mirror of
https://github.com/qemu/qemu.git
synced 2024-12-12 21:23:36 +08:00
4e85f82c85
In the current emulation of the load-and-reserve (lwarx) and store-conditional (stwcx.) instructions, the internal reservation mechanism is taken into account, however each CPU has its own reservation information and this information is not synchronized between CPUs to perform proper synchronization. The following test case with 2 CPUs shows that the semantics of the "lwarx" and "stwcx." instructions are not preserved by the emulation. The test case does the following : - CPU0: reserve a memory location - CPU1: reserve the same memory location - CPU0: perform stwcx. on the location The last store-conditional operation succeeds while it is supposed to fail since the reservation was supposed to be lost at the second reserve operation. This (one line) patch fixes this problem in a very simple manner by removing the reservation of a CPU every time it is scheduled (in cpu_exec()). While this is a harsh workaround, it does not affect the guest code much because reservations are usually held for a very short time, that is an lwarx is almost always followed by an stwcx. a few instructions below. Therefore, in most cases, the reservation will be taken and consumed before a CPU switch occurs. However in the rare case where a CPU switch does occur between the lwarx and its corresponding stwcx. this patch solves a potential erroneous behavior of the synchronization instructions. Signed-off-by: Elie Richa <richa@adacore.com> Signed-off-by: Alexander Graf <agraf@suse.de>
638 lines
25 KiB
C
638 lines
25 KiB
C
/*
|
|
* i386 emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#include "cpu.h"
|
|
#include "disas.h"
|
|
#include "tcg.h"
|
|
#include "qemu-barrier.h"
|
|
|
|
int tb_invalidated_flag;
|
|
|
|
//#define CONFIG_DEBUG_EXEC
|
|
|
|
bool qemu_cpu_has_work(CPUState *env)
|
|
{
|
|
return cpu_has_work(env);
|
|
}
|
|
|
|
void cpu_loop_exit(CPUState *env)
|
|
{
|
|
env->current_tb = NULL;
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
|
|
/* exit the current TB from a signal handler. The host registers are
|
|
restored in a state compatible with the CPU emulator
|
|
*/
|
|
#if defined(CONFIG_SOFTMMU)
|
|
void cpu_resume_from_signal(CPUState *env, void *puc)
|
|
{
|
|
/* XXX: restore cpu registers saved in host registers */
|
|
|
|
env->exception_index = -1;
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
#endif
|
|
|
|
/* Execute the code without caching the generated code. An interpreter
|
|
could be used if available. */
|
|
static void cpu_exec_nocache(CPUState *env, int max_cycles,
|
|
TranslationBlock *orig_tb)
|
|
{
|
|
unsigned long next_tb;
|
|
TranslationBlock *tb;
|
|
|
|
/* Should never happen.
|
|
We only end up here when an existing TB is too long. */
|
|
if (max_cycles > CF_COUNT_MASK)
|
|
max_cycles = CF_COUNT_MASK;
|
|
|
|
tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
|
max_cycles);
|
|
env->current_tb = tb;
|
|
/* execute the generated code */
|
|
next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
|
|
env->current_tb = NULL;
|
|
|
|
if ((next_tb & 3) == 2) {
|
|
/* Restore PC. This may happen if async event occurs before
|
|
the TB starts executing. */
|
|
cpu_pc_from_tb(env, tb);
|
|
}
|
|
tb_phys_invalidate(tb, -1);
|
|
tb_free(tb);
|
|
}
|
|
|
|
static TranslationBlock *tb_find_slow(CPUState *env,
|
|
target_ulong pc,
|
|
target_ulong cs_base,
|
|
uint64_t flags)
|
|
{
|
|
TranslationBlock *tb, **ptb1;
|
|
unsigned int h;
|
|
tb_page_addr_t phys_pc, phys_page1;
|
|
target_ulong virt_page2;
|
|
|
|
tb_invalidated_flag = 0;
|
|
|
|
/* find translated block using physical mappings */
|
|
phys_pc = get_page_addr_code(env, pc);
|
|
phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
|
h = tb_phys_hash_func(phys_pc);
|
|
ptb1 = &tb_phys_hash[h];
|
|
for(;;) {
|
|
tb = *ptb1;
|
|
if (!tb)
|
|
goto not_found;
|
|
if (tb->pc == pc &&
|
|
tb->page_addr[0] == phys_page1 &&
|
|
tb->cs_base == cs_base &&
|
|
tb->flags == flags) {
|
|
/* check next page if needed */
|
|
if (tb->page_addr[1] != -1) {
|
|
tb_page_addr_t phys_page2;
|
|
|
|
virt_page2 = (pc & TARGET_PAGE_MASK) +
|
|
TARGET_PAGE_SIZE;
|
|
phys_page2 = get_page_addr_code(env, virt_page2);
|
|
if (tb->page_addr[1] == phys_page2)
|
|
goto found;
|
|
} else {
|
|
goto found;
|
|
}
|
|
}
|
|
ptb1 = &tb->phys_hash_next;
|
|
}
|
|
not_found:
|
|
/* if no translated code available, then translate it now */
|
|
tb = tb_gen_code(env, pc, cs_base, flags, 0);
|
|
|
