
for (; opt->name; opt++) {
const char *state = "default";
printf (" %s_%s: ", uprefix, opt->name);
if (opt->overridenp && *opt->overridenp) {
state = "current";
}
switch (opt->tag) {
case AUD_OPT_BOOL:
{
int *intp = opt->valp;
printf ("boolean, %s = %d\n", state, *intp ? 1 : 0);
}
break;
case AUD_OPT_INT:
{
int *intp = opt->valp;
printf ("integer, %s = %d\n", state, *intp);
}
break;
case AUD_OPT_FMT:
{
audfmt_e *fmtp = opt->valp;
printf (
"format, %s = %s, (one of: U8 S8 U16 S16)\n",
state,
audio_audfmt_to_string (*fmtp)
);
}
break;
case AUD_OPT_STR:
{
const char **strp = opt->valp;
printf ("string, %s = %s\n",
state,
*strp ? *strp : "(not set)");
}
break;
default:
printf ("???\n");
dolog ("Bad value tag for option %s_%s %d\n",
uprefix, opt->name, opt->tag);
break;
}
printf (" %s\n", opt->descr);
}
qemu_free (uprefix);
}
static void audio_process_options (const char *prefix,
struct audio_option *opt)
{
char *optname;
const char qemu_prefix[] = "QEMU_";
size_t preflen;
if (audio_bug (AUDIO_FUNC, !prefix)) {
dolog ("prefix = NULL\n");
return;
}
if (audio_bug (AUDIO_FUNC, !opt)) {
dolog ("opt = NULL\n");
return;
}
preflen = strlen (prefix);
for (; opt->name; opt++) {
size_t len, i;
int def;
if (!opt->valp) {
dolog ("Option value pointer for `%s' is not set\n",
opt->name);
continue;
}
len = strlen (opt->name);
/* len of opt->name + len of prefix + size of qemu_prefix
* (includes trailing zero) + zero + underscore (on behalf of
* sizeof) */
optname = qemu_malloc (len + preflen + sizeof (qemu_prefix) + 1);
if (!optname) {
dolog ("Could not allocate memory for option name `%s'\n",
opt->name);
continue;
}
strcpy (optname, qemu_prefix);
/* copy while upper-casing, including trailing zero */
for (i = 0; i <= preflen; ++i) {
optname[i + sizeof (qemu_prefix) - 1] = toupper (prefix[i]);
}
strcat (optname, "_");
strcat (optname, opt->name);
def = 1;
switch (opt->tag) {
case AUD_OPT_BOOL:
case AUD_OPT_INT:
{
int *intp = opt->valp;
*intp = audio_get_conf_int (optname, *intp, &def);
}
break;
case AUD_OPT_FMT:
{
audfmt_e *fmtp = opt->valp;
*fmtp = audio_get_conf_fmt (optname, *fmtp, &def);
}
break;
case AUD_OPT_STR:
{
const char **strp = opt->valp;
*strp = audio_get_conf_str (optname, *strp, &def);
}
break;
default:
dolog ("Bad value tag for option `%s' - %d\n",
optname, opt->tag);
break;
}
if (!opt->overridenp) {
opt->overridenp = &opt->overriden;
}
*opt->overridenp = !def;
qemu_free (optname);
}
}
static void audio_print_settings (audsettings_t *as)
{
dolog ("frequency=%d nchannels=%d fmt=", as->freq, as->nchannels);
switch (as->fmt) {
case AUD_FMT_S8:
AUD_log (NULL, "S8");
break;
case AUD_FMT_U8:
AUD_log (NULL, "U8");
break;
case AUD_FMT_S16:
AUD_log (NULL, "S16");
break;
case AUD_FMT_U16:
AUD_log (NULL, "U16");
break;
default:
AUD_log (NULL, "invalid(%d)", as->fmt);
break;
}
AUD_log (NULL, "\n");
}
static int audio_validate_settigs (audsettings_t *as)
{
int invalid;
invalid = as->nchannels != 1 && as->nchannels != 2;
switch (as->fmt) {
case AUD_FMT_S8:
case AUD_FMT_U8:
case AUD_FMT_S16:
case AUD_FMT_U16:
break;
default:
invalid = 1;
break;
}
invalid |= as->freq <= 0;
if (invalid) {
return -1;
}
return 0;
}
