mirror of
https://github.com/qemu/qemu.git
synced 2024-11-27 13:53:45 +08:00
d39594e9d9
Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1453832250-766-10-git-send-email-peter.maydell@linaro.org
3115 lines
94 KiB
C
3115 lines
94 KiB
C
/* This is the Linux kernel elf-loading code, ported into user space */
|
|
#include "qemu/osdep.h"
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include "qemu.h"
|
|
#include "disas/disas.h"
|
|
|
|
#ifdef _ARCH_PPC64
|
|
#undef ARCH_DLINFO
|
|
#undef ELF_PLATFORM
|
|
#undef ELF_HWCAP
|
|
#undef ELF_HWCAP2
|
|
#undef ELF_CLASS
|
|
#undef ELF_DATA
|
|
#undef ELF_ARCH
|
|
#endif
|
|
|
|
#define ELF_OSABI ELFOSABI_SYSV
|
|
|
|
/* from personality.h */
|
|
|
|
/*
|
|
* Flags for bug emulation.
|
|
*
|
|
* These occupy the top three bytes.
|
|
*/
|
|
enum {
|
|
ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
|
|
FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
|
|
descriptors (signal handling) */
|
|
MMAP_PAGE_ZERO = 0x0100000,
|
|
ADDR_COMPAT_LAYOUT = 0x0200000,
|
|
READ_IMPLIES_EXEC = 0x0400000,
|
|
ADDR_LIMIT_32BIT = 0x0800000,
|
|
SHORT_INODE = 0x1000000,
|
|
WHOLE_SECONDS = 0x2000000,
|
|
STICKY_TIMEOUTS = 0x4000000,
|
|
ADDR_LIMIT_3GB = 0x8000000,
|
|
};
|
|
|
|
/*
|
|
* Personality types.
|
|
*
|
|
* These go in the low byte. Avoid using the top bit, it will
|
|
* conflict with error returns.
|
|
*/
|
|
enum {
|
|
PER_LINUX = 0x0000,
|
|
PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
|
|
PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
|
|
PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
|
|
PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
|
|
PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
|
|
PER_BSD = 0x0006,
|
|
PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
|
|
PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_LINUX32 = 0x0008,
|
|
PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
|
|
PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
|
|
PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
|
|
PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
|
|
PER_RISCOS = 0x000c,
|
|
PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
|
|
PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_OSF4 = 0x000f, /* OSF/1 v4 */
|
|
PER_HPUX = 0x0010,
|
|
PER_MASK = 0x00ff,
|
|
};
|
|
|
|
/*
|
|
* Return the base personality without flags.
|
|
*/
|
|
#define personality(pers) (pers & PER_MASK)
|
|
|
|
/* this flag is uneffective under linux too, should be deleted */
|
|
#ifndef MAP_DENYWRITE
|
|
#define MAP_DENYWRITE 0
|
|
#endif
|
|
|
|
/* should probably go in elf.h */
|
|
#ifndef ELIBBAD
|
|
#define ELIBBAD 80
|
|
#endif
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI_MIPSN32
|
|
typedef abi_ullong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswap64(ptr)
|
|
#else
|
|
typedef abi_ulong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswapal(ptr)
|
|
#endif
|
|
|
|
#ifdef USE_UID16
|
|
typedef abi_ushort target_uid_t;
|
|
typedef abi_ushort target_gid_t;
|
|
#else
|
|
typedef abi_uint target_uid_t;
|
|
typedef abi_uint target_gid_t;
|
|
#endif
|
|
typedef abi_int target_pid_t;
|
|
|
|
#ifdef TARGET_I386
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
static char elf_platform[] = "i386";
|
|
int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
|
|
if (family > 6)
|
|
family = 6;
|
|
if (family >= 3)
|
|
elf_platform[1] = '0' + family;
|
|
return elf_platform;
|
|
}
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
X86CPU *cpu = X86_CPU(thread_cpu);
|
|
|
|
return cpu->env.features[FEAT_1_EDX];
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
#define ELF_START_MMAP 0x2aaaaab000ULL
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_X86_64
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->rax = 0;
|
|
regs->rsp = infop->start_stack;
|
|
regs->rip = infop->entry;
|
|
}
|
|
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 29 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = env->regs[15];
|
|
(*regs)[1] = env->regs[14];
|
|
(*regs)[2] = env->regs[13];
|
|
(*regs)[3] = env->regs[12];
|
|
(*regs)[4] = env->regs[R_EBP];
|
|
(*regs)[5] = env->regs[R_EBX];
|
|
(*regs)[6] = env->regs[11];
|
|
(*regs)[7] = env->regs[10];
|
|
(*regs)[8] = env->regs[9];
|
|
(*regs)[9] = env->regs[8];
|
|
(*regs)[10] = env->regs[R_EAX];
|
|
(*regs)[11] = env->regs[R_ECX];
|
|
(*regs)[12] = env->regs[R_EDX];
|
|
(*regs)[13] = env->regs[R_ESI];
|
|
(*regs)[14] = env->regs[R_EDI];
|
|
(*regs)[15] = env->regs[R_EAX]; /* XXX */
|
|
(*regs)[16] = env->eip;
|
|
(*regs)[17] = env->segs[R_CS].selector & 0xffff;
|
|
(*regs)[18] = env->eflags;
|
|
(*regs)[19] = env->regs[R_ESP];
|
|
(*regs)[20] = env->segs[R_SS].selector & 0xffff;
|
|
(*regs)[21] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[22] = env->segs[R_GS].selector & 0xffff;
|
|
(*regs)[23] = env->segs[R_DS].selector & 0xffff;
|
|
(*regs)[24] = env->segs[R_ES].selector & 0xffff;
|
|
(*regs)[25] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[26] = env->segs[R_GS].selector & 0xffff;
|
|
}
|
|
|
|
#else
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
/*
|
|
* This is used to ensure we don't load something for the wrong architecture.
|
|
*/
|
|
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
|
|
|
|
/*
|
|
* These are used to set parameters in the core dumps.
|
|
*/
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_386
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->esp = infop->start_stack;
|
|
regs->eip = infop->entry;
|
|
|
|
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
|
|
starts %edx contains a pointer to a function which might be
|
|
registered using `atexit'. This provides a mean for the
|
|
dynamic linker to call DT_FINI functions for shared libraries
|
|
that have been loaded before the code runs.
|
|
|
|
A value of 0 tells we have no such handler. */
|
|
regs->edx = 0;
|
|
}
|
|
|
|
#define ELF_NREG 17
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 19 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = env->regs[R_EBX];
|
|
(*regs)[1] = env->regs[R_ECX];
|
|
(*regs)[2] = env->regs[R_EDX];
|
|
(*regs)[3] = env->regs[R_ESI];
|
|
(*regs)[4] = env->regs[R_EDI];
|
|
(*regs)[5] = env->regs[R_EBP];
|
|
(*regs)[6] = env->regs[R_EAX];
|
|
(*regs)[7] = env->segs[R_DS].selector & 0xffff;
|
|
(*regs)[8] = env->segs[R_ES].selector & 0xffff;
|
|
(*regs)[9] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[10] = env->segs[R_GS].selector & 0xffff;
|
|
(*regs)[11] = env->regs[R_EAX]; /* XXX */
|
|
(*regs)[12] = env->eip;
|
|
(*regs)[13] = env->segs[R_CS].selector & 0xffff;
|
|
(*regs)[14] = env->eflags;
|
|
(*regs)[15] = env->regs[R_ESP];
|
|
(*regs)[16] = env->segs[R_SS].selector & 0xffff;
|
|
}
|
|
#endif
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ARM
|
|
|
|
#ifndef TARGET_AARCH64
|
|
/* 32 bit ARM definitions */
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_ARCH EM_ARM
|
|
#define ELF_CLASS ELFCLASS32
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->ARM_cpsr = 0x10;
|
|
if (infop->entry & 1)
|
|
regs->ARM_cpsr |= CPSR_T;
|
|
regs->ARM_pc = infop->entry & 0xfffffffe;
|
|
regs->ARM_sp = infop->start_stack;
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(regs->ARM_r2, stack + 8); /* envp */
|
|
get_user_ual(regs->ARM_r1, stack + 4); /* envp */
|
|
/* XXX: it seems that r0 is zeroed after ! */
|
|
regs->ARM_r0 = 0;
|
|
/* For uClinux PIC binaries. */
|
|
/* XXX: Linux does this only on ARM with no MMU (do we care ?) */
|
|
regs->ARM_r10 = infop->start_data;
|
|
}
|
|
|
|
#define ELF_NREG 18
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[0]);
|
|
(*regs)[1] = tswapreg(env->regs[1]);
|
|
(*regs)[2] = tswapreg(env->regs[2]);
|
|
(*regs)[3] = tswapreg(env->regs[3]);
|
|
(*regs)[4] = tswapreg(env->regs[4]);
|
|
(*regs)[5] = tswapreg(env->regs[5]);
|
|
(*regs)[6] = tswapreg(env->regs[6]);
|
|
(*regs)[7] = tswapreg(env->regs[7]);
|
|
(*regs)[8] = tswapreg(env->regs[8]);
|
|
(*regs)[9] = tswapreg(env->regs[9]);
|
|
(*regs)[10] = tswapreg(env->regs[10]);
|
|
(*regs)[11] = tswapreg(env->regs[11]);
|
|
(*regs)[12] = tswapreg(env->regs[12]);
|
|
(*regs)[13] = tswapreg(env->regs[13]);
|
|
(*regs)[14] = tswapreg(env->regs[14]);
|
|
(*regs)[15] = tswapreg(env->regs[15]);
|
|
|
|
(*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
|
|
(*regs)[17] = tswapreg(env->regs[0]); /* XXX */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum
|
|
{
|
|
ARM_HWCAP_ARM_SWP = 1 << 0,
|
|
ARM_HWCAP_ARM_HALF = 1 << 1,
|
|
ARM_HWCAP_ARM_THUMB = 1 << 2,
|
|
ARM_HWCAP_ARM_26BIT = 1 << 3,
|
|
ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
|
|
ARM_HWCAP_ARM_FPA = 1 << 5,
|
|
ARM_HWCAP_ARM_VFP = 1 << 6,
|
|
ARM_HWCAP_ARM_EDSP = 1 << 7,
|
|
ARM_HWCAP_ARM_JAVA = 1 << 8,
|
|
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
|
|
ARM_HWCAP_ARM_CRUNCH = 1 << 10,
|
|
ARM_HWCAP_ARM_THUMBEE = 1 << 11,
|
|
ARM_HWCAP_ARM_NEON = 1 << 12,
|
|
ARM_HWCAP_ARM_VFPv3 = 1 << 13,
|
|
ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
|
|
ARM_HWCAP_ARM_TLS = 1 << 15,
|
|
ARM_HWCAP_ARM_VFPv4 = 1 << 16,
|
|
ARM_HWCAP_ARM_IDIVA = 1 << 17,
|
|
ARM_HWCAP_ARM_IDIVT = 1 << 18,
|
|
ARM_HWCAP_ARM_VFPD32 = 1 << 19,
|
|
ARM_HWCAP_ARM_LPAE = 1 << 20,
|
|
ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
|
|
};
|
|
|
|
enum {
|
|
ARM_HWCAP2_ARM_AES = 1 << 0,
|
|
ARM_HWCAP2_ARM_PMULL = 1 << 1,
|
|
ARM_HWCAP2_ARM_SHA1 = 1 << 2,
|
|
ARM_HWCAP2_ARM_SHA2 = 1 << 3,
|
|
ARM_HWCAP2_ARM_CRC32 = 1 << 4,
|
|
};
|
|
|
|
/* The commpage only exists for 32 bit kernels */
|
|
|
|
#define TARGET_HAS_VALIDATE_GUEST_SPACE
|
|
/* Return 1 if the proposed guest space is suitable for the guest.