|
found:
|
|
/* Move the last found TB to the head of the list */
|
|
if (likely(*ptb1)) {
|
|
*ptb1 = tb->phys_hash_next;
|
|
tb->phys_hash_next = tb_phys_hash[h];
|
|
tb_phys_hash[h] = tb;
|
|
}
|
|
/* we add the TB in the virtual pc hash table */
|
|
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
|
return tb;
|
|
}
|
|
|
|
static inline TranslationBlock *tb_find_fast(CPUState *env)
|
|
{
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
int flags;
|
|
|
|
/* we record a subset of the CPU state. It will
|
|
always be the same before a given translated block
|
|
is executed. */
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
|
if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
|
tb->flags != flags)) {
|
|
tb = tb_find_slow(env, pc, cs_base, flags);
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
static CPUDebugExcpHandler *debug_excp_handler;
|
|
|
|
CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
|
|
{
|
|
CPUDebugExcpHandler *old_handler = debug_excp_handler;
|
|
|
|
debug_excp_handler = handler;
|
|
return old_handler;
|
|
}
|
|
|
|
static void cpu_handle_debug_exception(CPUState *env)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
if (!env->watchpoint_hit) {
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
if (debug_excp_handler) {
|
|
debug_excp_handler(env);
|
|
}
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
volatile sig_atomic_t exit_request;
|
|
|
|
int cpu_exec(CPUState *env)
|
|
{
|
|
int ret, interrupt_request;
|
|
TranslationBlock *tb;
|
|
uint8_t *tc_ptr;
|
|
unsigned long next_tb;
|
|
|
|
if (env->halted) {
|
|
if (!cpu_has_work(env)) {
|
|
return EXCP_HALTED;
|
|
}
|
|
|
|
env->halted = 0;
|
|
}
|
|
|
|
cpu_single_env = env;
|
|
|
|
if (unlikely(exit_request)) {
|
|
env->exit_request = 1;
|
|
}
|
|
|
|
#if defined(TARGET_I386)
|
|
/* put eflags in CPU temporary format */
|
|
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
|
CC_OP = CC_OP_EFLAGS;
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_SPARC)
|
|
#elif defined(TARGET_M68K)
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->cc_dest = env->sr & 0xf;
|
|
env->cc_x = (env->sr >> 4) & 1;
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_ARM)
|
|
#elif defined(TARGET_UNICORE32)
|
|
#elif defined(TARGET_PPC)
|
|
env->reserve_addr = -1;
|
|
#elif defined(TARGET_LM32)
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_CRIS)
|
|
#elif defined(TARGET_S390X)
|
|
#elif defined(TARGET_XTENSA)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
env->exception_index = -1;
|
|
|
|
/* prepare setjmp context for exception handling */
|
|
for(;;) {
|
|
if (setjmp(env->jmp_env) == 0) {
|
|
/* if an exception is pending, we execute it here */
|
|
if (env->exception_index >= 0) {
|
|
if (env->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
ret = env->exception_index;
|
|
if (ret == EXCP_DEBUG) {
|
|
cpu_handle_debug_exception(env);
|
|
}
|
|
break;
|
|
} else {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* if user mode only, we simulate a fake exception
|
|
which will be handled outside the cpu execution
|
|
loop */
|
|
#if defined(TARGET_I386)
|
|
do_interrupt(env);
|
|
#endif
|
|
ret = env->exception_index;
|
|
break;
|
|
#else
|
|
do_interrupt(env);
|
|
env->exception_index = -1;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
next_tb = 0; /* force lookup of first TB */
|
|
for(;;) {
|
|
interrupt_request = env->interrupt_request;
|
|
if (unlikely(interrupt_request)) {
|
|
if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
|
/* Mask out external interrupts for this step. */
|
|
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
|
defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
|
|
defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
|
|
if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
env->halted = 1;
|
|
env->exception_index = EXCP_HLT;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#endif
|
|
#if defined(TARGET_I386)
|
|
if (interrupt_request & CPU_INTERRUPT_INIT) {
|
|
svm_check_intercept(env, SVM_EXIT_INIT);
|
|
do_cpu_init(env);
|
|
env->exception_index = EXCP_HALTED;
|
|
cpu_loop_exit(env);
|
|
} else if (interrupt_request & CPU_INTERRUPT_SIPI) {
|
|
do_cpu_sipi(env);
|
|
} else if (env->hflags2 & HF2_GIF_MASK) {
|
|
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
|
!(env->hflags & HF_SMM_MASK)) {
|
|
svm_check_intercept(env, SVM_EXIT_SMI);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
|
do_smm_enter(env);
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