static int audio_pcm_info_eq (struct audio_pcm_info *info, audsettings_t *as)
{
int bits = 8, sign = 0;
switch (as->fmt) {
case AUD_FMT_S8:
sign = 1;
case AUD_FMT_U8:
break;
case AUD_FMT_S16:
sign = 1;
case AUD_FMT_U16:
bits = 16;
break;
}
return info->freq == as->freq
&& info->nchannels == as->nchannels
&& info->sign == sign
&& info->bits == bits;
}
void audio_pcm_init_info (
struct audio_pcm_info *info,
audsettings_t *as,
int swap_endian
)
{
int bits = 8, sign = 0;
switch (as->fmt) {
case AUD_FMT_S8:
sign = 1;
case AUD_FMT_U8:
break;
case AUD_FMT_S16:
sign = 1;
case AUD_FMT_U16:
bits = 16;
break;
}
info->freq = as->freq;
info->bits = bits;
info->sign = sign;
info->nchannels = as->nchannels;
info->shift = (as->nchannels == 2) + (bits == 16);
info->align = (1 << info->shift) - 1;
info->bytes_per_second = info->freq << info->shift;
info->swap_endian = swap_endian;
}
void audio_pcm_info_clear_buf (struct audio_pcm_info *info, void *buf, int len)
{
if (!len) {
return;
}
if (info->sign) {
memset (buf, len << info->shift, 0x00);
}
else {
if (info->bits == 8) {
memset (buf, len << info->shift, 0x80);
}
else {
int i;
uint16_t *p = buf;
int shift = info->nchannels - 1;
short s = INT16_MAX;
if (info->swap_endian) {
s = bswap16 (s);
}
for (i = 0; i < len << shift; i++) {
p[i] = s;
}
}
}
}
/*
* Hard voice (capture)
*/
static void audio_pcm_hw_free_resources_in (HWVoiceIn *hw)
{
if (hw->conv_buf) {
qemu_free (hw->conv_buf);
}
hw->conv_buf = NULL;
}
static int audio_pcm_hw_alloc_resources_in (HWVoiceIn *hw)
{
hw->conv_buf = audio_calloc (AUDIO_FUNC, hw->samples, sizeof (st_sample_t));
if (!hw->conv_buf) {
dolog ("Could not allocate ADC conversion buffer (%d samples)\n",
hw->samples);
return -1;
}
return 0;
}
static int audio_pcm_hw_find_min_in (HWVoiceIn *hw)
{
SWVoiceIn *sw;
int m = hw->total_samples_captured;
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
if (sw->active) {
m = audio_MIN (m, sw->total_hw_samples_acquired);
}
}
return m;
}
int audio_pcm_hw_get_live_in (HWVoiceIn *hw)
{
int live = hw->total_samples_captured - audio_pcm_hw_find_min_in (hw);
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live=%d hw->samples=%d\n", live, hw->samples);
return 0;
}
return live;
}
/*
* Soft voice (capture)
*/
static void audio_pcm_sw_free_resources_in (SWVoiceIn *sw)
{
if (sw->conv_buf) {
qemu_free (sw->conv_buf);
}
if (sw->rate) {
st_rate_stop (sw->rate);
}
sw->conv_buf = NULL;
sw->rate = NULL;
}
static int audio_pcm_sw_alloc_resources_in (SWVoiceIn *sw)
{
int samples = ((int64_t) sw->hw->samples << 32) / sw->ratio;
sw->conv_buf = audio_calloc (AUDIO_FUNC, samples, sizeof (st_sample_t));
if (!sw->conv_buf) {
dolog ("Could not allocate buffer for `%s' (%d samples)\n",
SW_NAME (sw), samples);
return -1;
}
sw->rate = st_rate_start (sw->hw->info.freq, sw->info.freq);
if (!sw->rate) {
qemu_free (sw->conv_buf);
sw->conv_buf = NULL;
return -1;
}
return 0;
}
static int audio_pcm_sw_init_in (
SWVoiceIn *sw,
HWVoiceIn *hw,
const char *name,
audsettings_t *as
)
{
/* None of the cards emulated by QEMU are big-endian
hence following shortcut */
audio_pcm_init_info (&sw->info, as, audio_need_to_swap_endian (0));
sw->hw = hw;
sw->ratio = ((int64_t) sw->info.freq << 32) / sw->hw->info.freq;