|
|
* Return 0 if the proposed guest space isn't suitable, but another
|
|
* address space should be tried.
|
|
* Return -1 if there is no way the proposed guest space can be
|
|
* valid regardless of the base.
|
|
* The guest code may leave a page mapped and populate it if the
|
|
* address is suitable.
|
|
*/
|
|
static int validate_guest_space(unsigned long guest_base,
|
|
unsigned long guest_size)
|
|
{
|
|
unsigned long real_start, test_page_addr;
|
|
|
|
/* We need to check that we can force a fault on access to the
|
|
* commpage at 0xffff0fxx
|
|
*/
|
|
test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
|
|
|
|
/* If the commpage lies within the already allocated guest space,
|
|
* then there is no way we can allocate it.
|
|
*/
|
|
if (test_page_addr >= guest_base
|
|
&& test_page_addr <= (guest_base + guest_size)) {
|
|
return -1;
|
|
}
|
|
|
|
/* Note it needs to be writeable to let us initialise it */
|
|
real_start = (unsigned long)
|
|
mmap((void *)test_page_addr, qemu_host_page_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
|
|
/* If we can't map it then try another address */
|
|
if (real_start == -1ul) {
|
|
return 0;
|
|
}
|
|
|
|
if (real_start != test_page_addr) {
|
|
/* OS didn't put the page where we asked - unmap and reject */
|
|
munmap((void *)real_start, qemu_host_page_size);
|
|
return 0;
|
|
}
|
|
|
|
/* Leave the page mapped
|
|
* Populate it (mmap should have left it all 0'd)
|
|
*/
|
|
|
|
/* Kernel helper versions */
|
|
__put_user(5, (uint32_t *)g2h(0xffff0ffcul));
|
|
|
|
/* Now it's populated make it RO */
|
|
if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
|
|
perror("Protecting guest commpage");
|
|
exit(-1);
|
|
}
|
|
|
|
return 1; /* All good */
|
|
}
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_ARM_SWP;
|
|
hwcaps |= ARM_HWCAP_ARM_HALF;
|
|
hwcaps |= ARM_HWCAP_ARM_THUMB;
|
|
hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
|
|
|
|
/* probe for the extra features */
|
|
#define GET_FEATURE(feat, hwcap) \
|
|
do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
|
|
/* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
|
|
GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
|
|
GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
|
|
GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
|
|
GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
|
|
GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
|
|
GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
|
|
GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
|
|
GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
|
|
GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
|
|
GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
|
|
/* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
|
|
* Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
|
|
* ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
|
|
* to our VFP_FP16 feature bit.
|
|
*/
|
|
GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
|
|
GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
|
|
GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
|
|
GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
|
|
GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
|
|
GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
|
|
return hwcaps;
|
|
}
|
|
|
|
#undef GET_FEATURE
|
|
|
|
#else
|
|
/* 64 bit ARM definitions */
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_ARCH EM_AARCH64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_PLATFORM "aarch64"
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->pc = infop->entry & ~0x3ULL;
|
|
regs->sp = stack;
|
|
}
|
|
|
|
#define ELF_NREG 34
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUARMState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(env->xregs[i]);
|
|
}
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
ARM_HWCAP_A64_FP = 1 << 0,
|
|
ARM_HWCAP_A64_ASIMD = 1 << 1,
|
|
ARM_HWCAP_A64_EVTSTRM = 1 << 2,
|
|
ARM_HWCAP_A64_AES = 1 << 3,
|
|
ARM_HWCAP_A64_PMULL = 1 << 4,
|
|
ARM_HWCAP_A64_SHA1 = 1 << 5,
|
|
ARM_HWCAP_A64_SHA2 = 1 << 6,
|
|
ARM_HWCAP_A64_CRC32 = 1 << 7,
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_A64_FP;
|
|
hwcaps |= ARM_HWCAP_A64_ASIMD;
|
|
|
|
/* probe for the extra features */
|
|
#define GET_FEATURE(feat, hwcap) \
|
|
do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
|
|
GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
|
|
GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
|
|
GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
|
|
GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
|
|
GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
|
|
#undef GET_FEATURE
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#endif /* not TARGET_AARCH64 */
|
|
#endif /* TARGET_ARM */
|
|
|
|
#ifdef TARGET_UNICORE32
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_UNICORE32
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
regs->UC32_REG_asr = 0x10;
|
|
regs->UC32_REG_pc = infop->entry & 0xfffffffe;
|
|
regs->UC32_REG_sp = infop->start_stack;
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
|
|
get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
|
|
/* XXX: it seems that r0 is zeroed after ! */
|
|
regs->UC32_REG_00 = 0;
|
|
}
|
|
|
|
#define ELF_NREG 34
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
|
|
{
|
|
(*regs)[0] = env->regs[0];
|
|
(*regs)[1] = env->regs[1];
|
|
(*regs)[2] = env->regs[2];
|
|
(*regs)[3] = env->regs[3];
|
|
(*regs)[4] = env->regs[4];
|
|
(*regs)[5] = env->regs[5];
|
|
(*regs)[6] = env->regs[6];
|
|
(*regs)[7] = env->regs[7];
|
|
(*regs)[8] = env->regs[8];
|
|
(*regs)[9] = env->regs[9];
|
|
(*regs)[10] = env->regs[10];
|
|
(*regs)[11] = env->regs[11];
|
|
(*regs)[12] = env->regs[12];
|
|
(*regs)[13] = env->regs[13];
|
|
(*regs)[14] = env->regs[14];
|
|
(*regs)[15] = env->regs[15];
|
|
(*regs)[16] = env->regs[16];
|
|
(*regs)[17] = env->regs[17];
|
|
(*regs)[18] = env->regs[18];
|
|
(*regs)[19] = env->regs[19];
|
|
(*regs)[20] = env->regs[20];
|
|
(*regs)[21] = env->regs[21];
|
|
(*regs)[22] = env->regs[22];
|
|
(*regs)[23] = env->regs[23];
|
|
(*regs)[24] = env->regs[24];
|
|
(*regs)[25] = env->regs[25];
|
|
(*regs)[26] = env->regs[26];
|
|
(*regs)[27] = env->regs[27];
|
|
(*regs)[28] = env->regs[28];
|
|
(*regs)[29] = env->regs[29];
|
|
(*regs)[30] = env->regs[30];
|
|
(*regs)[31] = env->regs[31];
|
|
|
|
(*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
|
|
(*regs)[33] = env->regs[0]; /* XXX */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC
|
|
#ifdef TARGET_SPARC64
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
|
|
| HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
|
|
#ifndef TARGET_ABI32
|
|
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
|
|
#else
|
|
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
|
|
#endif
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_SPARCV9
|
|
|
|
#define STACK_BIAS 2047
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
#ifndef TARGET_ABI32
|
|
regs->tstate = 0;
|
|
#endif
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
#ifdef TARGET_ABI32
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
#else
|
|
if (personality(infop->personality) == PER_LINUX32)
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
else
|
|
regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
|
|
| HWCAP_SPARC_MULDIV)
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_SPARC
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->psr = 0;
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TARGET_PPC
|
|
|
|
#define ELF_MACHINE PPC_ELF_MACHINE
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_PPC64 )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
|
|
#else
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
|
|
#endif
|
|
|
|
#define ELF_ARCH EM_PPC
|
|
|
|
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
|
|
See arch/powerpc/include/asm/cputable.h. */
|
|
enum {
|
|
QEMU_PPC_FEATURE_32 = 0x80000000,
|
|
QEMU_PPC_FEATURE_64 = 0x40000000,
|
|
QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
|
|
QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
|
|
QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
|
|
QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
|
|
QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
|
|
QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
|
|
QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
|
|
QEMU_PPC_FEATURE_NO_TB = 0x00100000,
|
|
QEMU_PPC_FEATURE_POWER4 = 0x00080000,
|
|
QEMU_PPC_FEATURE_POWER5 = 0x00040000,
|
|
QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
|
|
QEMU_PPC_FEATURE_CELL = 0x00010000,
|
|
QEMU_PPC_FEATURE_BOOKE = 0x00008000,
|
|
QEMU_PPC_FEATURE_SMT = 0x00004000,
|
|
QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
|
|
QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
|
|
QEMU_PPC_FEATURE_PA6T = 0x00000800,
|
|
QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
|
|
QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
|
|
QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
|
|
QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
|
|
QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
|
|
|
|
QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
|
|
QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
|
|
|
|
/* Feature definitions in AT_HWCAP2. */
|
|
QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
|
|
QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
|
|
QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
|
|
QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
|
|
QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
|
|
QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
/* We don't have to be terribly complete here; the high points are
|
|
Altivec/FP/SPE support. Anything else is just a bonus. */
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flag, feature) \
|
|
do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
|
|
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
|
|
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
|
|
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
|
|
GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
|
|
GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
|
|
GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
|
|
GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
|
|
GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
|
|
GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
|
|
GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
|
|
GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
|
|
PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
|
|
QEMU_PPC_FEATURE_ARCH_2_06);
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flag, feature) \
|
|
do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
|
|
|
|
GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
|
|
GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
|
|
GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
|
|
PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
|
|
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
/*
|
|
* The requirements here are:
|
|
* - keep the final alignment of sp (sp & 0xf)
|
|
* - make sure the 32-bit value at the first 16 byte aligned position of
|
|
* AUXV is greater than 16 for glibc compatibility.
|
|
* AT_IGNOREPPC is used for that.
