qemu/hw/block/nvme.c
Minwoo Im dc04d25e2f hw/block/nvme: add support for the format nvm command
Format NVM admin command can make a namespace or namespaces to be
with different LBA size and metadata size with protection information
types.

This patch introduces Format NVM command with LBA format, Metadata, and
Protection Information for the device. The secure erase operation things
and support for formatting zoned namespaces are yet to be added.

The parameter checks inside of this patch has been referred from
Keith's old branch.

Signed-off-by: Minwoo Im <minwoo.im@samsung.com>
[anaidu.gollu: rebased on e2e]
Signed-off-by: Gollu Appalanaidu <anaidu.gollu@samsung.com>
[k.jensen: rebased for reworked aio tracking]
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Reviewed-by: Keith Busch <kbusch@kernel.org>
2021-03-18 12:41:43 +01:00

6369 lines
181 KiB
C

/*
* QEMU NVM Express Controller
*
* Copyright (c) 2012, Intel Corporation
*
* Written by Keith Busch <keith.busch@intel.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
/**
* Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
*
* https://nvmexpress.org/developers/nvme-specification/
*/
/**
* Usage: add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
* -device nvme,serial=<serial>,id=<bus_name>, \
* cmb_size_mb=<cmb_size_mb[optional]>, \
* [pmrdev=<mem_backend_file_id>,] \
* max_ioqpairs=<N[optional]>, \
* aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
* mdts=<N[optional]>,vsl=<N[optional]>, \
* zoned.zasl=<N[optional]>, \
* subsys=<subsys_id>
* -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
* zoned=<true|false[optional]>, \
* subsys=<subsys_id>,detached=<true|false[optional]>
*
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
* device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
* always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
*
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
* For example:
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
*
* The PMR will use BAR 4/5 exclusively.
*
* To place controller(s) and namespace(s) to a subsystem, then provide
* nvme-subsys device as above.
*
* nvme subsystem device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `nqn`
* This parameter provides the `<nqn_id>` part of the string
* `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
* of subsystem controllers. Note that `<nqn_id>` should be unique per
* subsystem, but this is not enforced by QEMU. If not specified, it will
* default to the value of the `id` parameter (`<subsys_id>`).
*
* nvme device parameters
* ~~~~~~~~~~~~~~~~~~~~~~
* - `subsys`
* Specifying this parameter attaches the controller to the subsystem and
* the SUBNQN field in the controller will report the NQN of the subsystem
* device. This also enables multi controller capability represented in
* Identify Controller data structure in CMIC (Controller Multi-path I/O and
* Namesapce Sharing Capabilities).
*
* - `aerl`
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
* of concurrently outstanding Asynchronous Event Request commands support
* by the controller. This is a 0's based value.
*
* - `aer_max_queued`
* This is the maximum number of events that the device will enqueue for
* completion when there are no outstanding AERs. When the maximum number of
* enqueued events are reached, subsequent events will be dropped.
*
* - `mdts`
* Indicates the maximum data transfer size for a command that transfers data
* between host-accessible memory and the controller. The value is specified
* as a power of two (2^n) and is in units of the minimum memory page size
* (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
*
* - `vsl`
* Indicates the maximum data size limit for the Verify command. Like `mdts`,
* this value is specified as a power of two (2^n) and is in units of the
* minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
* KiB).
*
* - `zoned.zasl`
* Indicates the maximum data transfer size for the Zone Append command. Like
* `mdts`, the value is specified as a power of two (2^n) and is in units of
* the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
* defaulting to the value of `mdts`).
*
* - `zoned.append_size_limit`
* The maximum I/O size in bytes that is allowed in Zone Append command.
* The default is 128KiB. Since internally this this value is maintained as
* ZASL = log2(<maximum append size> / <page size>), some values assigned
* to this property may be rounded down and result in a lower maximum ZA
* data size being in effect. By setting this property to 0, users can make
* ZASL to be equal to MDTS. This property only affects zoned namespaces.
*
* nvme namespace device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `subsys`
* If given, the namespace will be attached to all controllers in the
* subsystem. Otherwise, `bus` must be given to attach this namespace to a
* specific controller as a non-shared namespace.