sw->clip =
mixeng_clip
[sw->info.nchannels == 2]
[sw->info.sign]
[sw->info.swap_endian]
[sw->info.bits == 16];
sw->name = qemu_strdup (name);
audio_pcm_sw_free_resources_in (sw);
return audio_pcm_sw_alloc_resources_in (sw);
}
static int audio_pcm_sw_get_rpos_in (SWVoiceIn *sw)
{
HWVoiceIn *hw = sw->hw;
int live = hw->total_samples_captured - sw->total_hw_samples_acquired;
int rpos;
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live=%d hw->samples=%d\n", live, hw->samples);
return 0;
}
rpos = hw->wpos - live;
if (rpos >= 0) {
return rpos;
}
else {
return hw->samples + rpos;
}
}
int audio_pcm_sw_read (SWVoiceIn *sw, void *buf, int size)
{
HWVoiceIn *hw = sw->hw;
int samples, live, ret = 0, swlim, isamp, osamp, rpos, total = 0;
st_sample_t *src, *dst = sw->conv_buf;
rpos = audio_pcm_sw_get_rpos_in (sw) % hw->samples;
live = hw->total_samples_captured - sw->total_hw_samples_acquired;
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live_in=%d hw->samples=%d\n", live, hw->samples);
return 0;
}
samples = size >> sw->info.shift;
if (!live) {
return 0;
}
swlim = (live * sw->ratio) >> 32;
swlim = audio_MIN (swlim, samples);
while (swlim) {
src = hw->conv_buf + rpos;
isamp = hw->wpos - rpos;
/* XXX: <= ? */
if (isamp <= 0) {
isamp = hw->samples - rpos;
}
if (!isamp) {
break;
}
osamp = swlim;
if (audio_bug (AUDIO_FUNC, osamp < 0)) {
dolog ("osamp=%d\n", osamp);
return 0;
}
st_rate_flow (sw->rate, src, dst, &isamp, &osamp);
swlim -= osamp;
rpos = (rpos + isamp) % hw->samples;
dst += osamp;
ret += osamp;
total += isamp;
}
sw->clip (buf, sw->conv_buf, ret);
sw->total_hw_samples_acquired += total;
return ret << sw->info.shift;
}
/*
* Hard voice (playback)
*/
static void audio_pcm_hw_free_resources_out (HWVoiceOut *hw)
{
if (hw->mix_buf) {
qemu_free (hw->mix_buf);
}
hw->mix_buf = NULL;
}
static int audio_pcm_hw_alloc_resources_out (HWVoiceOut *hw)
{
hw->mix_buf = audio_calloc (AUDIO_FUNC, hw->samples, sizeof (st_sample_t));
if (!hw->mix_buf) {
dolog ("Could not allocate DAC mixing buffer (%d samples)\n",
hw->samples);
return -1;
}
return 0;
}
static int audio_pcm_hw_find_min_out (HWVoiceOut *hw, int *nb_livep)
{
SWVoiceOut *sw;
int m = INT_MAX;
int nb_live = 0;
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
if (sw->active || !sw->empty) {
m = audio_MIN (m, sw->total_hw_samples_mixed);
nb_live += 1;
}
}
*nb_livep = nb_live;
return m;
}
int audio_pcm_hw_get_live_out2 (HWVoiceOut *hw, int *nb_live)
{
int smin;
smin = audio_pcm_hw_find_min_out (hw, nb_live);
if (!*nb_live) {
return 0;
}
else {
int live = smin;
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live=%d hw->samples=%d\n", live, hw->samples);
return 0;
}
return live;
}
}
int audio_pcm_hw_get_live_out (HWVoiceOut *hw)
{
int nb_live;
int live;
live = audio_pcm_hw_get_live_out2 (hw, &nb_live);
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live=%d hw->samples=%d\n", live, hw->samples);
return 0;
}
return live;
}
/*
* Soft voice (playback)
*/
static void audio_pcm_sw_free_resources_out (SWVoiceOut *sw)
{
if (sw->buf) {
qemu_free (sw->buf);
}
if (sw->rate) {
st_rate_stop (sw->rate);
}
sw->buf = NULL;
sw->rate = NULL;
}