|
|
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
|
|
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
|
|
*/
|
|
#define DLINFO_ARCH_ITEMS 5
|
|
#define ARCH_DLINFO \
|
|
do { \
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
|
|
NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
|
|
NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
|
|
NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
|
|
/* \
|
|
* Now handle glibc compatibility. \
|
|
*/ \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
} while (0)
|
|
|
|
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
|
|
{
|
|
_regs->gpr[1] = infop->start_stack;
|
|
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
|
|
if (get_ppc64_abi(infop) < 2) {
|
|
uint64_t val;
|
|
get_user_u64(val, infop->entry + 8);
|
|
_regs->gpr[2] = val + infop->load_bias;
|
|
get_user_u64(val, infop->entry);
|
|
infop->entry = val + infop->load_bias;
|
|
} else {
|
|
_regs->gpr[12] = infop->entry; /* r12 set to global entry address */
|
|
}
|
|
#endif
|
|
_regs->nip = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/powerpc/include/asm/elf.h. */
|
|
#define ELF_NREG 48
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
|
|
{
|
|
int i;
|
|
target_ulong ccr = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
|
|
(*regs)[i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[32] = tswapreg(env->nip);
|
|
(*regs)[33] = tswapreg(env->msr);
|
|
(*regs)[35] = tswapreg(env->ctr);
|
|
(*regs)[36] = tswapreg(env->lr);
|
|
(*regs)[37] = tswapreg(env->xer);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
|
|
ccr |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
}
|
|
(*regs)[38] = tswapreg(ccr);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_MIPS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#ifdef TARGET_MIPS64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#else
|
|
#define ELF_CLASS ELFCLASS32
|
|
#endif
|
|
#define ELF_ARCH EM_MIPS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->cp0_status = 2 << CP0St_KSU;
|
|
regs->cp0_epc = infop->entry;
|
|
regs->regs[29] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/mips/include/asm/elf.h. */
|
|
#define ELF_NREG 45
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/include/asm/reg.h. */
|
|
enum {
|
|
#ifdef TARGET_MIPS64
|
|
TARGET_EF_R0 = 0,
|
|
#else
|
|
TARGET_EF_R0 = 6,
|
|
#endif
|
|
TARGET_EF_R26 = TARGET_EF_R0 + 26,
|
|
TARGET_EF_R27 = TARGET_EF_R0 + 27,
|
|
TARGET_EF_LO = TARGET_EF_R0 + 32,
|
|
TARGET_EF_HI = TARGET_EF_R0 + 33,
|
|
TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
|
|
TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
|
|
TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
|
|
TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
|
|
};
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TARGET_EF_R0; i++) {
|
|
(*regs)[i] = 0;
|
|
}
|
|
(*regs)[TARGET_EF_R0] = 0;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
|
|
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_EF_R26] = 0;
|
|
(*regs)[TARGET_EF_R27] = 0;
|
|
(*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
|
|
(*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
|
|
(*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
|
|
(*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
|
|
(*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
|
|
(*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_MIPS */
|
|
|
|
#ifdef TARGET_MICROBLAZE
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_MICROBLAZE
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->r1 = infop->start_stack;
|
|
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_NREG 38
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
|
|
{
|
|
int i, pos = 0;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[pos++] = tswapreg(env->regs[i]);
|
|
}
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
(*regs)[pos++] = tswapreg(env->sregs[i]);
|
|
}
|
|
}
|
|
|
|
#endif /* TARGET_MICROBLAZE */
|
|
|
|
#ifdef TARGET_OPENRISC
|
|
|
|
#define ELF_START_MMAP 0x08000000
|
|
|
|
#define ELF_ARCH EM_OPENRISC
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->gpr[1] = infop->start_stack;
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
/* See linux kernel arch/openrisc/include/asm/elf.h. */
|
|
#define ELF_NREG 34 /* gprs and pc, sr */
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUOpenRISCState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(env->sr);
|
|
}
|
|
#define ELF_HWCAP 0
|
|
#define ELF_PLATFORM NULL
|
|
|
|
#endif /* TARGET_OPENRISC */
|
|
|
|
#ifdef TARGET_SH4
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_SH
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/* Check other registers XXXXX */
|
|
regs->pc = infop->entry;
|
|
regs->regs[15] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/sh/include/asm/elf.h. */
|
|
#define ELF_NREG 23
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/sh/include/asm/ptrace.h. */
|
|
enum {
|
|
TARGET_REG_PC = 16,
|
|
TARGET_REG_PR = 17,
|
|
TARGET_REG_SR = 18,
|
|
TARGET_REG_GBR = 19,
|
|
TARGET_REG_MACH = 20,
|
|
TARGET_REG_MACL = 21,
|
|
TARGET_REG_SYSCALL = 22
|
|
};
|
|
|
|
static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUSH4State *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
(*regs[i]) = tswapreg(env->gregs[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
|
|
(*regs)[TARGET_REG_PR] = tswapreg(env->pr);
|
|
(*regs)[TARGET_REG_SR] = tswapreg(env->sr);
|
|
(*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
|
|
(*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
|
|
(*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
|
|
(*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
|
|
SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
|
|
SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
|
|
SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
|
|
SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
|
|
SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
|
|
SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
|
|
SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
|
|
SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
|
|
SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
|
|
uint32_t hwcap = 0;
|
|
|
|
hwcap |= SH_CPU_HAS_FPU;
|
|
|
|
if (cpu->env.features & SH_FEATURE_SH4A) {
|
|
hwcap |= SH_CPU_HAS_LLSC;
|
|
}
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_CRIS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_CRIS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->erp = infop->entry;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_M68K
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_68K
|
|
|
|
/* ??? Does this need to do anything?
|
|
#define ELF_PLAT_INIT(_r) */
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->usp = infop->start_stack;
|
|
regs->sr = 0;
|
|
regs->pc = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/m68k/include/asm/elf.h. */
|
|
#define ELF_NREG 20
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->dregs[1]);
|
|
(*regs)[1] = tswapreg(env->dregs[2]);
|
|
(*regs)[2] = tswapreg(env->dregs[3]);
|
|
(*regs)[3] = tswapreg(env->dregs[4]);
|
|
(*regs)[4] = tswapreg(env->dregs[5]);
|
|
(*regs)[5] = tswapreg(env->dregs[6]);
|
|
(*regs)[6] = tswapreg(env->dregs[7]);
|
|
(*regs)[7] = tswapreg(env->aregs[0]);
|
|
(*regs)[8] = tswapreg(env->aregs[1]);
|
|
(*regs)[9] = tswapreg(env->aregs[2]);
|
|
(*regs)[10] = tswapreg(env->aregs[3]);
|
|
(*regs)[11] = tswapreg(env->aregs[4]);
|
|
(*regs)[12] = tswapreg(env->aregs[5]);
|
|
(*regs)[13] = tswapreg(env->aregs[6]);
|
|
(*regs)[14] = tswapreg(env->dregs[0]);
|
|
(*regs)[15] = tswapreg(env->aregs[7]);
|
|
(*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
|
|
(*regs)[17] = tswapreg(env->sr);
|
|
(*regs)[18] = tswapreg(env->pc);
|
|
(*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ALPHA
|
|
|
|
#define ELF_START_MMAP (0x30000000000ULL)
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_ALPHA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->ps = 8;
|
|
regs->usp = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif /* TARGET_ALPHA */
|
|
|
|
#ifdef TARGET_S390X
|
|
|
|
#define ELF_START_MMAP (0x20000000000ULL)
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_S390
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->psw.addr = infop->entry;
|
|
regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
|
|
regs->gprs[15] = infop->start_stack;
|
|
}
|
|
|
|
#endif /* TARGET_S390X */
|
|
|
|
#ifdef TARGET_TILEGX
|
|
|
|
/* 42 bits real used address, a half for user mode */
|
|
#define ELF_START_MMAP (0x00000020000000000ULL)
|
|
|
|
#define elf_check_arch(x) ((x) == EM_TILEGX)
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_TILEGX
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
|
|
|
|
#endif /* TARGET_TILEGX */
|
|
|
|
#ifndef ELF_PLATFORM
|
|
#define ELF_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_MACHINE
|
|
#define ELF_MACHINE ELF_ARCH
|
|
#endif
|
|
|
|
#ifndef elf_check_arch
|
|
#define elf_check_arch(x) ((x) == ELF_ARCH)
|
|
#endif
|
|
|
|
#ifndef ELF_HWCAP
|
|
#define ELF_HWCAP 0
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#undef ELF_CLASS
|
|
#define ELF_CLASS ELFCLASS32
|
|
#undef bswaptls
|
|
#define bswaptls(ptr) bswap32s(ptr)
|
|
#endif
|
|
|
|
#include "elf.h"
|
|
|
|
struct exec
|
|
{
|
|
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
|
|
unsigned int a_text; /* length of text, in bytes */
|
|
unsigned int a_data; /* length of data, in bytes */
|
|
unsigned int a_bss; /* length of uninitialized data area, in bytes */
|
|
unsigned int a_syms; /* length of symbol table data in file, in bytes */
|
|
unsigned int a_entry; /* start address */
|
|
unsigned int a_trsize; /* length of relocation info for text, in bytes */
|
|
unsigned int a_drsize; /* length of relocation info for data, in bytes */
|
|
};
|
|
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
#define OMAGIC 0407
|
|
#define NMAGIC 0410
|
|
#define ZMAGIC 0413
|
|
#define QMAGIC 0314
|
|
|
|
/* Necessary parameters */
|
|
#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
|
|
#define TARGET_ELF_PAGESTART(_v) ((_v) & \
|
|
~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
|
|
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
|
|
|
|
#define DLINFO_ITEMS 14
|
|
|
|
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
|
|
{
|
|
memcpy(to, from, n);
|
|
}
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
bswap16s(&ehdr->e_type); /* Object file type */
|
|
bswap16s(&ehdr->e_machine); /* Architecture */
|
|
bswap32s(&ehdr->e_version); /* Object file version */
|
|
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
|
|
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
|
|
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
|
|
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
|
|
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
|
|
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
|
|
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
|
|
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
|
|
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
|
|
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
|
|
}
|
|
|
|
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < phnum; ++i, ++phdr) {
|
|
bswap32s(&phdr->p_type); /* Segment type */
|
|
bswap32s(&phdr->p_flags); /* Segment flags */
|
|
bswaptls(&phdr->p_offset); /* Segment file offset */
|
|
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
|
|
bswaptls(&phdr->p_paddr); /* Segment physical address */
|
|
bswaptls(&phdr->p_filesz); /* Segment size in file */
|
|
bswaptls(&phdr->p_memsz); /* Segment size in memory */
|
|
bswaptls(&phdr->p_align); /* Segment alignment */
|
|
}
|
|
}
|
|
|
|
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < shnum; ++i, ++shdr) {
|
|
bswap32s(&shdr->sh_name);
|
|
bswap32s(&shdr->sh_type);
|
|
bswaptls(&shdr->sh_flags);
|
|
bswaptls(&shdr->sh_addr);
|
|
bswaptls(&shdr->sh_offset);
|
|
bswaptls(&shdr->sh_size);
|
|
bswap32s(&shdr->sh_link);
|
|
bswap32s(&shdr->sh_info);
|
|
bswaptls(&shdr->sh_addralign);
|
|
bswaptls(&shdr->sh_entsize);
|
|
}
|
|
}
|
|
|
|
static void bswap_sym(struct elf_sym *sym)
|
|
{
|
|
bswap32s(&sym->st_name);
|
|
bswaptls(&sym->st_value);
|
|
bswaptls(&sym->st_size);
|
|
bswap16s(&sym->st_shndx);
|
|
}
|
|
#else
|
|
static inline void bswap_ehdr(struct elfhdr *ehdr) { }
|
|
static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
|
|
static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
|
|
static inline void bswap_sym(struct elf_sym *sym) { }
|
|
#endif
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
static int elf_core_dump(int, const CPUArchState *);
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
|
|
|
|
/* Verify the portions of EHDR within E_IDENT for the target.
|
|
This can be performed before bswapping the entire header. */
|
|
static bool elf_check_ident(struct elfhdr *ehdr)
|
|
{
|
|
return (ehdr->e_ident[EI_MAG0] == ELFMAG0
|
|
&& ehdr->e_ident[EI_MAG1] == ELFMAG1
|
|
&& ehdr->e_ident[EI_MAG2] == ELFMAG2
|
|
&& ehdr->e_ident[EI_MAG3] == ELFMAG3
|
|
&& ehdr->e_ident[EI_CLASS] == ELF_CLASS
|
|
&& ehdr->e_ident[EI_DATA] == ELF_DATA
|
|
&& ehdr->e_ident[EI_VERSION] == EV_CURRENT);
|
|
}
|
|
|
|
/* Verify the portions of EHDR outside of E_IDENT for the target.
