mirror of
https://github.com/qemu/qemu.git
synced 2024-11-26 21:33:40 +08:00
36ffc122dc
Monochrome cursors are still used by Windows guests with the QXL-WDDM-DOD driver. Such cursor types have one odd feature, inversion of colors. GDK does not seem to support it, so implement an alternative solution: fill the inverted pixels and add an outline to make the cursor more visible. Tested with the text cursor in Notepad and Windows 10. cursor_set_mono is also used by the vmware GPU, so add a special check to avoid breaking its 32bpp format (tested with Kubuntu 14.04.4). I was unable to find a guest which supports the 1bpp format with a vmware GPU. The old implementation was buggy and removed in v2.10.0-108-g79c5a10cdd ("qxl: drop mono cursor support"), this version improves upon that by adding bounds validation, clarifying the semantics of the two masks and adds a workaround for inverted colors support. Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1611984 Signed-off-by: Peter Wu <peter@lekensteyn.nl> Message-id: 20180903145447.17142-1-peter@lekensteyn.nl [ kraxel: minor codestyle fix ] Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
245 lines
6.7 KiB
C
245 lines
6.7 KiB
C
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "ui/console.h"
|
|
|
|
#include "cursor_hidden.xpm"
|
|
#include "cursor_left_ptr.xpm"
|
|
|
|
/* for creating built-in cursors */
|
|
static QEMUCursor *cursor_parse_xpm(const char *xpm[])
|
|
{
|
|
QEMUCursor *c;
|
|
uint32_t ctab[128];
|
|
unsigned int width, height, colors, chars;
|
|
unsigned int line = 0, i, r, g, b, x, y, pixel;
|
|
char name[16];
|
|
uint8_t idx;
|
|
|
|
/* parse header line: width, height, #colors, #chars */
|
|
if (sscanf(xpm[line], "%u %u %u %u",
|
|
&width, &height, &colors, &chars) != 4) {
|
|
fprintf(stderr, "%s: header parse error: \"%s\"\n",
|
|
__func__, xpm[line]);
|
|
return NULL;
|
|
}
|
|
if (chars != 1) {
|
|
fprintf(stderr, "%s: chars != 1 not supported\n", __func__);
|
|
return NULL;
|
|
}
|
|
line++;
|
|
|
|
/* parse color table */
|
|
for (i = 0; i < colors; i++, line++) {
|
|
if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) {
|
|
if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) {
|
|
ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r;
|
|
continue;
|
|
}
|
|
if (strcmp(name, "None") == 0) {
|
|
ctab[idx] = 0x00000000;
|
|
continue;
|
|
}
|
|
}
|
|
fprintf(stderr, "%s: color parse error: \"%s\"\n",
|
|
__func__, xpm[line]);
|
|
return NULL;
|
|
}
|
|
|
|
/* parse pixel data */
|
|
c = cursor_alloc(width, height);
|
|
for (pixel = 0, y = 0; y < height; y++, line++) {
|
|
for (x = 0; x < height; x++, pixel++) {
|
|
idx = xpm[line][x];
|
|
c->data[pixel] = ctab[idx];
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/* nice for debugging */
|
|
void cursor_print_ascii_art(QEMUCursor *c, const char *prefix)
|
|
{
|
|
uint32_t *data = c->data;
|
|
int x,y;
|
|
|
|
for (y = 0; y < c->height; y++) {
|
|
fprintf(stderr, "%s: %2d: |", prefix, y);
|
|
for (x = 0; x < c->width; x++, data++) {
|
|
if ((*data & 0xff000000) != 0xff000000) {
|
|
fprintf(stderr, " "); /* transparent */
|
|
} else if ((*data & 0x00ffffff) == 0x00ffffff) {
|
|
fprintf(stderr, "."); /* white */
|
|
} else if ((*data & 0x00ffffff) == 0x00000000) {
|
|
fprintf(stderr, "X"); /* black */
|
|
} else {
|
|
fprintf(stderr, "o"); /* other */
|
|
}
|
|
}
|
|
fprintf(stderr, "|\n");
|
|
}
|
|
}
|
|
|
|
QEMUCursor *cursor_builtin_hidden(void)
|
|
{
|
|
return cursor_parse_xpm(cursor_hidden_xpm);
|
|
}
|
|
|
|
QEMUCursor *cursor_builtin_left_ptr(void)
|
|
{
|
|
return cursor_parse_xpm(cursor_left_ptr_xpm);