static int audio_pcm_sw_alloc_resources_out (SWVoiceOut *sw)
{
sw->buf = audio_calloc (AUDIO_FUNC, sw->hw->samples, sizeof (st_sample_t));
if (!sw->buf) {
dolog ("Could not allocate buffer for `%s' (%d samples)\n",
SW_NAME (sw), sw->hw->samples);
return -1;
}
sw->rate = st_rate_start (sw->info.freq, sw->hw->info.freq);
if (!sw->rate) {
qemu_free (sw->buf);
sw->buf = NULL;
return -1;
}
return 0;
}
static int audio_pcm_sw_init_out (
SWVoiceOut *sw,
HWVoiceOut *hw,
const char *name,
audsettings_t *as
)
{
/* None of the cards emulated by QEMU are big-endian
hence following shortcut */
audio_pcm_init_info (&sw->info, as, audio_need_to_swap_endian (0));
sw->hw = hw;
sw->empty = 1;
sw->active = 0;
sw->ratio = ((int64_t) sw->hw->info.freq << 32) / sw->info.freq;
sw->total_hw_samples_mixed = 0;
sw->conv =
mixeng_conv
[sw->info.nchannels == 2]
[sw->info.sign]
[sw->info.swap_endian]
[sw->info.bits == 16];
sw->name = qemu_strdup (name);
audio_pcm_sw_free_resources_out (sw);
return audio_pcm_sw_alloc_resources_out (sw);
}
int audio_pcm_sw_write (SWVoiceOut *sw, void *buf, int size)
{
int hwsamples, samples, isamp, osamp, wpos, live, dead, left, swlim, blck;
int ret = 0, pos = 0, total = 0;
if (!sw) {
return size;
}
hwsamples = sw->hw->samples;
live = sw->total_hw_samples_mixed;
if (audio_bug (AUDIO_FUNC, live < 0 || live > hwsamples)){
dolog ("live=%d hw->samples=%d\n", live, hwsamples);
return 0;
}
if (live == hwsamples) {
return 0;
}
wpos = (sw->hw->rpos + live) % hwsamples;
samples = size >> sw->info.shift;
dead = hwsamples - live;
swlim = ((int64_t) dead << 32) / sw->ratio;
swlim = audio_MIN (swlim, samples);
if (swlim) {
sw->conv (sw->buf, buf, swlim, &sw->vol);
}
while (swlim) {
dead = hwsamples - live;
left = hwsamples - wpos;
blck = audio_MIN (dead, left);
if (!blck) {
break;
}
isamp = swlim;
osamp = blck;
st_rate_flow_mix (
sw->rate,
sw->buf + pos,
sw->hw->mix_buf + wpos,
&isamp,
&osamp
);
ret += isamp;
swlim -= isamp;
pos += isamp;
live += osamp;
wpos = (wpos + osamp) % hwsamples;
total += osamp;
}
sw->total_hw_samples_mixed += total;
sw->empty = sw->total_hw_samples_mixed == 0;
#ifdef DEBUG_OUT
dolog (
"%s: write size %d ret %d total sw %d\n",
SW_NAME (sw),
size >> sw->info.shift,
ret,
sw->total_hw_samples_mixed
);
#endif
return ret << sw->info.shift;
}
#ifdef DEBUG_AUDIO
static void audio_pcm_print_info (const char *cap, struct audio_pcm_info *info)
{
dolog ("%s: bits %d, sign %d, freq %d, nchan %d\n",
cap, info->bits, info->sign, info->freq, info->nchannels);
}
#endif
#define DAC
#include "audio_template.h"
#undef DAC
#include "audio_template.h"
int AUD_write (SWVoiceOut *sw, void *buf, int size)
{
int bytes;
if (!sw) {
/* XXX: Consider options */
return size;
}
if (!sw->hw->enabled) {
dolog ("Writing to disabled voice %s\n", SW_NAME (sw));
return 0;
}
bytes = sw->hw->pcm_ops->write (sw, buf, size);
return bytes;
}
int AUD_read (SWVoiceIn *sw, void *buf, int size)
{
int bytes;
if (!sw) {
/* XXX: Consider options */
return size;
}
if (!sw->hw->enabled) {
dolog ("Reading from disabled voice %s\n", SW_NAME (sw));
return 0;
}
bytes = sw->hw->pcm_ops->read (sw, buf, size);
return bytes;
}
int AUD_get_buffer_size_out (SWVoiceOut *sw)
{
