qemu/hw/pc.c
Markus Armbruster 09aaa1602f qdev: convert watchdogs
-watchdog NAME is now equivalent to -device NAME, except it treats
option argument '?' specially, and supports only one watchdog.

A side effect is that a device created with -watchdog may now receive
a different PCI address.

i6300esb is now available on any machine with a PCI bus, not just PCs.
ib700 is still PC only, but that could be changed easily.

The only remaining use of struct WatchdogTimerModel and
watchdog_add_model() is supporting '-watchdog ?'.  Should be replaced
by searching device_info_list for watchdog devices when we can
identify them there.

Also fixes ib700 not to use vm_clock before it is initialized: in
wdt_ib700_init(), called from register_watchdogs(), which runs before
init_timers().  The bug made ib700_write_enable_reg() crash in
qemu_del_timer().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-08-27 20:35:24 -05:00

1524 lines
44 KiB
C

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pc.h"
#include "fdc.h"
#include "pci.h"
#include "block.h"
#include "sysemu.h"
#include "audio/audio.h"
#include "net.h"
#include "smbus.h"
#include "boards.h"
#include "monitor.h"
#include "fw_cfg.h"
#include "hpet_emul.h"
#include "watchdog.h"
#include "smbios.h"
/* output Bochs bios info messages */
//#define DEBUG_BIOS
/* Show multiboot debug output */
//#define DEBUG_MULTIBOOT
#define BIOS_FILENAME "bios.bin"
#define VGABIOS_FILENAME "vgabios.bin"
#define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin"
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
#define ACPI_DATA_SIZE 0x10000
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
#define MAX_IDE_BUS 2
static fdctrl_t *floppy_controller;
static RTCState *rtc_state;
static PITState *pit;
static PCIDevice *i440fx_state;
typedef struct rom_reset_data {
uint8_t *data;
target_phys_addr_t addr;
unsigned size;
} RomResetData;
static void option_rom_reset(void *_rrd)
{
RomResetData *rrd = _rrd;
cpu_physical_memory_write_rom(rrd->addr, rrd->data, rrd->size);
}
static void option_rom_setup_reset(target_phys_addr_t addr, unsigned size)
{
RomResetData *rrd = qemu_malloc(sizeof *rrd);
rrd->data = qemu_malloc(size);
cpu_physical_memory_read(addr, rrd->data, size);
rrd->addr = addr;
rrd->size = size;
qemu_register_reset(option_rom_reset, rrd);
}
typedef struct isa_irq_state {
qemu_irq *i8259;
qemu_irq *ioapic;
} IsaIrqState;
static void isa_irq_handler(void *opaque, int n, int level)
{
IsaIrqState *isa = (IsaIrqState *)opaque;
if (n < 16) {
qemu_set_irq(isa->i8259[n], level);
}
qemu_set_irq(isa->ioapic[n], level);
};
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
{
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
{
qemu_irq_lower(ferr_irq);
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* SMM support */
void cpu_smm_update(CPUState *env)
{
if (i440fx_state && env == first_cpu)
i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUState *env)
{
int intno;
intno = apic_get_interrupt(env);
if (intno >= 0) {
/* set irq request if a PIC irq is still pending */
/* XXX: improve that */
pic_update_irq(isa_pic);
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(env))
return -1;
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *env = first_cpu;
if (env->apic_state) {
while (env) {
if (apic_accept_pic_intr(env))
apic_deliver_pic_intr(env, level);
env = env->next_cpu;
}
} else {
if (level)
cpu_interrupt(env, CPU_INTERRUPT_HARD);
else
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(int fd0)
{
int val;