|
|
This has to wait until after bswapping the header. */
|
|
static bool elf_check_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
return (elf_check_arch(ehdr->e_machine)
|
|
&& ehdr->e_ehsize == sizeof(struct elfhdr)
|
|
&& ehdr->e_phentsize == sizeof(struct elf_phdr)
|
|
&& (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
|
|
}
|
|
|
|
/*
|
|
* 'copy_elf_strings()' copies argument/envelope strings from user
|
|
* memory to free pages in kernel mem. These are in a format ready
|
|
* to be put directly into the top of new user memory.
|
|
*
|
|
*/
|
|
static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
|
|
abi_ulong p, abi_ulong stack_limit)
|
|
{
|
|
char *tmp;
|
|
int len, offset;
|
|
abi_ulong top = p;
|
|
|
|
if (!p) {
|
|
return 0; /* bullet-proofing */
|
|
}
|
|
|
|
offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
|
|
|
|
while (argc-- > 0) {
|
|
tmp = argv[argc];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
len = strlen(tmp) + 1;
|
|
tmp += len;
|
|
|
|
if (len > (p - stack_limit)) {
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
int bytes_to_copy = (len > offset) ? offset : len;
|
|
tmp -= bytes_to_copy;
|
|
p -= bytes_to_copy;
|
|
offset -= bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
|
|
memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
|
|
|
|
if (offset == 0) {
|
|
memcpy_to_target(p, scratch, top - p);
|
|
top = p;
|
|
offset = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
if (offset) {
|
|
memcpy_to_target(p, scratch + offset, top - p);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
|
|
* argument/environment space. Newer kernels (>2.6.33) allow more,
|
|
* dependent on stack size, but guarantee at least 32 pages for
|
|
* backwards compatibility.
|
|
*/
|
|
#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
|
|
|
|
static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
|
|
struct image_info *info)
|
|
{
|
|
abi_ulong size, error, guard;
|
|
|
|
size = guest_stack_size;
|
|
if (size < STACK_LOWER_LIMIT) {
|
|
size = STACK_LOWER_LIMIT;
|
|
}
|
|
guard = TARGET_PAGE_SIZE;
|
|
if (guard < qemu_real_host_page_size) {
|
|
guard = qemu_real_host_page_size;
|
|
}
|
|
|
|
error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (error == -1) {
|
|
perror("mmap stack");
|
|
exit(-1);
|
|
}
|
|
|
|
/* We reserve one extra page at the top of the stack as guard. */
|
|
target_mprotect(error, guard, PROT_NONE);
|
|
|
|
info->stack_limit = error + guard;
|
|
|
|
return info->stack_limit + size - sizeof(void *);
|
|
}
|
|
|
|
/* Map and zero the bss. We need to explicitly zero any fractional pages
|
|
after the data section (i.e. bss). */
|
|
static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
|
|
{
|
|
uintptr_t host_start, host_map_start, host_end;
|
|
|
|
last_bss = TARGET_PAGE_ALIGN(last_bss);
|
|
|
|
/* ??? There is confusion between qemu_real_host_page_size and
|
|
qemu_host_page_size here and elsewhere in target_mmap, which
|
|
may lead to the end of the data section mapping from the file
|
|
not being mapped. At least there was an explicit test and
|
|
comment for that here, suggesting that "the file size must
|
|
be known". The comment probably pre-dates the introduction
|
|
of the fstat system call in target_mmap which does in fact
|
|
find out the size. What isn't clear is if the workaround
|
|
here is still actually needed. For now, continue with it,
|
|
but merge it with the "normal" mmap that would allocate the bss. */
|
|
|
|
host_start = (uintptr_t) g2h(elf_bss);
|
|
host_end = (uintptr_t) g2h(last_bss);
|
|
host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
|
|
|
|
if (host_map_start < host_end) {
|
|
void *p = mmap((void *)host_map_start, host_end - host_map_start,
|
|
prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (p == MAP_FAILED) {
|
|
perror("cannot mmap brk");
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
/* Ensure that the bss page(s) are valid */
|
|
if ((page_get_flags(last_bss-1) & prot) != prot) {
|
|
page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
|
|
}
|
|
|
|
if (host_start < host_map_start) {
|
|
memset((void *)host_start, 0, host_map_start - host_start);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USE_FDPIC
|
|
static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
|
|
{
|
|
uint16_t n;
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
|
|
|
|
/* elf32_fdpic_loadseg */
|
|
n = info->nsegs;
|
|
while (n--) {
|
|
sp -= 12;
|
|
put_user_u32(loadsegs[n].addr, sp+0);
|
|
put_user_u32(loadsegs[n].p_vaddr, sp+4);
|
|
put_user_u32(loadsegs[n].p_memsz, sp+8);
|
|
}
|
|
|
|
/* elf32_fdpic_loadmap */
|
|
sp -= 4;
|
|
put_user_u16(0, sp+0); /* version */
|
|
put_user_u16(info->nsegs, sp+2); /* nsegs */
|
|
|
|
info->personality = PER_LINUX_FDPIC;
|
|
info->loadmap_addr = sp;
|
|
|
|
return sp;
|
|
}
|
|
#endif
|
|
|
|
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
|
|
struct elfhdr *exec,
|
|
struct image_info *info,
|
|
struct image_info *interp_info)
|
|
{
|
|
abi_ulong sp;
|
|
abi_ulong sp_auxv;
|
|
int size;
|
|
int i;
|
|
abi_ulong u_rand_bytes;
|
|
uint8_t k_rand_bytes[16];
|
|
abi_ulong u_platform;
|
|
const char *k_platform;
|
|
const int n = sizeof(elf_addr_t);
|
|
|
|
sp = p;
|
|
|
|
#ifdef CONFIG_USE_FDPIC
|
|
/* Needs to be before we load the env/argc/... */
|
|
if (elf_is_fdpic(exec)) {
|
|
/* Need 4 byte alignment for these structs */
|
|
sp &= ~3;
|
|
sp = loader_build_fdpic_loadmap(info, sp);
|
|
info->other_info = interp_info;
|
|
if (interp_info) {
|
|
interp_info->other_info = info;
|
|
sp = loader_build_fdpic_loadmap(interp_info, sp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
u_platform = 0;
|
|
k_platform = ELF_PLATFORM;
|
|
if (k_platform) {
|
|
size_t len = strlen(k_platform) + 1;
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_platform, len);
|
|
}
|
|
|
|
/*
|
|
* Generate 16 random bytes for userspace PRNG seeding (not
|
|
* cryptically secure but it's not the aim of QEMU).
|
|
*/
|
|
for (i = 0; i < 16; i++) {
|
|
k_rand_bytes[i] = rand();
|
|
}
|
|
sp -= 16;
|
|
u_rand_bytes = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_rand_bytes, 16);
|
|
|
|
/*
|
|
* Force 16 byte _final_ alignment here for generality.
|
|
*/
|
|
sp = sp &~ (abi_ulong)15;
|
|
size = (DLINFO_ITEMS + 1) * 2;
|
|
if (k_platform)
|
|
size += 2;
|
|
#ifdef DLINFO_ARCH_ITEMS
|
|
size += DLINFO_ARCH_ITEMS * 2;
|
|
#endif
|
|
#ifdef ELF_HWCAP2
|
|
size += 2;
|
|
#endif
|
|
size += envc + argc + 2;
|
|
size += 1; /* argc itself */
|
|
size *= n;
|
|
if (size & 15)
|
|
sp -= 16 - (size & 15);
|
|
|
|
/* This is correct because Linux defines
|
|
* elf_addr_t as Elf32_Off / Elf64_Off
|
|
*/
|
|
#define NEW_AUX_ENT(id, val) do { \
|
|
sp -= n; put_user_ual(val, sp); \
|
|
sp -= n; put_user_ual(id, sp); \
|
|
} while(0)
|
|
|
|
sp_auxv = sp;
|
|
NEW_AUX_ENT (AT_NULL, 0);
|
|
|
|
/* There must be exactly DLINFO_ITEMS entries here. */
|
|
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
|
|
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
|
|
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
|
|
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
|
|
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
|
|
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
|
|
NEW_AUX_ENT(AT_ENTRY, info->entry);
|
|
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
|
|
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
|
|
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
|
|
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
|
|
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
|
|
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
|
|
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
|
|
|
|
#ifdef ELF_HWCAP2
|
|
NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
|
|
#endif
|
|
|
|
if (k_platform)
|
|
NEW_AUX_ENT(AT_PLATFORM, u_platform);
|
|
#ifdef ARCH_DLINFO
|
|
/*
|
|
* ARCH_DLINFO must come last so platform specific code can enforce
|
|
* special alignment requirements on the AUXV if necessary (eg. PPC).
|
|
*/
|
|
ARCH_DLINFO;
|
|
#endif
|
|
#undef NEW_AUX_ENT
|
|
|
|
info->saved_auxv = sp;
|
|
info->auxv_len = sp_auxv - sp;
|
|
|
|
sp = loader_build_argptr(envc, argc, sp, p, 0);
|
|
/* Check the right amount of stack was allocated for auxvec, envp & argv. */
|
|
assert(sp_auxv - sp == size);
|
|
return sp;
|
|
}
|
|
|
|
#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
|
|
/* If the guest doesn't have a validation function just agree */
|
|
static int validate_guest_space(unsigned long guest_base,
|
|
unsigned long guest_size)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
unsigned long init_guest_space(unsigned long host_start,
|
|
unsigned long host_size,
|
|
unsigned long guest_start,
|
|
bool fixed)
|
|
{
|
|
unsigned long current_start, real_start;
|
|
int flags;
|
|
|
|
assert(host_start || host_size);
|
|
|
|
/* If just a starting address is given, then just verify that
|
|
* address. */
|
|
if (host_start && !host_size) {
|
|
if (validate_guest_space(host_start, host_size) == 1) {
|
|
return host_start;
|
|
} else {
|
|
return (unsigned long)-1;
|
|
}
|
|
}
|
|
|
|
/* Setup the initial flags and start address. */
|
|
current_start = host_start & qemu_host_page_mask;
|
|
flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
|
|
if (fixed) {
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
/* Otherwise, a non-zero size region of memory needs to be mapped
|
|
* and validated. */
|
|
while (1) {
|
|
unsigned long real_size = host_size;
|
|
|
|
/* Do not use mmap_find_vma here because that is limited to the
|
|
* guest address space. We are going to make the
|
|
* guest address space fit whatever we're given.