return sw->hw->samples << sw->hw->info.shift;
}
void AUD_set_active_out (SWVoiceOut *sw, int on)
{
HWVoiceOut *hw;
if (!sw) {
return;
}
hw = sw->hw;
if (sw->active != on) {
SWVoiceOut *temp_sw;
if (on) {
int total;
hw->pending_disable = 0;
if (!hw->enabled) {
hw->enabled = 1;
hw->pcm_ops->ctl_out (hw, VOICE_ENABLE);
}
if (sw->empty) {
total = 0;
}
}
else {
if (hw->enabled) {
int nb_active = 0;
for (temp_sw = hw->sw_head.lh_first; temp_sw;
temp_sw = temp_sw->entries.le_next) {
nb_active += temp_sw->active != 0;
}
hw->pending_disable = nb_active == 1;
}
}
sw->active = on;
}
}
void AUD_set_active_in (SWVoiceIn *sw, int on)
{
HWVoiceIn *hw;
if (!sw) {
return;
}
hw = sw->hw;
if (sw->active != on) {
SWVoiceIn *temp_sw;
if (on) {
if (!hw->enabled) {
hw->enabled = 1;
hw->pcm_ops->ctl_in (hw, VOICE_ENABLE);
}
sw->total_hw_samples_acquired = hw->total_samples_captured;
}
else {
if (hw->enabled) {
int nb_active = 0;
for (temp_sw = hw->sw_head.lh_first; temp_sw;
temp_sw = temp_sw->entries.le_next) {
nb_active += temp_sw->active != 0;
}
if (nb_active == 1) {
hw->enabled = 0;
hw->pcm_ops->ctl_in (hw, VOICE_DISABLE);
}
}
}
sw->active = on;
}
}
static int audio_get_avail (SWVoiceIn *sw)
{
int live;
if (!sw) {
return 0;
}
live = sw->hw->total_samples_captured - sw->total_hw_samples_acquired;
if (audio_bug (AUDIO_FUNC, live < 0 || live > sw->hw->samples)) {
dolog ("live=%d sw->hw->samples=%d\n", live, sw->hw->samples);
return 0;
}
ldebug (
"%s: get_avail live %d ret %lld\n",
SW_NAME (sw),
live, (((int64_t) live << 32) / sw->ratio) << sw->info.shift
);
return (((int64_t) live << 32) / sw->ratio) << sw->info.shift;
}
static int audio_get_free (SWVoiceOut *sw)
{
int live, dead;
if (!sw) {
return 0;
}
live = sw->total_hw_samples_mixed;
if (audio_bug (AUDIO_FUNC, live < 0 || live > sw->hw->samples)) {
dolog ("live=%d sw->hw->samples=%d\n", live, sw->hw->samples);
return 0;
}
dead = sw->hw->samples - live;
#ifdef DEBUG_OUT
dolog ("%s: get_free live %d dead %d ret %lld\n",
SW_NAME (sw),
live, dead, (((int64_t) dead << 32) / sw->ratio) << sw->info.shift);
#endif
return (((int64_t) dead << 32) / sw->ratio) << sw->info.shift;
}
static void audio_run_out (AudioState *s)
{
HWVoiceOut *hw = NULL;
SWVoiceOut *sw;
while ((hw = audio_pcm_hw_find_any_enabled_out (s, hw))) {
int played;
int live, free, nb_live, cleanup_required;
live = audio_pcm_hw_get_live_out2 (hw, &nb_live);
if (!nb_live) {
live = 0;
}
if (audio_bug (AUDIO_FUNC, live < 0 || live > hw->samples)) {
dolog ("live=%d hw->samples=%d\n", live, hw->samples);
continue;
}
if (hw->pending_disable && !nb_live) {
#ifdef DEBUG_OUT
dolog ("Disabling voice\n");
#endif
hw->enabled = 0;
hw->pending_disable = 0;
hw->pcm_ops->ctl_out (hw, VOICE_DISABLE);
continue;
}
if (!live) {
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
if (sw->active) {
free = audio_get_free (sw);
if (free > 0) {
sw->callback.fn (sw->callback.opaque, free);
}
}
}
continue;
}
played = hw->pcm_ops->run_out (hw);
if (audio_bug (AUDIO_FUNC, hw->rpos >= hw->samples)) {
dolog ("hw->rpos=%d hw->samples=%d played=%d\n",
hw->rpos, hw->samples, played);
hw->rpos = 0;
}
#ifdef DEBUG_OUT
dolog ("played=%d\n", played);
#endif
if (played) {
hw->ts_helper += played;
