mirror of
https://github.com/qemu/qemu.git
synced 2024-11-24 11:23:43 +08:00
51f4d916b5
Use cpuinfo_init() during init_accel(), and the variable cpuinfo during test_buffer_is_zero_next_accel(). Adjust the logic that cycles through the set of accelerators for testing. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
291 lines
8.5 KiB
C
291 lines
8.5 KiB
C
/*
|
|
* Simple C functions to supplement the C library
|
|
*
|
|
* Copyright (c) 2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/bswap.h"
|
|
#include "host/cpuinfo.h"
|
|
|
|
static bool
|
|
buffer_zero_int(const void *buf, size_t len)
|
|
{
|
|
if (unlikely(len < 8)) {
|
|
/* For a very small buffer, simply accumulate all the bytes. */
|
|
const unsigned char *p = buf;
|
|
const unsigned char *e = buf + len;
|
|
unsigned char t = 0;
|
|
|
|
do {
|
|
t |= *p++;
|
|
} while (p < e);
|
|
|
|
return t == 0;
|
|
} else {
|
|
/* Otherwise, use the unaligned memory access functions to
|
|
handle the beginning and end of the buffer, with a couple
|
|
of loops handling the middle aligned section. */
|
|
uint64_t t = ldq_he_p(buf);
|
|
const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
|
|
const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
|
|
|
|
for (; p + 8 <= e; p += 8) {
|
|
__builtin_prefetch(p + 8);
|
|
if (t) {
|
|
return false;
|
|
}
|
|
t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
|
|
}
|
|
while (p < e) {
|
|
t |= *p++;
|
|
}
|
|
t |= ldq_he_p(buf + len - 8);
|
|
|
|
return t == 0;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
|
|
#include <immintrin.h>
|
|
|
|
/* Note that each of these vectorized functions require len >= 64. */
|
|
|
|
static bool __attribute__((target("sse2")))
|
|
buffer_zero_sse2(const void *buf, size_t len)
|
|
{
|
|
__m128i t = _mm_loadu_si128(buf);
|
|
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
|
|
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
|
|
__m128i zero = _mm_setzero_si128();
|
|
|
|
/* Loop over 16-byte aligned blocks of 64. */
|
|
while (likely(p <= e)) {
|
|
__builtin_prefetch(p);
|
|
t = _mm_cmpeq_epi8(t, zero);
|
|
if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
|
|
return false;
|
|
}
|
|
t = p[-4] | p[-3] | p[-2] | p[-1];
|
|
p += 4;
|
|
}
|
|
|
|
/* Finish the aligned tail. */
|
|
t |= e[-3];
|
|
t |= e[-2];
|
|
t |= e[-1];
|
|
|
|
/* Finish the unaligned tail. */
|
|
t |= _mm_loadu_si128(buf + len - 16);
|
|
|
|
return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
|
|
}
|
|
|
|
#ifdef CONFIG_AVX2_OPT
|
|
static bool __attribute__((target("sse4")))
|
|
buffer_zero_sse4(const void *buf, size_t len)
|
|
{
|
|
__m128i t = _mm_loadu_si128(buf);
|
|
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
|
|
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
|
|
|
|
/* Loop over 16-byte aligned blocks of 64. */
|
|
while (likely(p <= e)) {
|
|
__builtin_prefetch(p);
|
|
if (unlikely(!_mm_testz_si128(t, t))) {
|
|
return false;
|
|
}
|
|
t = p[-4] | p[-3] | p[-2] | p[-1];
|
|
p += 4;
|
|
}
|
|
|
|
/* Finish the aligned tail. */
|
|
t |= e[-3];
|
|
t |= e[-2];
|
|
t |= e[-1];
|
|
|
|
/* Finish the unaligned tail. */
|
|
t |= _mm_loadu_si128(buf + len - 16);
|
|
|
|
return _mm_testz_si128(t, t);
|
|
}
|
|
|
|
static bool __attribute__((target("avx2")))
|
|
buffer_zero_avx2(const void *buf, size_t len)
|
|
{
|
|
/* Begin with an unaligned head of 32 bytes. */
|
|
__m256i t = _mm256_loadu_si256(buf);
|
|
__m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
|
|
__m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
|
|
|
|
/* Loop over 32-byte aligned blocks of 128. */
|
|
while (p <= e) {
|
|
__builtin_prefetch(p);
|
|
if (unlikely(!_mm256_testz_si256(t, t))) {
|
|
return false;
|
|
}
|
|
t = p[-4] | p[-3] | p[-2] | p[-1];
|
|
p += 4;
|
|
} ;
|
|
|
|
/* Finish the last block of 128 unaligned. */
|
|
t |= _mm256_loadu_si256(buf + len - 4 * 32);
|
|
t |= _mm256_loadu_si256(buf + len - 3 * 32);