switch (fd0) {
case 0:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case 1:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case 2:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
{
RTCState *s = rtc_state;
int cylinders, heads, sectors;
bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
/* copy/pasted from cmos_init, should be made a general function
and used there as well */
static int pc_boot_set(void *opaque, const char *boot_device)
{
Monitor *mon = cur_mon;
#define PC_MAX_BOOT_DEVICES 3
RTCState *s = (RTCState *)opaque;
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
monitor_printf(mon, "Too many boot devices for PC\n");
return(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
boot_device[i]);
return(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4));
return(0);
}
/* hd_table must contain 4 block drivers */
static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device, BlockDriverState **hd_table)
{
RTCState *s = rtc_state;
int nbds, bds[3] = { 0, };
int val;
int fd0, fd1, nb;
int i;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
val = 640; /* base memory in K */
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
val = (ram_size / 1024) - 1024;
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
if (above_4g_mem_size) {
rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
}
if (ram_size > (16 * 1024 * 1024))
val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
else
val = 0;
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
/* set boot devices, and disable floppy signature check if requested */
#define PC_MAX_BOOT_DEVICES 3
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
fprintf(stderr, "Too many boot devices for PC\n");
exit(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
fprintf(stderr, "Invalid boot device for PC: '%c'\n",
boot_device[i]);
exit(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
/* floppy type */
fd0 = fdctrl_get_drive_type(floppy_controller, 0);
fd1 = fdctrl_get_drive_type(floppy_controller, 1);
val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd0 < 3)
nb++;
if (fd1 < 3)
nb++;
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
if (hd_table[0])
cmos_init_hd(0x19, 0x1b, hd_table[0]);
if (hd_table[1])
cmos_init_hd(0x1a, 0x24, hd_table[1]);
val = 0;
for (i = 0; i < 4; i++) {
if (hd_table[i]) {
int cylinders, heads, sectors, translation;
/* NOTE: bdrv_get_geometry_hint() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
translation = bdrv_get_translation_hint(hd_table[i]);
if (translation == BIOS_ATA_TRANSLATION_AUTO) {
bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, &sectors);
if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
/* No translation. */
translation = 0;
} else {
/* LBA translation. */
translation = 1;
}
} else {
translation--;
}
val |= translation << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
}
void ioport_set_a20(int enable)
{
/* XXX: send to all CPUs ? */
cpu_x86_set_a20(first_cpu, enable);
}
int ioport_get_a20(void)
{
return ((first_cpu->a20_mask >> 20) & 1);
}
static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
{
ioport_set_a20((val >> 1) & 1);
/* XXX: bit 0 is fast reset */
}
static uint32_t ioport92_read(void *opaque, uint32_t addr)
{
return ioport_get_a20() << 1;
}
/***********************************************************/
/* Bochs BIOS debug ports */
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
{
static const char shutdown_str[8] = "Shutdown";
static int shutdown_index = 0;
switch(addr) {