*
* - `detached`
* This parameter is only valid together with the `subsys` parameter. If left
* at the default value (`false/off`), the namespace will be attached to all
* controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
* namespace will be be available in the subsystem not not attached to any
* controllers.
*
* Setting `zoned` to true selects Zoned Command Set at the namespace.
* In this case, the following namespace properties are available to configure
* zoned operation:
* zoned.zone_size=<zone size in bytes, default: 128MiB>
* The number may be followed by K, M, G as in kilo-, mega- or giga-.
*
* zoned.zone_capacity=<zone capacity in bytes, default: zone size>
* The value 0 (default) forces zone capacity to be the same as zone
* size. The value of this property may not exceed zone size.
*
* zoned.descr_ext_size=<zone descriptor extension size, default 0>
* This value needs to be specified in 64B units. If it is zero,
* namespace(s) will not support zone descriptor extensions.
*
* zoned.max_active=<Maximum Active Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently active zones.
*
* zoned.max_open=<Maximum Open Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently open zones.
*
* zoned.cross_read=<enable RAZB, default: false>
* Setting this property to true enables Read Across Zone Boundaries.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "hw/block/block.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "sysemu/sysemu.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/hostmem.h"
#include "sysemu/block-backend.h"
#include "exec/memory.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/cutils.h"
#include "trace.h"
#include "nvme.h"
#include "nvme-ns.h"
#include "nvme-dif.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
#define NVME_SPEC_VER 0x00010400
#define NVME_CMB_BIR 2
#define NVME_PMR_BIR 4
#define NVME_TEMPERATURE 0x143
#define NVME_TEMPERATURE_WARNING 0x157
#define NVME_TEMPERATURE_CRITICAL 0x175
#define NVME_NUM_FW_SLOTS 1
#define NVME_GUEST_ERR(trace, fmt, ...) \
do { \
(trace_##trace)(__VA_ARGS__); \
qemu_log_mask(LOG_GUEST_ERROR, #trace \
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
} while (0)
static const bool nvme_feature_support[NVME_FID_MAX] = {
[NVME_ARBITRATION] = true,
[NVME_POWER_MANAGEMENT] = true,
[NVME_TEMPERATURE_THRESHOLD] = true,
[NVME_ERROR_RECOVERY] = true,
[NVME_VOLATILE_WRITE_CACHE] = true,
[NVME_NUMBER_OF_QUEUES] = true,
[NVME_INTERRUPT_COALESCING] = true,
[NVME_INTERRUPT_VECTOR_CONF] = true,
[NVME_WRITE_ATOMICITY] = true,
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
[NVME_TIMESTAMP] = true,
};
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
[NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
};
static const uint32_t nvme_cse_acs[256] = {
[NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
[NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
};
static const uint32_t nvme_cse_iocs_none[256];
static const uint32_t nvme_cse_iocs_nvm[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
};
static const uint32_t nvme_cse_iocs_zoned[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
};
static void nvme_process_sq(void *opaque);
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
}
static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state)
{
if (QTAILQ_IN_USE(zone, entry)) {
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_REMOVE(&ns->full_zones, zone, entry);
default:
;
}
}
nvme_set_zone_state(zone, state);
switch (state) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
case NVME_ZONE_STATE_READ_ONLY:
break;
default:
zone->d.za = 0;
}
}
/*
* Check if we can open a zone without exceeding open/active limits.
* AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
*/
static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
{
if (ns->params.max_active_zones != 0 &&
ns->nr_active_zones + act > ns->params.max_active_zones) {
trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
}
if (ns->params.max_open_zones != 0 &&
ns->nr_open_zones + opn > ns->params.max_open_zones) {
trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
}
return NVME_SUCCESS;
}
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
if (!n->cmb.cmse) {
return false;
}
lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
hi = lo + int128_get64(n->cmb.mem.size);
return addr >= lo && addr < hi;
}
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
return &n->cmb.buf[addr - base];
}
static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi;
if (!n->pmr.cmse) {
return false;
}
hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
return addr >= n->pmr.cba && addr < hi;
}
static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
{
return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
}
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(buf, nvme_addr_to_pmr(n, addr), size);
return 0;
}
return pci_dma_read(&n->parent_obj, addr, buf, size);
}
static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(nvme_addr_to_cmb(n, addr), buf, size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(nvme_addr_to_pmr(n, addr), buf, size);
return 0;
}
return pci_dma_write(&n->parent_obj, addr, buf, size);
}
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
{
return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
}
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
}
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
}
static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
cq->phase = !cq->phase;
}
}
static void nvme_inc_sq_head(NvmeSQueue *sq)
{
sq->head = (sq->head + 1) % sq->size;
}
static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
return (cq->tail + 1) % cq->size == cq->head;
}
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
return sq->head == sq->tail;
}
static void nvme_irq_check(NvmeCtrl *n)
{
if (msix_enabled(&(n->parent_obj))) {
return;
}
if (~n->bar.intms & n->irq_status) {
pci_irq_assert(&n->parent_obj);
} else {
pci_irq_deassert(&n->parent_obj);
}
}
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
trace_pci_nvme_irq_msix(cq->vector);
msix_notify(&(n->parent_obj), cq->vector);
} else {
trace_pci_nvme_irq_pin();
assert(cq->vector < 32);
n->irq_status |= 1 << cq->vector;
nvme_irq_check(n);
}
} else {
trace_pci_nvme_irq_masked();
}
}
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
return;
} else {
assert(cq->vector < 32);
n->irq_status &= ~(1 << cq->vector);
nvme_irq_check(n);
}
}
}
static void nvme_req_clear(NvmeRequest *req)
{
req->ns = NULL;
req->opaque = NULL;
memset(&req->cqe, 0x0, sizeof(req->cqe));
req->status = NVME_SUCCESS;
}
static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
{
if (dma) {
pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
sg->flags = NVME_SG_DMA;
} else {
qemu_iovec_init(&sg->iov, 0);
}
sg->flags |= NVME_SG_ALLOC;
}
static inline void nvme_sg_unmap(NvmeSg *sg)
{
if (!(sg->flags & NVME_SG_ALLOC)) {
return;
}
if (sg->flags & NVME_SG_DMA) {
qemu_sglist_destroy(&sg->qsg);
} else {
qemu_iovec_destroy(&sg->iov);
}
memset(sg, 0x0, sizeof(*sg));
}
/*
* When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
* holds both data and metadata. This function splits the data and metadata
* into two separate QSG/IOVs.
*/
static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
NvmeSg *mdata)
{
NvmeSg *dst = data;
size_t size = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
uint32_t trans_len, count = size;
uint64_t offset = 0;
bool dma = sg->flags & NVME_SG_DMA;
size_t sge_len;
size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
int sg_idx = 0;
assert(sg->flags & NVME_SG_ALLOC);
while (sg_len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
trans_len = MIN(sg_len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dst) {
if (dma) {
qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
trans_len);
} else {
qemu_iovec_add(&dst->iov,
sg->iov.iov[sg_idx].iov_base + offset,
trans_len);
}
}
sg_len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
dst = (dst == data) ? mdata : data;
count = (dst == data) ? size : msize;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
}
}
}
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr_cmb(addr, len);
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
{
bool cmb = false, pmr = false;
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr(addr, len);
if (nvme_addr_is_cmb(n, addr)) {
cmb = true;
} else if (nvme_addr_is_pmr(n, addr)) {
pmr = true;
}
if (cmb || pmr) {
if (sg->flags & NVME_SG_DMA) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (cmb) {
return nvme_map_addr_cmb(n, &sg->iov, addr, len);
} else {
return nvme_map_addr_pmr(n, &sg->iov, addr, len);
}
}
if (!(sg->flags & NVME_SG_DMA)) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
qemu_sglist_add(&sg->qsg, addr, len);
return NVME_SUCCESS;
}
static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
{
return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
}
static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
uint64_t prp2, uint32_t len)
{
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
trans_len = MIN(len, trans_len);
int num_prps = (len >> n->page_bits) + 1;
uint16_t status;
int ret;
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
status = nvme_map_addr(n, sg, prp1, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
if (len) {
if (len > n->page_size) {
uint64_t prp_list[n->max_prp_ents];
uint32_t nents, prp_trans;
int i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp2);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
while (len != 0) {
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
if (i == n->max_prp_ents - 1 && len > n->page_size) {
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp_ent);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
prp_ent = le64_to_cpu(prp_list[i]);
}
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
trans_len = MIN(len, n->page_size);
status = nvme_map_addr(n, sg, prp_ent, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
i++;
}
} else {
if (unlikely(prp2 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prp2_align(prp2);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
status = nvme_map_addr(n, sg, prp2, len);
if (status) {
goto unmap;
}
}
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
/*
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
* number of bytes mapped in len.