|
|
*/
|
|
real_start = (unsigned long)
|
|
mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
|
|
if (real_start == (unsigned long)-1) {
|
|
return (unsigned long)-1;
|
|
}
|
|
|
|
/* Ensure the address is properly aligned. */
|
|
if (real_start & ~qemu_host_page_mask) {
|
|
munmap((void *)real_start, host_size);
|
|
real_size = host_size + qemu_host_page_size;
|
|
real_start = (unsigned long)
|
|
mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
|
|
if (real_start == (unsigned long)-1) {
|
|
return (unsigned long)-1;
|
|
}
|
|
real_start = HOST_PAGE_ALIGN(real_start);
|
|
}
|
|
|
|
/* Check to see if the address is valid. */
|
|
if (!host_start || real_start == current_start) {
|
|
int valid = validate_guest_space(real_start - guest_start,
|
|
real_size);
|
|
if (valid == 1) {
|
|
break;
|
|
} else if (valid == -1) {
|
|
return (unsigned long)-1;
|
|
}
|
|
/* valid == 0, so try again. */
|
|
}
|
|
|
|
/* That address didn't work. Unmap and try a different one.
|
|
* The address the host picked because is typically right at
|
|
* the top of the host address space and leaves the guest with
|
|
* no usable address space. Resort to a linear search. We
|
|
* already compensated for mmap_min_addr, so this should not
|
|
* happen often. Probably means we got unlucky and host
|
|
* address space randomization put a shared library somewhere
|
|
* inconvenient.
|
|
*/
|
|
munmap((void *)real_start, host_size);
|
|
current_start += qemu_host_page_size;
|
|
if (host_start == current_start) {
|
|
/* Theoretically possible if host doesn't have any suitably
|
|
* aligned areas. Normally the first mmap will fail.
|
|
*/
|
|
return (unsigned long)-1;
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
|
|
|
|
return real_start;
|
|
}
|
|
|
|
static void probe_guest_base(const char *image_name,
|
|
abi_ulong loaddr, abi_ulong hiaddr)
|
|
{
|
|
/* Probe for a suitable guest base address, if the user has not set
|
|
* it explicitly, and set guest_base appropriately.
|
|
* In case of error we will print a suitable message and exit.
|
|
*/
|
|
const char *errmsg;
|
|
if (!have_guest_base && !reserved_va) {
|
|
unsigned long host_start, real_start, host_size;
|
|
|
|
/* Round addresses to page boundaries. */
|
|
loaddr &= qemu_host_page_mask;
|
|
hiaddr = HOST_PAGE_ALIGN(hiaddr);
|
|
|
|
if (loaddr < mmap_min_addr) {
|
|
host_start = HOST_PAGE_ALIGN(mmap_min_addr);
|
|
} else {
|
|
host_start = loaddr;
|
|
if (host_start != loaddr) {
|
|
errmsg = "Address overflow loading ELF binary";
|
|
goto exit_errmsg;
|
|
}
|
|
}
|
|
host_size = hiaddr - loaddr;
|
|
|
|
/* Setup the initial guest memory space with ranges gleaned from
|
|
* the ELF image that is being loaded.
|
|
*/
|
|
real_start = init_guest_space(host_start, host_size, loaddr, false);
|
|
if (real_start == (unsigned long)-1) {
|
|
errmsg = "Unable to find space for application";
|
|
goto exit_errmsg;
|
|
}
|
|
guest_base = real_start - loaddr;
|
|
|
|
qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
|
|
TARGET_ABI_FMT_lx " to 0x%lx\n",
|
|
loaddr, real_start);
|
|
}
|
|
return;
|
|
|
|
exit_errmsg:
|
|
fprintf(stderr, "%s: %s\n", image_name, errmsg);
|
|
exit(-1);
|
|
}
|
|
|
|
|
|
/* Load an ELF image into the address space.
|
|
|
|
IMAGE_NAME is the filename of the image, to use in error messages.
|
|
IMAGE_FD is the open file descriptor for the image.
|
|
|
|
BPRM_BUF is a copy of the beginning of the file; this of course
|
|
contains the elf file header at offset 0. It is assumed that this
|
|
buffer is sufficiently aligned to present no problems to the host
|
|
in accessing data at aligned offsets within the buffer.
|
|
|
|
On return: INFO values will be filled in, as necessary or available. */
|
|
|
|
static void load_elf_image(const char *image_name, int image_fd,
|
|
struct image_info *info, char **pinterp_name,
|
|
char bprm_buf[BPRM_BUF_SIZE])
|
|
{
|
|
struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
|
|
struct elf_phdr *phdr;
|
|
abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
|
|
int i, retval;
|
|
const char *errmsg;
|
|
|
|
/* First of all, some simple consistency checks */
|
|
errmsg = "Invalid ELF image for this architecture";
|
|
if (!elf_check_ident(ehdr)) {
|
|
goto exit_errmsg;
|
|
}
|
|
bswap_ehdr(ehdr);
|
|
if (!elf_check_ehdr(ehdr)) {
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
i = ehdr->e_phnum * sizeof(struct elf_phdr);
|
|
if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
|
|
phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
|
|
} else {
|
|
phdr = (struct elf_phdr *) alloca(i);
|
|
retval = pread(image_fd, phdr, i, ehdr->e_phoff);
|
|
if (retval != i) {
|
|
goto exit_read;
|
|
}
|
|
}
|
|
bswap_phdr(phdr, ehdr->e_phnum);
|
|
|
|
#ifdef CONFIG_USE_FDPIC
|
|
info->nsegs = 0;
|
|
info->pt_dynamic_addr = 0;
|
|
#endif
|
|
|
|
/* Find the maximum size of the image and allocate an appropriate
|
|
amount of memory to handle that. */
|
|
loaddr = -1, hiaddr = 0;
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
if (phdr[i].p_type == PT_LOAD) {
|
|
abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
|
|
if (a < loaddr) {
|
|
loaddr = a;
|
|
}
|
|
a = phdr[i].p_vaddr + phdr[i].p_memsz;
|
|
if (a > hiaddr) {
|
|
hiaddr = a;
|
|
}
|
|
#ifdef CONFIG_USE_FDPIC
|
|
++info->nsegs;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
load_addr = loaddr;
|
|
if (ehdr->e_type == ET_DYN) {
|
|
/* The image indicates that it can be loaded anywhere. Find a
|
|
location that can hold the memory space required. If the
|
|
image is pre-linked, LOADDR will be non-zero. Since we do
|
|
not supply MAP_FIXED here we'll use that address if and
|
|
only if it remains available. */
|
|
load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
|
|
-1, 0);
|
|
if (load_addr == -1) {
|
|
goto exit_perror;
|
|
}
|
|
} else if (pinterp_name != NULL) {
|
|
/* This is the main executable. Make sure that the low
|
|
address does not conflict with MMAP_MIN_ADDR or the
|
|
QEMU application itself. */
|
|
probe_guest_base(image_name, loaddr, hiaddr);
|
|
}
|
|
load_bias = load_addr - loaddr;
|
|
|
|
#ifdef CONFIG_USE_FDPIC
|
|
{
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
|
|
g_malloc(sizeof(*loadsegs) * info->nsegs);
|
|
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
switch (phdr[i].p_type) {
|
|
case PT_DYNAMIC:
|
|
info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
|
|
break;
|
|
case PT_LOAD:
|
|
loadsegs->addr = phdr[i].p_vaddr + load_bias;
|
|
loadsegs->p_vaddr = phdr[i].p_vaddr;
|
|
loadsegs->p_memsz = phdr[i].p_memsz;
|
|
++loadsegs;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
info->load_bias = load_bias;
|
|
info->load_addr = load_addr;
|
|
info->entry = ehdr->e_entry + load_bias;
|
|
info->start_code = -1;
|
|
info->end_code = 0;
|
|
info->start_data = -1;
|
|
info->end_data = 0;
|
|
info->brk = 0;
|
|
info->elf_flags = ehdr->e_flags;
|
|
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
struct elf_phdr *eppnt = phdr + i;
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
|
|
int elf_prot = 0;
|
|
|
|
if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
|
|
if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
|
|
if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
|
|
|
|
vaddr = load_bias + eppnt->p_vaddr;
|
|
vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
|
|
vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
|
|
|
|
error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
|
|
elf_prot, MAP_PRIVATE | MAP_FIXED,
|
|
image_fd, eppnt->p_offset - vaddr_po);
|
|
if (error == -1) {
|
|
goto exit_perror;
|
|
}
|
|
|
|
vaddr_ef = vaddr + eppnt->p_filesz;
|
|
vaddr_em = vaddr + eppnt->p_memsz;
|
|
|
|
/* If the load segment requests extra zeros (e.g. bss), map it. */
|
|
if (vaddr_ef < vaddr_em) {
|
|
zero_bss(vaddr_ef, vaddr_em, elf_prot);
|
|
}
|
|
|
|
/* Find the full program boundaries. */
|
|
if (elf_prot & PROT_EXEC) {
|
|
if (vaddr < info->start_code) {
|
|
info->start_code = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_code) {
|
|
info->end_code = vaddr_ef;
|
|
}
|
|
}
|
|
if (elf_prot & PROT_WRITE) {
|
|
if (vaddr < info->start_data) {
|
|
info->start_data = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_data) {
|
|
info->end_data = vaddr_ef;
|
|
}
|
|
if (vaddr_em > info->brk) {
|
|
info->brk = vaddr_em;
|
|
}
|
|
}
|
|
} else if (eppnt->p_type == PT_INTERP && pinterp_name) {
|
|
char *interp_name;
|
|
|
|
if (*pinterp_name) {
|
|
errmsg = "Multiple PT_INTERP entries";
|
|
goto exit_errmsg;
|
|
}
|
|
interp_name = malloc(eppnt->p_filesz);
|
|
if (!interp_name) {
|
|
goto exit_perror;
|
|
}
|
|
|
|
if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
|
|
memcpy(interp_name, bprm_buf + eppnt->p_offset,
|
|
eppnt->p_filesz);
|
|
} else {
|
|
retval = pread(image_fd, interp_name, eppnt->p_filesz,
|
|
eppnt->p_offset);
|
|
if (retval != eppnt->p_filesz) {
|
|
goto exit_perror;
|
|
}
|
|
}
|
|
if (interp_name[eppnt->p_filesz - 1] != 0) {
|
|
errmsg = "Invalid PT_INTERP entry";
|
|
goto exit_errmsg;
|
|
}
|
|
*pinterp_name = interp_name;
|
|
}
|
|
}
|
|
|
|
if (info->end_data == 0) {
|
|
info->start_data = info->end_code;
|
|
info->end_data = info->end_code;
|
|
info->brk = info->end_code;
|
|
}
|
|
|
|
if (qemu_log_enabled()) {
|
|
load_symbols(ehdr, image_fd, load_bias);
|
|
}
|
|
|
|
close(image_fd);
|
|
return;
|
|
|
|
exit_read:
|
|
if (retval >= 0) {
|
|
errmsg = "Incomplete read of file header";
|
|
goto exit_errmsg;
|
|
}
|
|
exit_perror:
|
|
errmsg = strerror(errno);
|
|
exit_errmsg:
|
|
fprintf(stderr, "%s: %s\n", image_name, errmsg);
|
|
exit(-1);
|
|
}
|
|
|
|
static void load_elf_interp(const char *filename, struct image_info *info,
|
|
char bprm_buf[BPRM_BUF_SIZE])
|
|
{
|
|
int fd, retval;
|
|
|
|
fd = open(path(filename), O_RDONLY);
|
|
if (fd < 0) {
|
|
goto exit_perror;
|
|
}
|
|
|
|
retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
|
|
if (retval < 0) {
|
|
goto exit_perror;
|
|
}
|
|
if (retval < BPRM_BUF_SIZE) {
|
|
memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
|
|
}
|
|
|
|
load_elf_image(filename, fd, info, NULL, bprm_buf);
|
|
return;
|
|
|
|
exit_perror:
|
|
fprintf(stderr, "%s: %s\n", filename, strerror(errno));
|
|
exit(-1);