/* Bochs BIOS messages */
case 0x400:
case 0x401:
fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
exit(1);
case 0x402:
case 0x403:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
case 0x8900:
/* same as Bochs power off */
if (val == shutdown_str[shutdown_index]) {
shutdown_index++;
if (shutdown_index == 8) {
shutdown_index = 0;
qemu_system_shutdown_request();
}
} else {
shutdown_index = 0;
}
break;
/* LGPL'ed VGA BIOS messages */
case 0x501:
case 0x502:
fprintf(stderr, "VGA BIOS panic, line %d\n", val);
exit(1);
case 0x500:
case 0x503:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
}
}
extern uint64_t node_cpumask[MAX_NODES];
static void *bochs_bios_init(void)
{
void *fw_cfg;
uint8_t *smbios_table;
size_t smbios_len;
uint64_t *numa_fw_cfg;
int i, j;
register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
acpi_tables_len);
fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1);
smbios_table = smbios_get_table(&smbios_len);
if (smbios_table)
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_table, smbios_len);
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < nb_numa_nodes; j++) {
if (node_cpumask[j] & (1 << i)) {
numa_fw_cfg[i + 1] = cpu_to_le64(j);
break;
}
}
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
(1 + smp_cpus + nb_numa_nodes) * 8);
return fw_cfg;
}
/* Generate an initial boot sector which sets state and jump to
a specified vector */
static void generate_bootsect(target_phys_addr_t option_rom,
uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
{
uint8_t rom[512], *p, *reloc;
uint8_t sum;
int i;
memset(rom, 0, sizeof(rom));
p = rom;
/* Make sure we have an option rom signature */
*p++ = 0x55;
*p++ = 0xaa;
/* ROM size in sectors*/
*p++ = 1;
/* Hook int19 */
*p++ = 0x50; /* push ax */
*p++ = 0x1e; /* push ds */
*p++ = 0x31; *p++ = 0xc0; /* xor ax, ax */
*p++ = 0x8e; *p++ = 0xd8; /* mov ax, ds */
*p++ = 0xc7; *p++ = 0x06; /* movvw _start,0x64 */
*p++ = 0x64; *p++ = 0x00;
reloc = p;
*p++ = 0x00; *p++ = 0x00;
*p++ = 0x8c; *p++ = 0x0e; /* mov cs,0x66 */
*p++ = 0x66; *p++ = 0x00;
*p++ = 0x1f; /* pop ds */
*p++ = 0x58; /* pop ax */
*p++ = 0xcb; /* lret */
/* Actual code */
*reloc = (p - rom);
*p++ = 0xfa; /* CLI */
*p++ = 0xfc; /* CLD */
for (i = 0; i < 6; i++) {
if (i == 1) /* Skip CS */
continue;
*p++ = 0xb8; /* MOV AX,imm16 */
*p++ = segs[i];
*p++ = segs[i] >> 8;
*p++ = 0x8e; /* MOV <seg>,AX */
*p++ = 0xc0 + (i << 3);
}
for (i = 0; i < 8; i++) {
*p++ = 0x66; /* 32-bit operand size */
*p++ = 0xb8 + i; /* MOV <reg>,imm32 */
*p++ = gpr[i];
*p++ = gpr[i] >> 8;
*p++ = gpr[i] >> 16;
*p++ = gpr[i] >> 24;
}
*p++ = 0xea; /* JMP FAR */
*p++ = ip; /* IP */
*p++ = ip >> 8;
*p++ = segs[1]; /* CS */
*p++ = segs[1] >> 8;
/* sign rom */
sum = 0;
for (i = 0; i < (sizeof(rom) - 1); i++)
sum += rom[i];
rom[sizeof(rom) - 1] = -sum;
cpu_physical_memory_write_rom(option_rom, rom, sizeof(rom));
option_rom_setup_reset(option_rom, sizeof (rom));
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
#define MULTIBOOT_STRUCT_ADDR 0x9000
#if MULTIBOOT_STRUCT_ADDR > 0xf0000
#error multiboot struct needs to fit in 16 bit real mode
#endif
static int load_multiboot(void *fw_cfg,
FILE *f,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
uint8_t *header)
{
int i, t, is_multiboot = 0;
uint32_t flags = 0;
uint32_t mh_entry_addr;
uint32_t mh_load_addr;
uint32_t mb_kernel_size;
uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
uint32_t mb_cmdline = mb_bootinfo + 0x200;
uint32_t mb_mod_end;
/* Ok, let's see if it is a multiboot image.
