mirror of
https://github.com/qemu/qemu.git
synced 2025-01-22 05:23:31 +08:00
195801d700
The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
443 lines
12 KiB
C
443 lines
12 KiB
C
/*
|
|
* CPU thread main loop - common bits for user and system mode emulation
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "exec/cpu-common.h"
|
|
#include "hw/core/cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "qemu/lockable.h"
|
|
#include "trace/trace-root.h"
|
|
|
|
QemuMutex qemu_cpu_list_lock;
|
|
static QemuCond exclusive_cond;
|
|
static QemuCond exclusive_resume;
|
|
static QemuCond qemu_work_cond;
|
|
|
|
/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
|
|
* under qemu_cpu_list_lock, read with atomic operations.
|
|
*/
|
|
static int pending_cpus;
|
|
|
|
void qemu_init_cpu_list(void)
|
|
{
|
|
/* This is needed because qemu_init_cpu_list is also called by the
|
|
* child process in a fork. */
|
|
pending_cpus = 0;
|
|
|
|
qemu_mutex_init(&qemu_cpu_list_lock);
|
|
qemu_cond_init(&exclusive_cond);
|
|
qemu_cond_init(&exclusive_resume);
|
|
qemu_cond_init(&qemu_work_cond);
|
|
}
|
|
|
|
void cpu_list_lock(void)
|
|
{
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
void cpu_list_unlock(void)
|
|
{
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
static bool cpu_index_auto_assigned;
|
|
|
|
static int cpu_get_free_index(void)
|
|
{
|
|
CPUState *some_cpu;
|
|
int max_cpu_index = 0;
|
|
|
|
cpu_index_auto_assigned = true;
|
|
CPU_FOREACH(some_cpu) {
|
|
if (some_cpu->cpu_index >= max_cpu_index) {
|
|
max_cpu_index = some_cpu->cpu_index + 1;
|
|
}
|
|
}
|
|
return max_cpu_index;
|
|
}
|
|
|
|
CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
|
|
static unsigned int cpu_list_generation_id;
|
|
|
|
unsigned int cpu_list_generation_id_get(void)
|
|
{
|
|
return cpu_list_generation_id;
|
|
}
|
|
|
|
void cpu_list_add(CPUState *cpu)
|
|
{
|
|
QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
|
|
if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
|
|
cpu->cpu_index = cpu_get_free_index();
|
|
assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
|
|
} else {
|
|
assert(!cpu_index_auto_assigned);
|
|
}
|
|
QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
|
|
cpu_list_generation_id++;
|
|
}
|
|
|
|
void cpu_list_remove(CPUState *cpu)
|
|
{
|
|
QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
|
|
if (!QTAILQ_IN_USE(cpu, node)) {
|
|
/* there is nothing to undo since cpu_exec_init() hasn't been called */
|
|
return;
|
|
}
|
|
|
|
QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
|
|
cpu->cpu_index = UNASSIGNED_CPU_INDEX;
|
|
cpu_list_generation_id++;
|
|
}
|
|
|
|
CPUState *qemu_get_cpu(int index)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu->cpu_index == index) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* current CPU in the current thread. It is only valid inside cpu_exec() */
|
|
__thread CPUState *current_cpu;
|
|
|
|
struct qemu_work_item {
|
|
QSIMPLEQ_ENTRY(qemu_work_item) node;
|
|
run_on_cpu_func func;
|
|
run_on_cpu_data data;
|
|
bool free, exclusive, done;
|
|
};
|
|
|
|
static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
|
|
{
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
|
|
wi->done = false;
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
|
|
QemuMutex *mutex)
|
|
{
|
|
struct qemu_work_item wi;
|
|
|
|
if (qemu_cpu_is_self(cpu)) {
|
|
func(cpu, data);
|
|
return;
|
|
}
|
|
|
|
wi.func = func;
|
|
wi.data = data;
|
|
wi.done = false;
|
|
wi.free = false;
|
|
wi.exclusive = false;
|
|
|
|
queue_work_on_cpu(cpu, &wi);
|
|
while (!qatomic_load_acquire(&wi.done)) {
|
|
CPUState *self_cpu = current_cpu;
|
|
|
|
qemu_cond_wait(&qemu_work_cond, mutex);
|
|
current_cpu = self_cpu;
|
|
}
|
|
}
|
|
|
|
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
wi = g_new0(struct qemu_work_item, 1);
|
|
wi->func = func;
|
|
wi->data = data;
|
|
wi->free = true;
|
|
|
|
queue_work_on_cpu(cpu, wi);
|
|
}
|
|
|
|
/* Wait for pending exclusive operations to complete. The CPU list lock
|
|
must be held. */
|
|
static inline void exclusive_idle(void)
|
|
{
|
|
while (pending_cpus) {
|
|
qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
|
|
}
|
|
}
|
|
|
|
/* Start an exclusive operation.
|
|
Must only be called from outside cpu_exec. */
|
|
void start_exclusive(void)
|
|
{
|
|
CPUState *other_cpu;
|
|
int running_cpus;
|
|
|
|
if (current_cpu->exclusive_context_count) {
|
|
current_cpu->exclusive_context_count++;
|
|
return;
|
|
}
|
|
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
exclusive_idle();
|
|
|
|
/* Make all other cpus stop executing. */
|
|
qatomic_set(&pending_cpus, 1);
|
|
|
|
/* Write pending_cpus before reading other_cpu->running. */
|
|
smp_mb();
|
|
running_cpus = 0;
|
|
CPU_FOREACH(other_cpu) {
|
|
if (qatomic_read(&other_cpu->running)) {
|
|
other_cpu->has_waiter = true;
|
|
running_cpus++;
|
|
qemu_cpu_kick(other_cpu);
|
|
}
|
|
}
|
|
|
|
qatomic_set(&pending_cpus, running_cpus + 1);
|
|
while (pending_cpus > 1) {
|
|
qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
|
|
}
|
|
|
|
/* Can release mutex, no one will enter another exclusive
|
|
* section until end_exclusive resets pending_cpus to 0.