|
|
}
|
|
|
|
static int symfind(const void *s0, const void *s1)
|
|
{
|
|
target_ulong addr = *(target_ulong *)s0;
|
|
struct elf_sym *sym = (struct elf_sym *)s1;
|
|
int result = 0;
|
|
if (addr < sym->st_value) {
|
|
result = -1;
|
|
} else if (addr >= sym->st_value + sym->st_size) {
|
|
result = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
|
|
{
|
|
#if ELF_CLASS == ELFCLASS32
|
|
struct elf_sym *syms = s->disas_symtab.elf32;
|
|
#else
|
|
struct elf_sym *syms = s->disas_symtab.elf64;
|
|
#endif
|
|
|
|
// binary search
|
|
struct elf_sym *sym;
|
|
|
|
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
|
|
if (sym != NULL) {
|
|
return s->disas_strtab + sym->st_name;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
/* FIXME: This should use elf_ops.h */
|
|
static int symcmp(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym0 = (struct elf_sym *)s0;
|
|
struct elf_sym *sym1 = (struct elf_sym *)s1;
|
|
return (sym0->st_value < sym1->st_value)
|
|
? -1
|
|
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
|
|
}
|
|
|
|
/* Best attempt to load symbols from this ELF object. */
|
|
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
|
|
{
|
|
int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
|
|
struct elf_shdr *shdr;
|
|
char *strings = NULL;
|
|
struct syminfo *s = NULL;
|
|
struct elf_sym *new_syms, *syms = NULL;
|
|
|
|
shnum = hdr->e_shnum;
|
|
i = shnum * sizeof(struct elf_shdr);
|
|
shdr = (struct elf_shdr *)alloca(i);
|
|
if (pread(fd, shdr, i, hdr->e_shoff) != i) {
|
|
return;
|
|
}
|
|
|
|
bswap_shdr(shdr, shnum);
|
|
for (i = 0; i < shnum; ++i) {
|
|
if (shdr[i].sh_type == SHT_SYMTAB) {
|
|
sym_idx = i;
|
|
str_idx = shdr[i].sh_link;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* There will be no symbol table if the file was stripped. */
|
|
return;
|
|
|
|
found:
|
|
/* Now know where the strtab and symtab are. Snarf them. */
|
|
s = malloc(sizeof(*s));
|
|
if (!s) {
|
|
goto give_up;
|
|
}
|
|
|
|
i = shdr[str_idx].sh_size;
|
|
s->disas_strtab = strings = malloc(i);
|
|
if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
|
|
goto give_up;
|
|
}
|
|
|
|
i = shdr[sym_idx].sh_size;
|
|
syms = malloc(i);
|
|
if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
|
|
goto give_up;
|
|
}
|
|
|
|
nsyms = i / sizeof(struct elf_sym);
|
|
for (i = 0; i < nsyms; ) {
|
|
bswap_sym(syms + i);
|
|
/* Throw away entries which we do not need. */
|
|
if (syms[i].st_shndx == SHN_UNDEF
|
|
|| syms[i].st_shndx >= SHN_LORESERVE
|
|
|| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
|
|
if (i < --nsyms) {
|
|
syms[i] = syms[nsyms];
|
|
}
|
|
} else {
|
|
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
|
|
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
|
|
syms[i].st_value &= ~(target_ulong)1;
|
|
#endif
|
|
syms[i].st_value += load_bias;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* No "useful" symbol. */
|
|
if (nsyms == 0) {
|
|
goto give_up;
|
|
}
|
|
|
|
/* Attempt to free the storage associated with the local symbols
|
|
that we threw away. Whether or not this has any effect on the
|
|
memory allocation depends on the malloc implementation and how
|
|
many symbols we managed to discard. */
|
|
new_syms = realloc(syms, nsyms * sizeof(*syms));
|
|
if (new_syms == NULL) {
|
|
goto give_up;
|
|
}
|
|
syms = new_syms;
|
|
|
|
qsort(syms, nsyms, sizeof(*syms), symcmp);
|
|
|
|
s->disas_num_syms = nsyms;
|
|
#if ELF_CLASS == ELFCLASS32
|
|
s->disas_symtab.elf32 = syms;
|
|
#else
|
|
s->disas_symtab.elf64 = syms;
|
|
#endif
|
|
s->lookup_symbol = lookup_symbolxx;
|
|
s->next = syminfos;
|
|
syminfos = s;
|
|
|
|
return;
|
|
|
|
give_up:
|
|
free(s);
|
|
free(strings);
|
|
free(syms);
|
|
}
|
|
|
|
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
|
|
{
|
|
struct image_info interp_info;
|
|
struct elfhdr elf_ex;
|
|
char *elf_interpreter = NULL;
|
|
char *scratch;
|
|
|
|
info->start_mmap = (abi_ulong)ELF_START_MMAP;
|
|
|
|
load_elf_image(bprm->filename, bprm->fd, info,
|
|
&elf_interpreter, bprm->buf);
|
|
|
|
/* ??? We need a copy of the elf header for passing to create_elf_tables.
|
|
If we do nothing, we'll have overwritten this when we re-use bprm->buf
|
|
when we load the interpreter. */
|
|
elf_ex = *(struct elfhdr *)bprm->buf;
|
|
|
|
/* Do this so that we can load the interpreter, if need be. We will
|
|
change some of these later */
|
|
bprm->p = setup_arg_pages(bprm, info);
|
|
|
|
scratch = g_new0(char, TARGET_PAGE_SIZE);
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
|
|
bprm->p, info->stack_limit);
|
|
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
|
|
bprm->p, info->stack_limit);
|
|
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
|
|
bprm->p, info->stack_limit);
|
|
g_free(scratch);
|
|
|
|
if (!bprm->p) {
|
|
fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
|
|
exit(-1);
|
|
}
|
|
|
|
if (elf_interpreter) {
|
|
load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
|
|
|
|
/* If the program interpreter is one of these two, then assume
|
|
an iBCS2 image. Otherwise assume a native linux image. */
|
|
|
|
if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
|
|
|| strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
|
|
info->personality = PER_SVR4;
|
|
|
|
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
|
|
and some applications "depend" upon this behavior. Since
|
|
we do not have the power to recompile these, we emulate
|
|
the SVr4 behavior. Sigh. */
|
|
target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE, -1, 0);
|
|
}
|
|
}
|
|
|
|
bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
|
|
info, (elf_interpreter ? &interp_info : NULL));
|
|
info->start_stack = bprm->p;
|
|
|
|
/* If we have an interpreter, set that as the program's entry point.
|
|
Copy the load_bias as well, to help PPC64 interpret the entry
|
|
point as a function descriptor. Do this after creating elf tables
|
|
so that we copy the original program entry point into the AUXV. */
|
|
if (elf_interpreter) {
|
|
info->load_bias = interp_info.load_bias;
|
|
info->entry = interp_info.entry;
|
|
free(elf_interpreter);
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
bprm->core_dump = &elf_core_dump;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
/*
|
|
* Definitions to generate Intel SVR4-like core files.
|
|
* These mostly have the same names as the SVR4 types with "target_elf_"
|
|
* tacked on the front to prevent clashes with linux definitions,
|
|
* and the typedef forms have been avoided. This is mostly like
|
|
* the SVR4 structure, but more Linuxy, with things that Linux does
|
|
* not support and which gdb doesn't really use excluded.
|
|
*
|
|
* Fields we don't dump (their contents is zero) in linux-user qemu
|
|
* are marked with XXX.
|
|
*
|
|
* Core dump code is copied from linux kernel (fs/binfmt_elf.c).
|
|
*
|
|
* Porting ELF coredump for target is (quite) simple process. First you
|
|
* define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
|
|
* the target resides):
|
|
*
|
|
* #define USE_ELF_CORE_DUMP
|
|
*
|
|
* Next you define type of register set used for dumping. ELF specification
|
|
* says that it needs to be array of elf_greg_t that has size of ELF_NREG.
|
|
*
|
|
* typedef <target_regtype> target_elf_greg_t;
|
|
* #define ELF_NREG <number of registers>
|
|
* typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
*
|
|
* Last step is to implement target specific function that copies registers
|
|
* from given cpu into just specified register set. Prototype is:
|
|
*
|
|
* static void elf_core_copy_regs(taret_elf_gregset_t *regs,
|
|
* const CPUArchState *env);
|
|
*
|
|
* Parameters:
|
|
* regs - copy register values into here (allocated and zeroed by caller)
|
|
* env - copy registers from here
|
|
*
|
|
* Example for ARM target is provided in this file.
|
|
*/
|
|
|
|
/* An ELF note in memory */
|
|
struct memelfnote {
|
|
const char *name;
|
|
size_t namesz;
|
|
size_t namesz_rounded;
|
|
int type;
|
|
size_t datasz;
|
|
size_t datasz_rounded;
|
|
void *data;
|
|
size_t notesz;
|
|
};
|
|
|
|
struct target_elf_siginfo {
|
|
abi_int si_signo; /* signal number */
|
|
abi_int si_code; /* extra code */
|
|
abi_int si_errno; /* errno */
|
|
};
|
|
|
|
struct target_elf_prstatus {
|
|
struct target_elf_siginfo pr_info; /* Info associated with signal */
|
|
abi_short pr_cursig; /* Current signal */
|
|
abi_ulong pr_sigpend; /* XXX */
|
|
abi_ulong pr_sighold; /* XXX */
|
|
target_pid_t pr_pid;
|
|
target_pid_t pr_ppid;
|
|
target_pid_t pr_pgrp;
|
|
target_pid_t pr_sid;
|
|
struct target_timeval pr_utime; /* XXX User time */
|
|
struct target_timeval pr_stime; /* XXX System time */
|
|
struct target_timeval pr_cutime; /* XXX Cumulative user time */
|
|
struct target_timeval pr_cstime; /* XXX Cumulative system time */
|
|
target_elf_gregset_t pr_reg; /* GP registers */
|
|
abi_int pr_fpvalid; /* XXX */
|
|
};
|
|
|
|
#define ELF_PRARGSZ (80) /* Number of chars for args */
|
|
|
|
struct target_elf_prpsinfo {
|
|
char pr_state; /* numeric process state */
|
|
char pr_sname; /* char for pr_state */
|
|
char pr_zomb; /* zombie */
|
|
char pr_nice; /* nice val */
|
|
abi_ulong pr_flag; /* flags */
|
|
target_uid_t pr_uid;
|
|
target_gid_t pr_gid;
|
|
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
|
|
/* Lots missing */
|
|
char pr_fname[16]; /* filename of executable */
|
|
char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
|
|
};
|
|
|
|
/* Here is the structure in which status of each thread is captured. */
|
|
struct elf_thread_status {
|
|
QTAILQ_ENTRY(elf_thread_status) ets_link;
|
|
struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
|
|
#if 0
|
|
elf_fpregset_t fpu; /* NT_PRFPREG */
|
|
struct task_struct *thread;
|
|
elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
|
|
#endif
|
|
struct memelfnote notes[1];
|
|
int num_notes;
|
|
};
|
|
|
|
struct elf_note_info {
|
|
struct memelfnote *notes;
|
|
struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
|
|
struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
|
|
|
|
QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
|
|
#if 0
|
|
/*
|
|
* Current version of ELF coredump doesn't support
|
|
* dumping fp regs etc.