The header is 12x32bit long, so the latest entry may be 8192 - 48. */
for (i = 0; i < (8192 - 48); i += 4) {
if (ldl_p(header+i) == 0x1BADB002) {
uint32_t checksum = ldl_p(header+i+8);
flags = ldl_p(header+i+4);
checksum += flags;
checksum += (uint32_t)0x1BADB002;
if (!checksum) {
is_multiboot = 1;
break;
}
}
}
if (!is_multiboot)
return 0; /* no multiboot */
#ifdef DEBUG_MULTIBOOT
fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
#endif
if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
}
if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
uint64_t elf_entry;
int kernel_size;
fclose(f);
kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
if (kernel_size < 0) {
fprintf(stderr, "Error while loading elf kernel\n");
exit(1);
}
mh_load_addr = mh_entry_addr = elf_entry;
mb_kernel_size = kernel_size;
#ifdef DEBUG_MULTIBOOT
fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
mb_kernel_size, (size_t)mh_entry_addr);
#endif
} else {
/* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
uint32_t mh_header_addr = ldl_p(header+i+12);
mh_load_addr = ldl_p(header+i+16);
#ifdef DEBUG_MULTIBOOT
uint32_t mh_load_end_addr = ldl_p(header+i+20);
uint32_t mh_bss_end_addr = ldl_p(header+i+24);
#endif
uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
mh_entry_addr = ldl_p(header+i+28);
mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
/* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
uint32_t mh_mode_type = ldl_p(header+i+32);
uint32_t mh_width = ldl_p(header+i+36);
uint32_t mh_height = ldl_p(header+i+40);
uint32_t mh_depth = ldl_p(header+i+44); */
#ifdef DEBUG_MULTIBOOT
fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
#endif
fseek(f, mb_kernel_text_offset, SEEK_SET);
#ifdef DEBUG_MULTIBOOT
fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
mb_kernel_size, mh_load_addr);
#endif
if (!fread_targphys_ok(mh_load_addr, mb_kernel_size, f)) {
fprintf(stderr, "qemu: read error on multiboot kernel '%s' (%#x)\n",
kernel_filename, mb_kernel_size);
exit(1);
}
fclose(f);
}
/* blob size is only the kernel for now */
mb_mod_end = mh_load_addr + mb_kernel_size;
/* load modules */
stl_phys(mb_bootinfo + 20, 0x0); /* mods_count */
if (initrd_filename) {
uint32_t mb_mod_info = mb_bootinfo + 0x100;
uint32_t mb_mod_cmdline = mb_bootinfo + 0x300;
uint32_t mb_mod_start = mh_load_addr;
uint32_t mb_mod_length = mb_kernel_size;
char *next_initrd;
char *next_space;
int mb_mod_count = 0;
do {
next_initrd = strchr(initrd_filename, ',');
if (next_initrd)
*next_initrd = '\0';
/* if a space comes after the module filename, treat everything
after that as parameters */
cpu_physical_memory_write(mb_mod_cmdline, (uint8_t*)initrd_filename,
strlen(initrd_filename) + 1);
stl_phys(mb_mod_info + 8, mb_mod_cmdline); /* string */
mb_mod_cmdline += strlen(initrd_filename) + 1;
if ((next_space = strchr(initrd_filename, ' ')))
*next_space = '\0';
#ifdef DEBUG_MULTIBOOT
printf("multiboot loading module: %s\n", initrd_filename);
#endif
f = fopen(initrd_filename, "rb");
if (f) {
mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
& (TARGET_PAGE_MASK);
mb_mod_length = get_file_size(f);
mb_mod_end = mb_mod_start + mb_mod_length;
if (!fread_targphys_ok(mb_mod_start, mb_mod_length, f)) {
fprintf(stderr, "qemu: read error on multiboot module '%s' (%#x)\n",
initrd_filename, mb_mod_length);
exit(1);
}
mb_mod_count++;
stl_phys(mb_mod_info + 0, mb_mod_start);
stl_phys(mb_mod_info + 4, mb_mod_start + mb_mod_length);
#ifdef DEBUG_MULTIBOOT
printf("mod_start: %#x\nmod_end: %#x\n", mb_mod_start,
mb_mod_start + mb_mod_length);
#endif
stl_phys(mb_mod_info + 12, 0x0); /* reserved */
}
initrd_filename = next_initrd+1;
mb_mod_info += 16;
} while (next_initrd);