|
|
}
|
|
|
|
QEMUCursor *cursor_alloc(int width, int height)
|
|
{
|
|
QEMUCursor *c;
|
|
int datasize = width * height * sizeof(uint32_t);
|
|
|
|
c = g_malloc0(sizeof(QEMUCursor) + datasize);
|
|
c->width = width;
|
|
c->height = height;
|
|
c->refcount = 1;
|
|
return c;
|
|
}
|
|
|
|
void cursor_get(QEMUCursor *c)
|
|
{
|
|
c->refcount++;
|
|
}
|
|
|
|
void cursor_put(QEMUCursor *c)
|
|
{
|
|
if (c == NULL)
|
|
return;
|
|
c->refcount--;
|
|
if (c->refcount)
|
|
return;
|
|
g_free(c);
|
|
}
|
|
|
|
int cursor_get_mono_bpl(QEMUCursor *c)
|
|
{
|
|
return DIV_ROUND_UP(c->width, 8);
|
|
}
|
|
|
|
void cursor_set_mono(QEMUCursor *c,
|
|
uint32_t foreground, uint32_t background, uint8_t *image,
|
|
int transparent, uint8_t *mask)
|
|
{
|
|
uint32_t *data = c->data;
|
|
uint8_t bit;
|
|
int x,y,bpl;
|
|
bool expand_bitmap_only = image == mask;
|
|
bool has_inverted_colors = false;
|
|
const uint32_t inverted = 0x80000000;
|
|
|
|
/*
|
|
* Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask':
|
|
* https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers
|
|
*/
|
|
bpl = cursor_get_mono_bpl(c);
|
|
for (y = 0; y < c->height; y++) {
|
|
bit = 0x80;
|
|
for (x = 0; x < c->width; x++, data++) {
|
|
if (transparent && mask[x/8] & bit) {
|
|
if (!expand_bitmap_only && image[x / 8] & bit) {
|
|
*data = inverted;
|
|
has_inverted_colors = true;
|
|
} else {
|
|
*data = 0x00000000;
|
|
}
|
|
} else if (!transparent && !(mask[x/8] & bit)) {
|
|
*data = 0x00000000;
|
|
} else if (image[x/8] & bit) {
|
|
*data = 0xff000000 | foreground;
|
|
} else {
|
|
*data = 0xff000000 | background;
|
|
}
|
|
bit >>= 1;
|
|
if (bit == 0) {
|
|
bit = 0x80;
|
|
}
|
|
}
|
|
mask += bpl;
|
|
image += bpl;
|
|
}
|
|
|
|
/*
|
|
* If there are any pixels with inverted colors, create an outline (fill
|
|
* transparent neighbors with the background color) and use the foreground
|
|
* color as "inverted" color.
|
|
*/
|
|
if (has_inverted_colors) {
|
|
data = c->data;
|
|
for (y = 0; y < c->height; y++) {
|
|
for (x = 0; x < c->width; x++, data++) {
|
|
if (*data == 0 /* transparent */ &&
|
|
((x > 0 && data[-1] == inverted) ||
|
|
(x + 1 < c->width && data[1] == inverted) ||
|
|
(y > 0 && data[-c->width] == inverted) ||
|
|
(y + 1 < c->height && data[c->width] == inverted))) {
|
|
*data = 0xff000000 | background;
|
|
}
|
|
}
|
|
}
|
|
data = c->data;
|
|
for (x = 0; x < c->width * c->height; x++, data++) {
|
|
if (*data == inverted) {
|
|
*data = 0xff000000 | foreground;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image)
|
|
{
|
|
uint32_t *data = c->data;
|
|
uint8_t bit;
|
|
int x,y,bpl;
|
|
|
|
bpl = cursor_get_mono_bpl(c);
|
|
memset(image, 0, bpl * c->height);
|
|
for (y = 0; y < c->height; y++) {
|
|
bit = 0x80;
|
|
for (x = 0; x < c->width; x++, data++) {
|
|
if (((*data & 0xff000000) == 0xff000000) &&
|
|
((*data & 0x00ffffff) == foreground)) {
|
|
image[x/8] |= bit;
|
|
}
|
|
bit >>= 1;
|
|
if (bit == 0) {
|
|
bit = 0x80;
|
|
}
|
|
}
|
|
image += bpl;
|
|
}
|
|
}
|
|
|
|
void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask)
|
|
{
|
|
uint32_t *data = c->data;
|
|
uint8_t bit;
|
|
int x,y,bpl;
|
|
|
|
bpl = cursor_get_mono_bpl(c);
|
|
memset(mask, 0, bpl * c->height);
|
|
for (y = 0; y < c->height; y++) {
|
|
bit = 0x80;
|
|
for (x = 0; x < c->width; x++, data++) {
|
|
if ((*data & 0xff000000) != 0xff000000) {
|
|
if (transparent != 0) {
|
|
mask[x/8] |= bit;
|
|
}
|
|
} else {
|
|
if (transparent == 0) {
|
|
mask[x/8] |= bit;
|
|
}
|
|
}
|
|
bit >>= 1;
|
|
if (bit == 0) {
|
|
bit = 0x80;
|
|
}
|
|
}
|
|
mask += bpl;
|
|
}
|
|
}
|