|
|
*/
|
|
elf_fpregset_t *fpu;
|
|
elf_fpxregset_t *xfpu;
|
|
int thread_status_size;
|
|
#endif
|
|
int notes_size;
|
|
int numnote;
|
|
};
|
|
|
|
struct vm_area_struct {
|
|
target_ulong vma_start; /* start vaddr of memory region */
|
|
target_ulong vma_end; /* end vaddr of memory region */
|
|
abi_ulong vma_flags; /* protection etc. flags for the region */
|
|
QTAILQ_ENTRY(vm_area_struct) vma_link;
|
|
};
|
|
|
|
struct mm_struct {
|
|
QTAILQ_HEAD(, vm_area_struct) mm_mmap;
|
|
int mm_count; /* number of mappings */
|
|
};
|
|
|
|
static struct mm_struct *vma_init(void);
|
|
static void vma_delete(struct mm_struct *);
|
|
static int vma_add_mapping(struct mm_struct *, target_ulong,
|
|
target_ulong, abi_ulong);
|
|
static int vma_get_mapping_count(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *);
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *);
|
|
static int vma_walker(void *priv, target_ulong start, target_ulong end,
|
|
unsigned long flags);
|
|
|
|
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
|
|
static void fill_note(struct memelfnote *, const char *, int,
|
|
unsigned int, void *);
|
|
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
|
|
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
|
|
static void fill_auxv_note(struct memelfnote *, const TaskState *);
|
|
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
|
|
static size_t note_size(const struct memelfnote *);
|
|
static void free_note_info(struct elf_note_info *);
|
|
static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
|
|
static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
|
|
static int core_dump_filename(const TaskState *, char *, size_t);
|
|
|
|
static int dump_write(int, const void *, size_t);
|
|
static int write_note(struct memelfnote *, int);
|
|
static int write_note_info(struct elf_note_info *, int);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
|
|
{
|
|
prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
|
|
prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
|
|
prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
|
|
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
|
|
prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
|
|
prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
|
|
prstatus->pr_pid = tswap32(prstatus->pr_pid);
|
|
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
|
|
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
|
|
prstatus->pr_sid = tswap32(prstatus->pr_sid);
|
|
/* cpu times are not filled, so we skip them */
|
|
/* regs should be in correct format already */
|
|
prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
|
|
}
|
|
|
|
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
|
|
{
|
|
psinfo->pr_flag = tswapal(psinfo->pr_flag);
|
|
psinfo->pr_uid = tswap16(psinfo->pr_uid);
|
|
psinfo->pr_gid = tswap16(psinfo->pr_gid);
|
|
psinfo->pr_pid = tswap32(psinfo->pr_pid);
|
|
psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
|
|
psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
|
|
psinfo->pr_sid = tswap32(psinfo->pr_sid);
|
|
}
|
|
|
|
static void bswap_note(struct elf_note *en)
|
|
{
|
|
bswap32s(&en->n_namesz);
|
|
bswap32s(&en->n_descsz);
|
|
bswap32s(&en->n_type);
|
|
}
|
|
#else
|
|
static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
|
|
static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
|
|
static inline void bswap_note(struct elf_note *en) { }
|
|
#endif /* BSWAP_NEEDED */
|
|
|
|
/*
|
|
* Minimal support for linux memory regions. These are needed
|
|
* when we are finding out what memory exactly belongs to
|
|
* emulated process. No locks needed here, as long as
|
|
* thread that received the signal is stopped.
|
|
*/
|
|
|
|
static struct mm_struct *vma_init(void)
|
|
{
|
|
struct mm_struct *mm;
|
|
|
|
if ((mm = g_malloc(sizeof (*mm))) == NULL)
|
|
return (NULL);
|
|
|
|
mm->mm_count = 0;
|
|
QTAILQ_INIT(&mm->mm_mmap);
|
|
|
|
return (mm);
|
|
}
|
|
|
|
static void vma_delete(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
while ((vma = vma_first(mm)) != NULL) {
|
|
QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
|
|
g_free(vma);
|
|
}
|
|
g_free(mm);
|
|
}
|
|
|
|
static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
|
|
target_ulong end, abi_ulong flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((vma = g_malloc0(sizeof (*vma))) == NULL)
|
|
return (-1);
|
|
|
|
vma->vma_start = start;
|
|
vma->vma_end = end;
|
|
vma->vma_flags = flags;
|
|
|
|
QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
|
|
mm->mm_count++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
|
|
{
|
|
return (QTAILQ_FIRST(&mm->mm_mmap));
|
|
}
|
|
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
|
|
{
|
|
return (QTAILQ_NEXT(vma, vma_link));
|
|
}
|
|
|
|
static int vma_get_mapping_count(const struct mm_struct *mm)
|
|
{
|
|
return (mm->mm_count);
|
|
}
|
|
|
|
/*
|
|
* Calculate file (dump) size of given memory region.
|
|
*/
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
|
|
{
|
|
/* if we cannot even read the first page, skip it */
|
|
if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
|
|
return (0);
|
|
|
|
/*
|
|
* Usually we don't dump executable pages as they contain
|
|
* non-writable code that debugger can read directly from
|
|
* target library etc. However, thread stacks are marked
|
|
* also executable so we read in first page of given region
|
|
* and check whether it contains elf header. If there is
|
|
* no elf header, we dump it.
|
|
*/
|
|
if (vma->vma_flags & PROT_EXEC) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
|
|
copy_from_user(page, vma->vma_start, sizeof (page));
|
|
if ((page[EI_MAG0] == ELFMAG0) &&
|
|
(page[EI_MAG1] == ELFMAG1) &&
|
|
(page[EI_MAG2] == ELFMAG2) &&
|
|
(page[EI_MAG3] == ELFMAG3)) {
|
|
/*
|
|
* Mappings are possibly from ELF binary. Don't dump
|
|
* them.
|
|
*/
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (vma->vma_end - vma->vma_start);
|
|
}
|
|
|
|
static int vma_walker(void *priv, target_ulong start, target_ulong end,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = (struct mm_struct *)priv;
|
|
|
|
vma_add_mapping(mm, start, end, flags);
|
|
return (0);
|
|
}
|
|
|
|
static void fill_note(struct memelfnote *note, const char *name, int type,
|
|
unsigned int sz, void *data)
|
|
{
|
|
unsigned int namesz;
|
|
|
|
namesz = strlen(name) + 1;
|
|
note->name = name;
|
|
note->namesz = namesz;
|
|
note->namesz_rounded = roundup(namesz, sizeof (int32_t));
|
|
note->type = type;
|
|
note->datasz = sz;
|
|
note->datasz_rounded = roundup(sz, sizeof (int32_t));
|
|
|
|
note->data = data;
|
|
|
|
/*
|
|
* We calculate rounded up note size here as specified by
|
|
* ELF document.
|
|
*/
|
|
note->notesz = sizeof (struct elf_note) +
|
|
note->namesz_rounded + note->datasz_rounded;
|
|
}
|
|
|
|
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
|
|
uint32_t flags)
|
|
{
|
|
(void) memset(elf, 0, sizeof(*elf));
|
|
|
|
(void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = machine;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_flags = flags;
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = segs;
|
|
|
|
bswap_ehdr(elf);
|
|
}
|
|
|
|
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
|
|
{
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = offset;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = sz;
|
|
phdr->p_memsz = 0;
|
|
phdr->p_flags = 0;
|
|
phdr->p_align = 0;
|
|
|
|
bswap_phdr(phdr, 1);
|
|
}
|
|
|
|
static size_t note_size(const struct memelfnote *note)
|
|
{
|
|
return (note->notesz);
|
|
}
|
|
|
|
static void fill_prstatus(struct target_elf_prstatus *prstatus,
|
|
const TaskState *ts, int signr)
|
|
{
|
|
(void) memset(prstatus, 0, sizeof (*prstatus));
|
|
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
|
|
prstatus->pr_pid = ts->ts_tid;
|
|
prstatus->pr_ppid = getppid();
|
|
prstatus->pr_pgrp = getpgrp();
|
|
prstatus->pr_sid = getsid(0);
|
|
|
|
bswap_prstatus(prstatus);
|
|
}
|
|
|
|
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
|
|
{
|
|
char *base_filename;
|
|
unsigned int i, len;
|
|
|
|
(void) memset(psinfo, 0, sizeof (*psinfo));
|
|
|
|
len = ts->info->arg_end - ts->info->arg_start;
|
|
if (len >= ELF_PRARGSZ)
|
|
len = ELF_PRARGSZ - 1;
|
|
if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
|
|
return -EFAULT;
|
|
for (i = 0; i < len; i++)
|
|
if (psinfo->pr_psargs[i] == 0)
|
|
psinfo->pr_psargs[i] = ' ';
|
|
psinfo->pr_psargs[len] = 0;
|
|
|
|
psinfo->pr_pid = getpid();
|
|
psinfo->pr_ppid = getppid();
|
|
psinfo->pr_pgrp = getpgrp();
|
|
psinfo->pr_sid = getsid(0);
|
|
psinfo->pr_uid = getuid();
|
|
psinfo->pr_gid = getgid();
|
|
|
|
base_filename = g_path_get_basename(ts->bprm->filename);
|
|
/*
|
|
* Using strncpy here is fine: at max-length,
|
|
* this field is not NUL-terminated.
|
|
*/
|
|
(void) strncpy(psinfo->pr_fname, base_filename,
|
|
sizeof(psinfo->pr_fname));
|
|
|
|
g_free(base_filename);
|
|
bswap_psinfo(psinfo);
|
|
return (0);
|
|
}
|
|
|
|
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
|
|
{
|
|
elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
|
|
elf_addr_t orig_auxv = auxv;
|
|
void *ptr;
|
|
int len = ts->info->auxv_len;
|
|
|
|
/*
|
|
* Auxiliary vector is stored in target process stack. It contains
|
|
* {type, value} pairs that we need to dump into note. This is not
|
|
* strictly necessary but we do it here for sake of completeness.
|
|
*/
|
|
|
|
/* read in whole auxv vector and copy it to memelfnote */
|
|
ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
|
|
if (ptr != NULL) {
|
|
fill_note(note, "CORE", NT_AUXV, len, ptr);
|
|
unlock_user(ptr, auxv, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Constructs name of coredump file. We have following convention
|
|
* for the name:
|
|
* qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
|
|
*
|
|
* Returns 0 in case of success, -1 otherwise (errno is set).