stl_phys(mb_bootinfo + 20, mb_mod_count); /* mods_count */
stl_phys(mb_bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
}
/* Make sure we're getting kernel + modules back after reset */
option_rom_setup_reset(mh_load_addr, mb_mod_end - mh_load_addr);
/* Commandline support */
stl_phys(mb_bootinfo + 16, mb_cmdline);
t = strlen(kernel_filename);
cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_filename, t);
mb_cmdline += t;
stb_phys(mb_cmdline++, ' ');
t = strlen(kernel_cmdline) + 1;
cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_cmdline, t);
/* the kernel is where we want it to be now */
#define MULTIBOOT_FLAGS_MEMORY (1 << 0)
#define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
#define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
#define MULTIBOOT_FLAGS_MODULES (1 << 3)
#define MULTIBOOT_FLAGS_MMAP (1 << 6)
stl_phys(mb_bootinfo, MULTIBOOT_FLAGS_MEMORY
| MULTIBOOT_FLAGS_BOOT_DEVICE
| MULTIBOOT_FLAGS_CMDLINE
| MULTIBOOT_FLAGS_MODULES
| MULTIBOOT_FLAGS_MMAP);
stl_phys(mb_bootinfo + 4, 640); /* mem_lower */
stl_phys(mb_bootinfo + 8, ram_size / 1024); /* mem_upper */
stl_phys(mb_bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
stl_phys(mb_bootinfo + 48, mmap_addr); /* mmap_addr */
#ifdef DEBUG_MULTIBOOT
fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
#endif
/* Pass variables to option rom */
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_entry_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, mmap_addr);
/* Make sure we're getting the config space back after reset */
option_rom_setup_reset(mb_bootinfo, 0x500);
option_rom[nb_option_roms] = "multiboot.bin";
nb_option_roms++;
return 1; /* yes, we are multiboot */
}
static void load_linux(void *fw_cfg,
target_phys_addr_t option_rom,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
target_phys_addr_t max_ram_size)
{
uint16_t protocol;
uint32_t gpr[8];
uint16_t seg[6];
uint16_t real_seg;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192];
target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f, *fi;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448)
protocol = lduw_p(header+0x206);
else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename,
initrd_filename, kernel_cmdline, header))
return;
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203)
initrd_max = ldl_p(header+0x22c);
else
initrd_max = 0x37ffffff;
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
/* kernel command line */
pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for Qemu; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200)
header[0x210] = 0xB0;
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
fi = fopen(initrd_filename, "rb");
if (!fi) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
initrd_size = get_file_size(fi);
initrd_addr = (initrd_max-initrd_size) & ~4095;
if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) {
fprintf(stderr, "qemu: read error on initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
fclose(fi);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* store the finalized header and load the rest of the kernel */
cpu_physical_memory_write(real_addr, header, ARRAY_SIZE(header));
setup_size = header[0x1f1];
if (setup_size == 0)
setup_size = 4;
setup_size = (setup_size+1)*512;
/* Size of protected-mode code */
kernel_size -= (setup_size > ARRAY_SIZE(header)) ? setup_size : ARRAY_SIZE(header);
/* In case we have read too much already, copy that over */
if (setup_size < ARRAY_SIZE(header)) {
cpu_physical_memory_write(prot_addr, header + setup_size, ARRAY_SIZE(header) - setup_size);
prot_addr += (ARRAY_SIZE(header) - setup_size);
setup_size = ARRAY_SIZE(header);
}