|
!(env->hflags2 & HF2_NMI_MASK)) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
|
env->hflags2 |= HF2_NMI_MASK;
|
|
do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
|
|
next_tb = 0;
|
|
} else if (interrupt_request & CPU_INTERRUPT_MCE) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_MCE;
|
|
do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(((env->hflags2 & HF2_VINTR_MASK) &&
|
|
(env->hflags2 & HF2_HIF_MASK)) ||
|
|
(!(env->hflags2 & HF2_VINTR_MASK) &&
|
|
(env->eflags & IF_MASK &&
|
|
!(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
|
|
int intno;
|
|
svm_check_intercept(env, SVM_EXIT_INTR);
|
|
env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
|
intno = cpu_get_pic_interrupt(env);
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
|
|
do_interrupt_x86_hardirq(env, intno, 1);
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
|
(env->eflags & IF_MASK) &&
|
|
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
|
int intno;
|
|
/* FIXME: this should respect TPR */
|
|
svm_check_intercept(env, SVM_EXIT_VINTR);
|
|
intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
|
|
do_interrupt_x86_hardirq(env, intno, 1);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
|
next_tb = 0;
|
|
#endif
|
|
}
|
|
}
|
|
#elif defined(TARGET_PPC)
|
|
#if 0
|
|
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
|
cpu_reset(env);
|
|
}
|
|
#endif
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ppc_hw_interrupt(env);
|
|
if (env->pending_interrupts == 0)
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_LM32)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD)
|
|
&& (env->ie & IE_IE)) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD)
|
|
&& (env->sregs[SR_MSR] & MSR_IE)
|
|
&& !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
|
|
&& !(env->iflags & (D_FLAG | IMM_FLAG))) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_MIPS)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
cpu_mips_hw_interrupts_pending(env)) {
|
|
/* Raise it */
|
|
env->exception_index = EXCP_EXT_INTERRUPT;
|
|
env->error_code = 0;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SPARC)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
if (cpu_interrupts_enabled(env) &&
|
|
env->interrupt_index > 0) {
|
|
int pil = env->interrupt_index & 0xf;
|
|
int type = env->interrupt_index & 0xf0;
|
|
|
|
if (((type == TT_EXTINT) &&
|
|
cpu_pil_allowed(env, pil)) ||
|
|
type != TT_EXTINT) {
|
|
env->exception_index = env->interrupt_index;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
}
|
|
#elif defined(TARGET_ARM)
|
|
if (interrupt_request & CPU_INTERRUPT_FIQ
|
|
&& !(env->uncached_cpsr & CPSR_F)) {
|
|
env->exception_index = EXCP_FIQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
/* ARMv7-M interrupt return works by loading a magic value
|
|
into the PC. On real hardware the load causes the
|
|
return to occur. The qemu implementation performs the
|
|
jump normally, then does the exception return when the
|
|
CPU tries to execute code at the magic address.
|
|
This will cause the magic PC value to be pushed to
|
|
the stack if an interrupt occurred at the wrong time.
|
|
We avoid this by disabling interrupts when
|
|
pc contains a magic address. */
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
|
|| !(env->uncached_cpsr & CPSR_I))) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_UNICORE32)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& !(env->uncached_asr & ASR_I)) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SH4)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_ALPHA)
|
|
{
|
|
int idx = -1;
|
|
/* ??? This hard-codes the OSF/1 interrupt levels. */
|
|
switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
|
|
case 0 ... 3:
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
idx = EXCP_DEV_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 4:
|
|
if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
|
idx = EXCP_CLK_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 5:
|
|
if (interrupt_request & CPU_INTERRUPT_SMP) {
|
|
idx = EXCP_SMP_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 6:
|
|
if (interrupt_request & CPU_INTERRUPT_MCHK) {
|
|
idx = EXCP_MCHK;
|
|
}
|
|
}
|
|
if (idx >= 0) {
|
|
env->exception_index = idx;
|
|
env->error_code = 0;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
#elif defined(TARGET_CRIS)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& (env->pregs[PR_CCS] & I_FLAG)
|
|