}
cleanup_required = 0;
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
if (!sw->active && sw->empty) {
continue;
}
if (audio_bug (AUDIO_FUNC, played > sw->total_hw_samples_mixed)) {
dolog ("played=%d sw->total_hw_samples_mixed=%d\n",
played, sw->total_hw_samples_mixed);
played = sw->total_hw_samples_mixed;
}
sw->total_hw_samples_mixed -= played;
if (!sw->total_hw_samples_mixed) {
sw->empty = 1;
cleanup_required |= !sw->active && !sw->callback.fn;
}
if (sw->active) {
free = audio_get_free (sw);
if (free > 0) {
sw->callback.fn (sw->callback.opaque, free);
}
}
}
if (cleanup_required) {
restart:
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
if (!sw->active && !sw->callback.fn) {
#ifdef DEBUG_PLIVE
dolog ("Finishing with old voice\n");
#endif
audio_close_out (s, sw);
goto restart; /* play it safe */
}
}
}
}
}
static void audio_run_in (AudioState *s)
{
HWVoiceIn *hw = NULL;
while ((hw = audio_pcm_hw_find_any_enabled_in (s, hw))) {
SWVoiceIn *sw;
int captured, min;
captured = hw->pcm_ops->run_in (hw);
min = audio_pcm_hw_find_min_in (hw);
hw->total_samples_captured += captured - min;
hw->ts_helper += captured;
for (sw = hw->sw_head.lh_first; sw; sw = sw->entries.le_next) {
sw->total_hw_samples_acquired -= min;
if (sw->active) {
int avail;
avail = audio_get_avail (sw);
if (avail > 0) {
sw->callback.fn (sw->callback.opaque, avail);
}
}
}
}
}
static struct audio_option audio_options[] = {
/* DAC */
{"DAC_FIXED_SETTINGS", AUD_OPT_BOOL, &conf.fixed_out.enabled,
"Use fixed settings for host DAC", NULL, 0},
{"DAC_FIXED_FREQ", AUD_OPT_INT, &conf.fixed_out.settings.freq,
"Frequency for fixed host DAC", NULL, 0},
{"DAC_FIXED_FMT", AUD_OPT_FMT, &conf.fixed_out.settings.fmt,
"Format for fixed host DAC", NULL, 0},
{"DAC_FIXED_CHANNELS", AUD_OPT_INT, &conf.fixed_out.settings.nchannels,
"Number of channels for fixed DAC (1 - mono, 2 - stereo)", NULL, 0},
{"DAC_VOICES", AUD_OPT_INT, &conf.fixed_out.nb_voices,
"Number of voices for DAC", NULL, 0},
/* ADC */
{"ADC_FIXED_SETTINGS", AUD_OPT_BOOL, &conf.fixed_in.enabled,
"Use fixed settings for host ADC", NULL, 0},
{"ADC_FIXED_FREQ", AUD_OPT_INT, &conf.fixed_in.settings.freq,
"Frequency for fixed host ADC", NULL, 0},
{"ADC_FIXED_FMT", AUD_OPT_FMT, &conf.fixed_in.settings.fmt,
"Format for fixed host ADC", NULL, 0},
{"ADC_FIXED_CHANNELS", AUD_OPT_INT, &conf.fixed_in.settings.nchannels,
"Number of channels for fixed ADC (1 - mono, 2 - stereo)", NULL, 0},
{"ADC_VOICES", AUD_OPT_INT, &conf.fixed_in.nb_voices,
"Number of voices for ADC", NULL, 0},
/* Misc */
{"TIMER_PERIOD", AUD_OPT_INT, &conf.period.hz,
"Timer period in HZ (0 - use lowest possible)", NULL, 0},
{"PLIVE", AUD_OPT_BOOL, &conf.plive,
"(undocumented)", NULL, 0},
{"LOG_TO_MONITOR", AUD_OPT_BOOL, &conf.log_to_monitor,
"print logging messages to montior instead of stderr", NULL, 0},
{NULL, 0, NULL, NULL, NULL, 0}
};
void AUD_help (void)
{
size_t i;
audio_process_options ("AUDIO", audio_options);
for (i = 0; i < sizeof (drvtab) / sizeof (drvtab[0]); i++) {
struct audio_driver *d = drvtab[i];
if (d->options) {
audio_process_options (d->name, d->options);
}
}
printf ("Audio options:\n");
audio_print_options ("AUDIO", audio_options);