|
|
*/
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
|
|
current_cpu->exclusive_context_count = 1;
|
|
}
|
|
|
|
/* Finish an exclusive operation. */
|
|
void end_exclusive(void)
|
|
{
|
|
current_cpu->exclusive_context_count--;
|
|
if (current_cpu->exclusive_context_count) {
|
|
return;
|
|
}
|
|
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
qatomic_set(&pending_cpus, 0);
|
|
qemu_cond_broadcast(&exclusive_resume);
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
/* Wait for exclusive ops to finish, and begin cpu execution. */
|
|
void cpu_exec_start(CPUState *cpu)
|
|
{
|
|
qatomic_set(&cpu->running, true);
|
|
|
|
/* Write cpu->running before reading pending_cpus. */
|
|
smp_mb();
|
|
|
|
/* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
|
|
* After taking the lock we'll see cpu->has_waiter == true and run---not
|
|
* for long because start_exclusive kicked us. cpu_exec_end will
|
|
* decrement pending_cpus and signal the waiter.
|
|
*
|
|
* 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
|
|
* This includes the case when an exclusive item is running now.
|
|
* Then we'll see cpu->has_waiter == false and wait for the item to
|
|
* complete.
|
|
*
|
|
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
|
* see cpu->running == true, and it will kick the CPU.
|
|
*/
|
|
if (unlikely(qatomic_read(&pending_cpus))) {
|
|
QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
|
|
if (!cpu->has_waiter) {
|
|
/* Not counted in pending_cpus, let the exclusive item
|
|
* run. Since we have the lock, just set cpu->running to true
|
|
* while holding it; no need to check pending_cpus again.
|
|
*/
|
|
qatomic_set(&cpu->running, false);
|
|
exclusive_idle();
|
|
/* Now pending_cpus is zero. */
|
|
qatomic_set(&cpu->running, true);
|
|
} else {
|
|
/* Counted in pending_cpus, go ahead and release the
|
|
* waiter at cpu_exec_end.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark cpu as not executing, and release pending exclusive ops. */
|
|
void cpu_exec_end(CPUState *cpu)
|
|
{
|
|
qatomic_set(&cpu->running, false);
|
|
|
|
/* Write cpu->running before reading pending_cpus. */
|
|
smp_mb();
|
|
|
|
/* 1. start_exclusive saw cpu->running == true. Then it will increment
|
|
* pending_cpus and wait for exclusive_cond. After taking the lock
|
|
* we'll see cpu->has_waiter == true.
|
|
*
|
|
* 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
|
|
* This includes the case when an exclusive item started after setting
|
|
* cpu->running to false and before we read pending_cpus. Then we'll see
|
|
* cpu->has_waiter == false and not touch pending_cpus. The next call to
|
|
* cpu_exec_start will run exclusive_idle if still necessary, thus waiting
|
|
* for the item to complete.
|
|
*
|
|
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
|
* see cpu->running == false, and it can ignore this CPU until the
|
|
* next cpu_exec_start.
|
|
*/
|
|
if (unlikely(qatomic_read(&pending_cpus))) {
|
|
QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
|
|
if (cpu->has_waiter) {
|
|
cpu->has_waiter = false;
|
|
qatomic_set(&pending_cpus, pending_cpus - 1);
|
|
if (pending_cpus == 1) {
|
|
qemu_cond_signal(&exclusive_cond);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
|
|
run_on_cpu_data data)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
wi = g_new0(struct qemu_work_item, 1);
|
|
wi->func = func;
|
|
wi->data = data;
|
|
wi->free = true;
|
|
wi->exclusive = true;
|
|
|
|
queue_work_on_cpu(cpu, wi);
|
|
}
|
|
|
|
void process_queued_cpu_work(CPUState *cpu)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
return;
|
|
}
|
|
while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
|
|
wi = QSIMPLEQ_FIRST(&cpu->work_list);
|
|
QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
if (wi->exclusive) {
|
|
/* Running work items outside the BQL avoids the following deadlock:
|
|
* 1) start_exclusive() is called with the BQL taken while another
|
|
* CPU is running; 2) cpu_exec in the other CPU tries to takes the
|
|
* BQL, so it goes to sleep; start_exclusive() is sleeping too, so
|
|
* neither CPU can proceed.
|
|
*/
|
|
bql_unlock();
|
|
start_exclusive();
|
|
wi->func(cpu, wi->data);
|
|
end_exclusive();
|
|
bql_lock();
|
|
} else {
|
|
wi->func(cpu, wi->data);
|
|
}
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
if (wi->free) {
|
|
g_free(wi);
|
|
} else {
|
|
qatomic_store_release(&wi->done, true);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
qemu_cond_broadcast(&qemu_work_cond);
|
|
}
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUBreakpoint *bp;
|
|
|
|
if (cc->gdb_adjust_breakpoint) {
|
|
pc = cc->gdb_adjust_breakpoint(cpu, pc);
|
|
}
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
|
|
}
|
|
|
|
if (breakpoint) {
|
|
*breakpoint = bp;
|
|
}
|
|
|
|
trace_breakpoint_insert(cpu->cpu_index, pc, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUBreakpoint *bp;
|
|
|
|
if (cc->gdb_adjust_breakpoint) {
|
|
pc = cc->gdb_adjust_breakpoint(cpu, pc);
|
|
}
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
|
|
|
|
trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
|
|
g_free(bp);
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
|
|
if (bp->flags & mask) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
}
|
|
}
|
|
}
|