|
|
t |= _mm256_loadu_si256(buf + len - 2 * 32);
|
|
t |= _mm256_loadu_si256(buf + len - 1 * 32);
|
|
|
|
return _mm256_testz_si256(t, t);
|
|
}
|
|
#endif /* CONFIG_AVX2_OPT */
|
|
|
|
#ifdef CONFIG_AVX512F_OPT
|
|
static bool __attribute__((target("avx512f")))
|
|
buffer_zero_avx512(const void *buf, size_t len)
|
|
{
|
|
/* Begin with an unaligned head of 64 bytes. */
|
|
__m512i t = _mm512_loadu_si512(buf);
|
|
__m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
|
|
__m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
|
|
|
|
/* Loop over 64-byte aligned blocks of 256. */
|
|
while (p <= e) {
|
|
__builtin_prefetch(p);
|
|
if (unlikely(_mm512_test_epi64_mask(t, t))) {
|
|
return false;
|
|
}
|
|
t = p[-4] | p[-3] | p[-2] | p[-1];
|
|
p += 4;
|
|
}
|
|
|
|
t |= _mm512_loadu_si512(buf + len - 4 * 64);
|
|
t |= _mm512_loadu_si512(buf + len - 3 * 64);
|
|
t |= _mm512_loadu_si512(buf + len - 2 * 64);
|
|
t |= _mm512_loadu_si512(buf + len - 1 * 64);
|
|
|
|
return !_mm512_test_epi64_mask(t, t);
|
|
|
|
}
|
|
#endif /* CONFIG_AVX512F_OPT */
|
|
|
|
/*
|
|
* Make sure that these variables are appropriately initialized when
|
|
* SSE2 is enabled on the compiler command-line, but the compiler is
|
|
* too old to support CONFIG_AVX2_OPT.
|
|
*/
|
|
#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
|
|
# define INIT_USED 0
|
|
# define INIT_LENGTH 0
|
|
# define INIT_ACCEL buffer_zero_int
|
|
#else
|
|
# ifndef __SSE2__
|
|
# error "ISA selection confusion"
|
|
# endif
|
|
# define INIT_USED CPUINFO_SSE2
|
|
# define INIT_LENGTH 64
|
|
# define INIT_ACCEL buffer_zero_sse2
|
|
#endif
|
|
|
|
static unsigned used_accel = INIT_USED;
|
|
static unsigned length_to_accel = INIT_LENGTH;
|
|
static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
|
|
|
|
static unsigned __attribute__((noinline))
|
|
select_accel_cpuinfo(unsigned info)
|
|
{
|
|
/* Array is sorted in order of algorithm preference. */
|
|
static const struct {
|
|
unsigned bit;
|
|
unsigned len;
|
|
bool (*fn)(const void *, size_t);
|
|
} all[] = {
|
|
#ifdef CONFIG_AVX512F_OPT
|
|
{ CPUINFO_AVX512F, 256, buffer_zero_avx512 },
|
|
#endif
|
|
#ifdef CONFIG_AVX2_OPT
|
|
{ CPUINFO_AVX2, 128, buffer_zero_avx2 },
|
|
{ CPUINFO_SSE4, 64, buffer_zero_sse4 },
|
|
#endif
|
|
{ CPUINFO_SSE2, 64, buffer_zero_sse2 },
|
|
{ CPUINFO_ALWAYS, 0, buffer_zero_int },
|
|
};
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) {
|
|
if (info & all[i].bit) {
|
|
length_to_accel = all[i].len;
|
|
buffer_accel = all[i].fn;
|
|
return all[i].bit;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
|
|
static void __attribute__((constructor)) init_accel(void)
|
|
{
|
|
used_accel = select_accel_cpuinfo(cpuinfo_init());
|
|
}
|
|
#endif /* CONFIG_AVX2_OPT */
|
|
|
|
bool test_buffer_is_zero_next_accel(void)
|
|
{
|
|
/*
|
|
* Accumulate the accelerators that we've already tested, and
|
|
* remove them from the set to test this round. We'll get back
|
|
* a zero from select_accel_cpuinfo when there are no more.
|
|
*/
|
|
unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel);
|
|
used_accel |= used;
|
|
return used;
|
|
}
|
|
|
|
static bool select_accel_fn(const void *buf, size_t len)
|
|
{
|
|
if (likely(len >= length_to_accel)) {
|
|
return buffer_accel(buf, len);
|
|
}
|
|
return buffer_zero_int(buf, len);
|
|
}
|
|
|
|
#else
|
|
#define select_accel_fn buffer_zero_int
|
|
bool test_buffer_is_zero_next_accel(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Checks if a buffer is all zeroes
|
|
*/
|
|
bool buffer_is_zero(const void *buf, size_t len)
|
|
{
|
|
if (unlikely(len == 0)) {
|
|
return true;
|
|
}
|
|
|
|
/* Fetch the beginning of the buffer while we select the accelerator. */
|
|
__builtin_prefetch(buf);
|
|
|
|
/* Use an optimized zero check if possible. Note that this also
|
|
includes a check for an unrolled loop over 64-bit integers. */
|
|
return select_accel_fn(buf, len);
|
|
}
|