printf ("\n");
printf ("Available drivers:\n");
for (i = 0; i < sizeof (drvtab) / sizeof (drvtab[0]); i++) {
struct audio_driver *d = drvtab[i];
printf ("Name: %s\n", d->name);
printf ("Description: %s\n", d->descr);
switch (d->max_voices_out) {
case 0:
printf ("Does not support DAC\n");
break;
case 1:
printf ("One DAC voice\n");
break;
case INT_MAX:
printf ("Theoretically supports many DAC voices\n");
break;
default:
printf ("Theoretically supports upto %d DAC voices\n",
d->max_voices_out);
break;
}
switch (d->max_voices_in) {
case 0:
printf ("Does not support ADC\n");
break;
case 1:
printf ("One ADC voice\n");
break;
case INT_MAX:
printf ("Theoretically supports many ADC voices\n");
break;
default:
printf ("Theoretically supports upto %d ADC voices\n",
d->max_voices_in);
break;
}
if (d->options) {
printf ("Options:\n");
audio_print_options (d->name, d->options);
}
else {
printf ("No options\n");
}
printf ("\n");
}
printf (
"Options are settable through environment variables.\n"
"Example:\n"
#ifdef _WIN32
" set QEMU_AUDIO_DRV=wav\n"
" set QEMU_WAV_PATH=c:/tune.wav\n"
#else
" export QEMU_AUDIO_DRV=wav\n"
" export QEMU_WAV_PATH=$HOME/tune.wav\n"
"(for csh replace export with setenv in the above)\n"
#endif
" qemu ...\n\n"
);
}
void audio_timer (void *opaque)
{
AudioState *s = opaque;
audio_run_out (s);
audio_run_in (s);
qemu_mod_timer (s->ts, qemu_get_clock (vm_clock) + conf.period.ticks);
}
static int audio_driver_init (AudioState *s, struct audio_driver *drv)
{
if (drv->options) {
audio_process_options (drv->name, drv->options);
}
s->drv_opaque = drv->init ();
if (s->drv_opaque) {
if (s->nb_hw_voices_out > drv->max_voices_out) {
if (!drv->max_voices_out) {
dolog ("`%s' does not support DAC\n", drv->name);
}
else {
dolog (
"`%s' does not support %d multiple DAC voicess\n"
"Resetting to %d\n",
drv->name,
s->nb_hw_voices_out,
drv->max_voices_out
);
}
s->nb_hw_voices_out = drv->max_voices_out;
}
if (!drv->voice_size_in && drv->max_voices_in) {
ldebug ("warning: No ADC voice size defined for `%s'\n",
drv->name);
drv->max_voices_in = 0;
}
if (!drv->voice_size_out && drv->max_voices_out) {
ldebug ("warning: No DAC voice size defined for `%s'\n",
drv->name);
}
if (drv->voice_size_in && !drv->max_voices_in) {
ldebug ("warning: `%s' ADC voice size %d, zero voices \n",
drv->name, drv->voice_size_out);
}
if (drv->voice_size_out && !drv->max_voices_out) {
ldebug ("warning: `%s' DAC voice size %d, zero voices \n",
drv->name, drv->voice_size_in);
}
if (s->nb_hw_voices_in > drv->max_voices_in) {
if (!drv->max_voices_in) {
ldebug ("`%s' does not support ADC\n", drv->name);
}
else {
dolog (
"`%s' does not support %d multiple ADC voices\n"
"Resetting to %d\n",
drv->name,
s->nb_hw_voices_in,
drv->max_voices_in
);
}
s->nb_hw_voices_in = drv->max_voices_in;
}
LIST_INIT (&s->hw_head_out);
LIST_INIT (&s->hw_head_in);
s->drv = drv;
return 0;
}
else {
dolog ("Could not init `%s' audio driver\n", drv->name);
return -1;
}
}
static void audio_vm_change_state_handler (void *opaque, int running)
{
AudioState *s = opaque;
HWVoiceOut *hwo = NULL;
HWVoiceIn *hwi = NULL;
int op = running ? VOICE_ENABLE : VOICE_DISABLE;
while ((hwo = audio_pcm_hw_find_any_enabled_out (s, hwo))) {