&& !env->locked_irq) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_NMI
|
|
&& (env->pregs[PR_CCS] & M_FLAG)) {
|
|
env->exception_index = EXCP_NMI;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_M68K)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((env->sr & SR_I) >> SR_I_SHIFT)
|
|
< env->pending_level) {
|
|
/* Real hardware gets the interrupt vector via an
|
|
IACK cycle at this point. Current emulated
|
|
hardware doesn't rely on this, so we
|
|
provide/save the vector when the interrupt is
|
|
first signalled. */
|
|
env->exception_index = env->pending_vector;
|
|
do_interrupt_m68k_hardirq(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->psw.mask & PSW_MASK_EXT)) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
env->exception_index = EXC_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#endif
|
|
/* Don't use the cached interrupt_request value,
|
|
do_interrupt may have updated the EXITTB flag. */
|
|
if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
if (unlikely(env->exit_request)) {
|
|
env->exit_request = 0;
|
|
env->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
|
/* restore flags in standard format */
|
|
#if defined(TARGET_I386)
|
|
env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
|
|
| (DF & DF_MASK);
|
|
log_cpu_state(env, X86_DUMP_CCOP);
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
log_cpu_state(env, 0);
|
|
#else
|
|
log_cpu_state(env, 0);
|
|
#endif
|
|
}
|
|
#endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
|
|
spin_lock(&tb_lock);
|
|
tb = tb_find_fast(env);
|
|
/* Note: we do it here to avoid a gcc bug on Mac OS X when
|
|
doing it in tb_find_slow */
|
|
if (tb_invalidated_flag) {
|
|
/* as some TB could have been invalidated because
|
|
of memory exceptions while generating the code, we
|
|
must recompute the hash index here */
|
|
next_tb = 0;
|
|
tb_invalidated_flag = 0;
|
|
}
|
|
#ifdef CONFIG_DEBUG_EXEC
|
|
qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
|
|
(long)tb->tc_ptr, tb->pc,
|
|
lookup_symbol(tb->pc));
|
|
#endif
|
|
/* see if we can patch the calling TB. When the TB
|
|
spans two pages, we cannot safely do a direct
|
|
jump. */
|
|
if (next_tb != 0 && tb->page_addr[1] == -1) {
|
|
tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
|
}
|
|
spin_unlock(&tb_lock);
|
|
|
|
/* cpu_interrupt might be called while translating the
|
|
TB, but before it is linked into a potentially
|
|
infinite loop and becomes env->current_tb. Avoid
|
|
starting execution if there is a pending interrupt. */
|
|
env->current_tb = tb;
|
|
barrier();
|
|
if (likely(!env->exit_request)) {
|
|
tc_ptr = tb->tc_ptr;
|
|
/* execute the generated code */
|
|
next_tb = tcg_qemu_tb_exec(env, tc_ptr);
|
|
if ((next_tb & 3) == 2) {
|
|
/* Instruction counter expired. */
|
|
int insns_left;
|
|
tb = (TranslationBlock *)(long)(next_tb & ~3);
|
|
/* Restore PC. */
|
|
cpu_pc_from_tb(env, tb);
|
|
insns_left = env->icount_decr.u32;
|
|
if (env->icount_extra && insns_left >= 0) {
|
|
/* Refill decrementer and continue execution. */
|
|
env->icount_extra += insns_left;
|
|
if (env->icount_extra > 0xffff) {
|
|
insns_left = 0xffff;
|
|
} else {
|
|
insns_left = env->icount_extra;
|
|
}
|
|
env->icount_extra -= insns_left;
|
|
env->icount_decr.u16.low = insns_left;
|
|
} else {
|
|
if (insns_left > 0) {
|
|
/* Execute remaining instructions. */
|
|
cpu_exec_nocache(env, insns_left, tb);
|
|
}
|
|
env->exception_index = EXCP_INTERRUPT;
|
|
next_tb = 0;
|
|
cpu_loop_exit(env);
|
|
}
|
|
}
|
|
}
|
|
env->current_tb = NULL;
|
|
/* reset soft MMU for next block (it can currently
|
|
only be set by a memory fault) */
|
|
} /* for(;;) */
|
|
} else {
|
|
/* Reload env after longjmp - the compiler may have smashed all
|
|
* local variables as longjmp is marked 'noreturn'. */
|
|
env = cpu_single_env;
|
|
}
|
|
} /* for(;;) */
|
|
|
|
|
|
#if defined(TARGET_I386)
|
|
/* restore flags in standard format */
|
|
env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
|
|
| (DF & DF_MASK);
|
|
#elif defined(TARGET_ARM)
|
|
/* XXX: Save/restore host fpu exception state?. */
|
|
#elif defined(TARGET_UNICORE32)
|
|
#elif defined(TARGET_SPARC)
|
|
#elif defined(TARGET_PPC)
|
|
#elif defined(TARGET_LM32)
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_CRIS)
|
|
#elif defined(TARGET_S390X)
|
|
#elif defined(TARGET_XTENSA)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
|
|
/* fail safe : never use cpu_single_env outside cpu_exec() */
|
|
cpu_single_env = NULL;
|
|
return ret;
|
|
}
|