if (!fread_targphys_ok(real_addr + ARRAY_SIZE(header),
setup_size - ARRAY_SIZE(header), f) ||
!fread_targphys_ok(prot_addr, kernel_size, f)) {
fprintf(stderr, "qemu: read error on kernel '%s'\n",
kernel_filename);
exit(1);
}
fclose(f);
/* generate bootsector to set up the initial register state */
real_seg = real_addr >> 4;
seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
seg[1] = real_seg+0x20; /* CS */
memset(gpr, 0, sizeof gpr);
gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */
option_rom_setup_reset(real_addr, setup_size);
option_rom_setup_reset(prot_addr, kernel_size);
option_rom_setup_reset(cmdline_addr, cmdline_size);
if (initrd_filename)
option_rom_setup_reset(initrd_addr, initrd_size);
generate_bootsect(option_rom, gpr, seg, 0);
}
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
#define NE2000_NB_MAX 6
static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
#ifdef HAS_AUDIO
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
{
struct soundhw *c;
for (c = soundhw; c->name; ++c) {
if (c->enabled) {
if (c->isa) {
c->init.init_isa(pic);
} else {
if (pci_bus) {
c->init.init_pci(pci_bus);
}
}
}
}
}
#endif
static void pc_init_ne2k_isa(NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(ne2000_io[nb_ne2k],
isa_reserve_irq(ne2000_irq[nb_ne2k]), nd);
nb_ne2k++;
}
static int load_option_rom(const char *oprom, target_phys_addr_t start,
target_phys_addr_t end)
{
int size;
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, oprom);
if (filename) {
size = get_image_size(filename);
if (size > 0 && start + size > end) {
fprintf(stderr, "Not enough space to load option rom '%s'\n",
oprom);
exit(1);
}
size = load_image_targphys(filename, start, end - start);
qemu_free(filename);
} else {
size = -1;
}
if (size < 0) {
fprintf(stderr, "Could not load option rom '%s'\n", oprom);
exit(1);
}
/* Round up optiom rom size to the next 2k boundary */
size = (size + 2047) & ~2047;
option_rom_setup_reset(start, size);
return size;
}
int cpu_is_bsp(CPUState *env)
{
return env->cpuid_apic_id == 0;
}
static CPUState *pc_new_cpu(const char *cpu_model)
{
CPUState *env;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find x86 CPU definition\n");
exit(1);
}
if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
env->cpuid_apic_id = env->cpu_index;
/* APIC reset callback resets cpu */
apic_init(env);
} else {
qemu_register_reset((QEMUResetHandler*)cpu_reset, env);
}
return env;
}
/* PC hardware initialisation */
static void pc_init1(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model,
int pci_enabled)
{
char *filename;
int ret, linux_boot, i;
ram_addr_t ram_addr, bios_offset, option_rom_offset;
ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
int bios_size, isa_bios_size, oprom_area_size;
PCIBus *pci_bus;
PCIDevice *pci_dev;
ISADevice *isa_dev;
int piix3_devfn = -1;
CPUState *env;
qemu_irq *cpu_irq;
qemu_irq *isa_irq;
qemu_irq *i8259;
IsaIrqState *isa_irq_state;
DriveInfo *dinfo;
BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
BlockDriverState *fd[MAX_FD];
int using_vga = cirrus_vga_enabled || std_vga_enabled || vmsvga_enabled;
void *fw_cfg;
if (ram_size >= 0xe0000000 ) {
above_4g_mem_size = ram_size - 0xe0000000;
below_4g_mem_size = 0xe0000000;
} else {
below_4g_mem_size = ram_size;
}
linux_boot = (kernel_filename != NULL);
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
}
for (i = 0; i < smp_cpus; i++) {
env = pc_new_cpu(cpu_model);
}
vmport_init();
/* allocate RAM */
ram_addr = qemu_ram_alloc(0xa0000);
cpu_register_physical_memory(0, 0xa0000, ram_addr);
/* Allocate, even though we won't register, so we don't break the
* phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