hwo->pcm_ops->ctl_out (hwo, op);
}
while ((hwi = audio_pcm_hw_find_any_enabled_in (s, hwi))) {
hwi->pcm_ops->ctl_in (hwi, op);
}
}
static void audio_atexit (void)
{
AudioState *s = &glob_audio_state;
HWVoiceOut *hwo = NULL;
HWVoiceIn *hwi = NULL;
while ((hwo = audio_pcm_hw_find_any_out (s, hwo))) {
if (!hwo->pcm_ops) {
continue;
}
if (hwo->enabled) {
hwo->pcm_ops->ctl_out (hwo, VOICE_DISABLE);
}
hwo->pcm_ops->fini_out (hwo);
}
while ((hwi = audio_pcm_hw_find_any_in (s, hwi))) {
if (!hwi->pcm_ops) {
continue;
}
if (hwi->enabled) {
hwi->pcm_ops->ctl_in (hwi, VOICE_DISABLE);
}
hwi->pcm_ops->fini_in (hwi);
}
if (s->drv) {
s->drv->fini (s->drv_opaque);
}
}
static void audio_save (QEMUFile *f, void *opaque)
{
(void) f;
(void) opaque;
}
static int audio_load (QEMUFile *f, void *opaque, int version_id)
{
(void) f;
(void) opaque;
if (version_id != 1) {
return -EINVAL;
}
return 0;
}
void AUD_register_card (AudioState *s, const char *name, QEMUSoundCard *card)
{
card->audio = s;
card->name = qemu_strdup (name);
memset (&card->entries, 0, sizeof (card->entries));
LIST_INSERT_HEAD (&s->card_head, card, entries);
}
void AUD_remove_card (QEMUSoundCard *card)
{
LIST_REMOVE (card, entries);
card->audio = NULL;
qemu_free (card->name);
}
AudioState *AUD_init (void)
{
size_t i;
int done = 0;
const char *drvname;
AudioState *s = &glob_audio_state;
audio_process_options ("AUDIO", audio_options);
s->nb_hw_voices_out = conf.fixed_out.nb_voices;
s->nb_hw_voices_in = conf.fixed_in.nb_voices;
if (s->nb_hw_voices_out <= 0) {
dolog ("Bogus number of DAC voices %d\n",
s->nb_hw_voices_out);
s->nb_hw_voices_out = 1;
}
if (s->nb_hw_voices_in <= 0) {
dolog ("Bogus number of ADC voices %d\n",
s->nb_hw_voices_in);
s->nb_hw_voices_in = 1;
}
{
int def;
drvname = audio_get_conf_str ("QEMU_AUDIO_DRV", NULL, &def);
}
s->ts = qemu_new_timer (vm_clock, audio_timer, s);
if (!s->ts) {
dolog ("Could not create audio timer\n");
return NULL;
}
if (drvname) {
int found = 0;
for (i = 0; i < sizeof (drvtab) / sizeof (drvtab[0]); i++) {
if (!strcmp (drvname, drvtab[i]->name)) {
done = !audio_driver_init (s, drvtab[i]);
found = 1;
break;
}
}
if (!found) {
dolog ("Unknown audio driver `%s'\n", drvname);
dolog ("Run with -audio-help to list available drivers\n");
}
}
if (!done) {
for (i = 0; !done && i < sizeof (drvtab) / sizeof (drvtab[0]); i++) {
if (drvtab[i]->can_be_default) {
done = !audio_driver_init (s, drvtab[i]);
}
}
}
if (!done) {
done = !audio_driver_init (s, &no_audio_driver);
if (!done) {
dolog ("Could not initialize audio subsystem\n");
}
else {
dolog ("warning: Using timer based audio emulation\n");
}
}
if (done) {
if (conf.period.hz <= 0) {
if (conf.period.hz < 0) {
dolog ("warning: Timer period is negative - %d "
"treating as zero\n",
conf.period.hz);
}
conf.period.ticks = 1;
}
else {
conf.period.ticks = ticks_per_sec / conf.period.hz;
}
qemu_add_vm_change_state_handler (audio_vm_change_state_handler, s);
}
else {
qemu_del_timer (s->ts);
return NULL;
}
LIST_INIT (&s->card_head);
register_savevm ("audio", 0, 1, audio_save, audio_load, s);
atexit (audio_atexit);
qemu_mod_timer (s->ts, qemu_get_clock (vm_clock) + conf.period.ticks);
return s;
}