|
|
*/
|
|
static int core_dump_filename(const TaskState *ts, char *buf,
|
|
size_t bufsize)
|
|
{
|
|
char timestamp[64];
|
|
char *filename = NULL;
|
|
char *base_filename = NULL;
|
|
struct timeval tv;
|
|
struct tm tm;
|
|
|
|
assert(bufsize >= PATH_MAX);
|
|
|
|
if (gettimeofday(&tv, NULL) < 0) {
|
|
(void) fprintf(stderr, "unable to get current timestamp: %s",
|
|
strerror(errno));
|
|
return (-1);
|
|
}
|
|
|
|
filename = strdup(ts->bprm->filename);
|
|
base_filename = strdup(basename(filename));
|
|
(void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
|
|
localtime_r(&tv.tv_sec, &tm));
|
|
(void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
|
|
base_filename, timestamp, (int)getpid());
|
|
free(base_filename);
|
|
free(filename);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int dump_write(int fd, const void *ptr, size_t size)
|
|
{
|
|
const char *bufp = (const char *)ptr;
|
|
ssize_t bytes_written, bytes_left;
|
|
struct rlimit dumpsize;
|
|
off_t pos;
|
|
|
|
bytes_written = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
|
|
if (errno == ESPIPE) { /* not a seekable stream */
|
|
bytes_left = size;
|
|
} else {
|
|
return pos;
|
|
}
|
|
} else {
|
|
if (dumpsize.rlim_cur <= pos) {
|
|
return -1;
|
|
} else if (dumpsize.rlim_cur == RLIM_INFINITY) {
|
|
bytes_left = size;
|
|
} else {
|
|
size_t limit_left=dumpsize.rlim_cur - pos;
|
|
bytes_left = limit_left >= size ? size : limit_left ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In normal conditions, single write(2) should do but
|
|
* in case of socket etc. this mechanism is more portable.
|
|
*/
|
|
do {
|
|
bytes_written = write(fd, bufp, bytes_left);
|
|
if (bytes_written < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
return (-1);
|
|
} else if (bytes_written == 0) { /* eof */
|
|
return (-1);
|
|
}
|
|
bufp += bytes_written;
|
|
bytes_left -= bytes_written;
|
|
} while (bytes_left > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int write_note(struct memelfnote *men, int fd)
|
|
{
|
|
struct elf_note en;
|
|
|
|
en.n_namesz = men->namesz;
|
|
en.n_type = men->type;
|
|
en.n_descsz = men->datasz;
|
|
|
|
bswap_note(&en);
|
|
|
|
if (dump_write(fd, &en, sizeof(en)) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->name, men->namesz_rounded) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->data, men->datasz_rounded) != 0)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
|
|
TaskState *ts = (TaskState *)cpu->opaque;
|
|
struct elf_thread_status *ets;
|
|
|
|
ets = g_malloc0(sizeof (*ets));
|
|
ets->num_notes = 1; /* only prstatus is dumped */
|
|
fill_prstatus(&ets->prstatus, ts, 0);
|
|
elf_core_copy_regs(&ets->prstatus.pr_reg, env);
|
|
fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
|
|
&ets->prstatus);
|
|
|
|
QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
|
|
|
|
info->notes_size += note_size(&ets->notes[0]);
|
|
}
|
|
|
|
static void init_note_info(struct elf_note_info *info)
|
|
{
|
|
/* Initialize the elf_note_info structure so that it is at
|
|
* least safe to call free_note_info() on it. Must be
|
|
* called before calling fill_note_info().
|
|
*/
|
|
memset(info, 0, sizeof (*info));
|
|
QTAILQ_INIT(&info->thread_list);
|
|
}
|
|
|
|
static int fill_note_info(struct elf_note_info *info,
|
|
long signr, const CPUArchState *env)
|
|
{
|
|
#define NUMNOTES 3
|
|
CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
|
|
TaskState *ts = (TaskState *)cpu->opaque;
|
|
int i;
|
|
|
|
info->notes = g_new0(struct memelfnote, NUMNOTES);
|
|
if (info->notes == NULL)
|
|
return (-ENOMEM);
|
|
info->prstatus = g_malloc0(sizeof (*info->prstatus));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
info->psinfo = g_malloc0(sizeof (*info->psinfo));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* First fill in status (and registers) of current thread
|
|
* including process info & aux vector.
|
|
*/
|
|
fill_prstatus(info->prstatus, ts, signr);
|
|
elf_core_copy_regs(&info->prstatus->pr_reg, env);
|
|
fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
|
|
sizeof (*info->prstatus), info->prstatus);
|
|
fill_psinfo(info->psinfo, ts);
|
|
fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
|
|
sizeof (*info->psinfo), info->psinfo);
|
|
fill_auxv_note(&info->notes[2], ts);
|
|
info->numnote = 3;
|
|
|
|
info->notes_size = 0;
|
|
for (i = 0; i < info->numnote; i++)
|
|
info->notes_size += note_size(&info->notes[i]);
|
|
|
|
/* read and fill status of all threads */
|
|
cpu_list_lock();
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu == thread_cpu) {
|
|
continue;
|
|
}
|
|
fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
|
|
}
|
|
cpu_list_unlock();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void free_note_info(struct elf_note_info *info)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
|
|
while (!QTAILQ_EMPTY(&info->thread_list)) {
|
|
ets = QTAILQ_FIRST(&info->thread_list);
|
|
QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
|
|
g_free(ets);
|
|
}
|
|
|
|
g_free(info->prstatus);
|
|
g_free(info->psinfo);
|
|
g_free(info->notes);
|
|
}
|
|
|
|
static int write_note_info(struct elf_note_info *info, int fd)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
int i, error = 0;
|
|
|
|
/* write prstatus, psinfo and auxv for current thread */
|
|
for (i = 0; i < info->numnote; i++)
|
|
if ((error = write_note(&info->notes[i], fd)) != 0)
|
|
return (error);
|
|
|
|
/* write prstatus for each thread */
|
|
QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
|
|
if ((error = write_note(&ets->notes[0], fd)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write out ELF coredump.
|
|
*
|
|
* See documentation of ELF object file format in:
|
|
* http://www.caldera.com/developers/devspecs/gabi41.pdf
|
|
*
|
|
* Coredump format in linux is following:
|
|
*
|
|
* 0 +----------------------+ \
|
|
* | ELF header | ET_CORE |
|
|
* +----------------------+ |
|
|
* | ELF program headers | |--- headers
|
|
* | - NOTE section | |
|
|
* | - PT_LOAD sections | |
|
|
* +----------------------+ /
|
|
* | NOTEs: |
|
|
* | - NT_PRSTATUS |
|
|
* | - NT_PRSINFO |
|
|
* | - NT_AUXV |
|
|
* +----------------------+ <-- aligned to target page
|
|
* | Process memory dump |
|
|
* : :
|
|
* . .
|
|
* : :
|
|
* | |
|
|
* +----------------------+
|
|
*
|
|
* NT_PRSTATUS -> struct elf_prstatus (per thread)
|
|
* NT_PRSINFO -> struct elf_prpsinfo
|
|
* NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
|
|
*
|
|
* Format follows System V format as close as possible. Current
|
|
* version limitations are as follows:
|
|
* - no floating point registers are dumped
|
|
*
|
|
* Function returns 0 in case of success, negative errno otherwise.
|
|
*
|
|
* TODO: make this work also during runtime: it should be
|
|
* possible to force coredump from running process and then
|
|
* continue processing. For example qemu could set up SIGUSR2
|
|
* handler (provided that target process haven't registered
|
|
* handler for that) that does the dump when signal is received.
|
|
*/
|
|
static int elf_core_dump(int signr, const CPUArchState *env)
|
|
{
|
|
const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
|
|
const TaskState *ts = (const TaskState *)cpu->opaque;
|
|
struct vm_area_struct *vma = NULL;
|
|
char corefile[PATH_MAX];
|
|
struct elf_note_info info;
|
|
struct elfhdr elf;
|
|
struct elf_phdr phdr;
|
|
struct rlimit dumpsize;
|
|
struct mm_struct *mm = NULL;
|
|
off_t offset = 0, data_offset = 0;
|
|
int segs = 0;
|
|
int fd = -1;
|
|
|
|
init_note_info(&info);
|
|
|
|
errno = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if (dumpsize.rlim_cur == 0)
|
|
return 0;
|
|
|
|
if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
|
|
return (-errno);
|
|
|
|
if ((fd = open(corefile, O_WRONLY | O_CREAT,
|
|
S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
|
|
return (-errno);
|
|
|
|
/*
|
|
* Walk through target process memory mappings and
|
|
* set up structure containing this information. After
|
|
* this point vma_xxx functions can be used.
|
|
*/
|
|
if ((mm = vma_init()) == NULL)
|
|
goto out;
|
|
|
|
walk_memory_regions(mm, vma_walker);
|
|
segs = vma_get_mapping_count(mm);
|
|
|
|
/*
|
|
* Construct valid coredump ELF header. We also
|
|
* add one more segment for notes.
|
|
*/
|
|
fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
|
|
if (dump_write(fd, &elf, sizeof (elf)) != 0)
|
|
goto out;
|
|
|
|
/* fill in the in-memory version of notes */
|
|
if (fill_note_info(&info, signr, env) < 0)
|
|
goto out;
|
|
|
|
offset += sizeof (elf); /* elf header */
|
|
offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
|
|
|
|
/* write out notes program header */
|
|
fill_elf_note_phdr(&phdr, info.notes_size, offset);
|
|
|
|
offset += info.notes_size;
|
|
if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* ELF specification wants data to start at page boundary so
|
|
* we align it here.
|
|
*/
|
|
data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
|
|
|
|
/*
|
|
* Write program headers for memory regions mapped in
|
|
* the target process.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
(void) memset(&phdr, 0, sizeof (phdr));
|
|
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_offset = offset;
|
|
phdr.p_vaddr = vma->vma_start;
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = vma_dump_size(vma);
|
|
offset += phdr.p_filesz;
|
|
phdr.p_memsz = vma->vma_end - vma->vma_start;
|
|
phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
|
|
if (vma->vma_flags & PROT_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
if (vma->vma_flags & PROT_EXEC)
|
|
phdr.p_flags |= PF_X;
|
|
phdr.p_align = ELF_EXEC_PAGESIZE;
|
|
|
|
bswap_phdr(&phdr, 1);
|
|
dump_write(fd, &phdr, sizeof (phdr));
|
|
}
|
|
|
|
/*
|
|
* Next we write notes just after program headers. No
|
|
* alignment needed here.
|
|
*/
|
|
if (write_note_info(&info, fd) < 0)
|
|
goto out;
|
|
|
|
/* align data to page boundary */
|
|
if (lseek(fd, data_offset, SEEK_SET) != data_offset)
|
|
goto out;
|
|
|
|
/*
|
|
* Finally we can dump process memory into corefile as well.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
abi_ulong addr;
|
|
abi_ulong end;
|
|
|
|
end = vma->vma_start + vma_dump_size(vma);
|
|
|
|
for (addr = vma->vma_start; addr < end;
|
|
addr += TARGET_PAGE_SIZE) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
int error;
|
|
|
|
/*
|
|
* Read in page from target process memory and
|
|
* write it to coredump file.
|
|
*/
|
|
error = copy_from_user(page, addr, sizeof (page));
|
|
if (error != 0) {
|
|
(void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
|
|
addr);
|
|
errno = -error;
|
|
goto out;
|
|
}
|
|
if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
free_note_info(&info);
|
|
if (mm != NULL)
|
|
vma_delete(mm);
|
|
(void) close(fd);
|
|
|
|
if (errno != 0)
|
|
return (-errno);
|
|
return (0);
|
|
}
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
|
|
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
init_thread(regs, infop);
|
|
}
|