* and some bios areas, which will be registered later
*/
ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
cpu_register_physical_memory(0x100000,
below_4g_mem_size - 0x100000,
ram_addr);
/* above 4giga memory allocation */
if (above_4g_mem_size > 0) {
#if TARGET_PHYS_ADDR_BITS == 32
hw_error("To much RAM for 32-bit physical address");
#else
ram_addr = qemu_ram_alloc(above_4g_mem_size);
cpu_register_physical_memory(0x100000000ULL,
above_4g_mem_size,
ram_addr);
#endif
}
/* BIOS load */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios_offset = qemu_ram_alloc(bios_size);
ret = load_image(filename, qemu_get_ram_ptr(bios_offset));
if (ret != bios_size) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
if (filename) {
qemu_free(filename);
}
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = bios_size;
if (isa_bios_size > (128 * 1024))
isa_bios_size = 128 * 1024;
cpu_register_physical_memory(0x100000 - isa_bios_size,
isa_bios_size,
(bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
option_rom_offset = qemu_ram_alloc(0x20000);
oprom_area_size = 0;
cpu_register_physical_memory(0xc0000, 0x20000, option_rom_offset);
if (using_vga) {
const char *vgabios_filename;
/* VGA BIOS load */
if (cirrus_vga_enabled) {
vgabios_filename = VGABIOS_CIRRUS_FILENAME;
} else {
vgabios_filename = VGABIOS_FILENAME;
}
oprom_area_size = load_option_rom(vgabios_filename, 0xc0000, 0xe0000);
}
/* Although video roms can grow larger than 0x8000, the area between
* 0xc0000 - 0xc8000 is reserved for them. It means we won't be looking
* for any other kind of option rom inside this area */
if (oprom_area_size < 0x8000)
oprom_area_size = 0x8000;
/* map all the bios at the top of memory */
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
fw_cfg = bochs_bios_init();
if (linux_boot) {
load_linux(fw_cfg, 0xc0000 + oprom_area_size,
kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
oprom_area_size += 2048;
}
for (i = 0; i < nb_option_roms; i++) {
oprom_area_size += load_option_rom(option_rom[i], 0xc0000 + oprom_area_size,
0xe0000);
}
for (i = 0; i < nb_nics; i++) {
char nic_oprom[1024];
const char *model = nd_table[i].model;
if (!nd_table[i].bootable)
continue;
if (model == NULL)
model = "e1000";
snprintf(nic_oprom, sizeof(nic_oprom), "pxe-%s.bin", model);
oprom_area_size += load_option_rom(nic_oprom, 0xc0000 + oprom_area_size,
0xe0000);
}
cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
i8259 = i8259_init(cpu_irq[0]);
isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
isa_irq_state->i8259 = i8259;
isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);
if (pci_enabled) {
pci_bus = i440fx_init(&i440fx_state, isa_irq);
piix3_devfn = piix3_init(pci_bus, -1);
} else {
pci_bus = NULL;
isa_bus_new(NULL);
}
isa_bus_irqs(isa_irq);
ferr_irq = isa_reserve_irq(13);
/* init basic PC hardware */
register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
if (cirrus_vga_enabled) {
if (pci_enabled) {
pci_cirrus_vga_init(pci_bus);
} else {
isa_cirrus_vga_init();
}
} else if (vmsvga_enabled) {
if (pci_enabled)
pci_vmsvga_init(pci_bus);
else
fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
} else if (std_vga_enabled) {
if (pci_enabled) {
pci_vga_init(pci_bus, 0, 0);
} else {
isa_vga_init();
}
}
rtc_state = rtc_init(0x70, isa_reserve_irq(8), 2000);
qemu_register_boot_set(pc_boot_set, rtc_state);
register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
if (pci_enabled) {
isa_irq_state->ioapic = ioapic_init();
}
pit = pit_init(0x40, isa_reserve_irq(0));
pcspk_init(pit);
if (!no_hpet) {
hpet_init(isa_irq);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_init(serial_io[i], isa_reserve_irq(serial_irq[i]), 115200,
serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(parallel_io[i], isa_reserve_irq(parallel_irq[i]),
parallel_hds[i]);
}
}
for(i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
pc_init_ne2k_isa(nd);
else
pci_nic_init(nd, "e1000", NULL);
}
piix4_acpi_system_hot_add_init();
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
dinfo = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
hd[i] = dinfo ? dinfo->bdrv : NULL;
}
if (pci_enabled) {
pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1, isa_irq);
} else {
for(i = 0; i < MAX_IDE_BUS; i++) {
isa_ide_init(ide_iobase[i], ide_iobase2[i],
isa_reserve_irq(ide_irq[i]),
hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
}
}
isa_dev = isa_create_simple("i8042", 0x60, 0x64, 1, 12);
DMA_init(0);
#ifdef HAS_AUDIO
audio_init(pci_enabled ? pci_bus : NULL, isa_irq);
#endif
for(i = 0; i < MAX_FD; i++) {
dinfo = drive_get(IF_FLOPPY, 0, i);
fd[i] = dinfo ? dinfo->bdrv : NULL;
}
floppy_controller = fdctrl_init_isa(6, 2, 0x3f0, fd);
cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
if (pci_enabled && usb_enabled) {
usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
}
if (pci_enabled && acpi_enabled) {
uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
i2c_bus *smbus;
/* TODO: Populate SPD eeprom data. */
smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
isa_reserve_irq(9));
for (i = 0; i < 8; i++) {
DeviceState *eeprom;
eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
qdev_prop_set_uint32(eeprom, "address", 0x50 + i);
qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
qdev_init(eeprom);
}
}
if (i440fx_state) {
i440fx_init_memory_mappings(i440fx_state);
}
if (pci_enabled) {
int max_bus;
int bus;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
pci_create_simple(pci_bus, -1, "lsi53c895a");
}
}
/* Add virtio balloon device */
if (pci_enabled && virtio_balloon) {
pci_dev = pci_create("virtio-balloon-pci", virtio_balloon_devaddr);
qdev_init(&pci_dev->qdev);
}
/* Add virtio console devices */
if (pci_enabled) {
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
if (virtcon_hds[i]) {
pci_create_simple(pci_bus, -1, "virtio-console-pci");
}
}
}
}
static void pc_init_pci(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
pc_init1(ram_size, boot_device,
kernel_filename, kernel_cmdline,
initrd_filename, cpu_model, 1);
}
static void pc_init_isa(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
pc_init1(ram_size, boot_device,
kernel_filename, kernel_cmdline,
initrd_filename, cpu_model, 0);
}
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
BIOS will read it and start S3 resume at POST Entry */
void cmos_set_s3_resume(void)
{
if (rtc_state)
rtc_set_memory(rtc_state, 0xF, 0xFE);
}
static QEMUMachine pc_machine = {
.name = "pc-0.11",
.alias = "pc",
.desc = "Standard PC",
.init = pc_init_pci,
.max_cpus = 255,
.is_default = 1,
};
static QEMUMachine pc_machine_v0_10 = {
.name = "pc-0.10",
.desc = "Standard PC, qemu 0.10",
.init = pc_init_pci,
.max_cpus = 255,
.compat_props = (CompatProperty[]) {
{
.driver = "virtio-blk-pci",
.property = "class",
.value = stringify(PCI_CLASS_STORAGE_OTHER),
},{
.driver = "virtio-console-pci",
.property = "class",
.value = stringify(PCI_CLASS_DISPLAY_OTHER),
},{
.driver = "virtio-net-pci",
.property = "vectors",
.value = stringify(0),
},{
.driver = "virtio-blk-pci",
.property = "vectors",
.value = stringify(0),
},
{ /* end of list */ }
},
};
static QEMUMachine isapc_machine = {
.name = "isapc",
.desc = "ISA-only PC",
.init = pc_init_isa,
.max_cpus = 1,
};
static void pc_machine_init(void)
{
qemu_register_machine(&pc_machine);
qemu_register_machine(&pc_machine_v0_10);
qemu_register_machine(&isapc_machine);
}
machine_init(pc_machine_init);