*/
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
NvmeSglDescriptor *segment, uint64_t nsgld,
size_t *len, NvmeCmd *cmd)
{
dma_addr_t addr, trans_len;
uint32_t dlen;
uint16_t status;
for (int i = 0; i < nsgld; i++) {
uint8_t type = NVME_SGL_TYPE(segment[i].type);
switch (type) {
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
if (cmd->opcode == NVME_CMD_WRITE) {
continue;
}
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
break;
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
default:
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
}
dlen = le32_to_cpu(segment[i].len);
if (!dlen) {
continue;
}
if (*len == 0) {
/*
* All data has been mapped, but the SGL contains additional
* segments and/or descriptors. The controller might accept
* ignoring the rest of the SGL.
*/
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
break;
}
trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
trans_len = MIN(*len, dlen);
if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
goto next;
}
addr = le64_to_cpu(segment[i].addr);
if (UINT64_MAX - addr < dlen) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
status = nvme_map_addr(n, sg, addr, trans_len);
if (status) {
return status;
}
next:
*len -= trans_len;
}
return NVME_SUCCESS;
}
static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
size_t len, NvmeCmd *cmd)
{
/*
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
* dynamically allocating a potentially huge SGL. The spec allows the SGL
* to be larger (as in number of bytes required to describe the SGL
* descriptors and segment chain) than the command transfer size, so it is
* not bounded by MDTS.
*/
const int SEG_CHUNK_SIZE = 256;
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
uint64_t nsgld;
uint32_t seg_len;
uint16_t status;
hwaddr addr;
int ret;
sgld = &sgl;
addr = le64_to_cpu(sgl.addr);
trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
/*
* If the entire transfer can be described with a single data block it can
* be mapped directly.
*/
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
for (;;) {
switch (NVME_SGL_TYPE(sgld->type)) {
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
break;
default:
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
seg_len = le32_to_cpu(sgld->len);
/* check the length of the (Last) Segment descriptor */
if ((!seg_len || seg_len & 0xf) &&
(NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
if (UINT64_MAX - addr < seg_len) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
nsgld = seg_len / sizeof(NvmeSglDescriptor);
while (nsgld > SEG_CHUNK_SIZE) {
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
&len, cmd);
if (status) {
goto unmap;
}
nsgld -= SEG_CHUNK_SIZE;
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
}
ret = nvme_addr_read(n, addr, segment, nsgld *
sizeof(NvmeSglDescriptor));
if (ret) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
last_sgld = &segment[nsgld - 1];
/*
* If the segment ends with a Data Block or Bit Bucket Descriptor Type,
* then we are done.
*/
switch (NVME_SGL_TYPE(last_sgld->type)) {
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
if (status) {
goto unmap;
}
goto out;
default:
break;
}
/*
* If the last descriptor was not a Data Block or Bit Bucket, then the
* current segment must not be a Last Segment.
*/
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
goto unmap;
}
sgld = last_sgld;
addr = le64_to_cpu(sgld->addr);
/*
* Do not map the last descriptor; it will be a Segment or Last Segment
* descriptor and is handled by the next iteration.
*/
status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
if (status) {
goto unmap;
}
}
out:
/* if there is any residual left in len, the SGL was too short */
if (len) {
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
goto unmap;
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
uint64_t prp1, prp2;
switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
case NVME_PSDT_PRP:
prp1 = le64_to_cpu(cmd->dptr.prp1);
prp2 = le64_to_cpu(cmd->dptr.prp2);
return nvme_map_prp(n, sg, prp1, prp2, len);
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
case NVME_PSDT_SGL_MPTR_SGL:
return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
default:
return NVME_INVALID_FIELD;
}
}
static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
hwaddr mptr = le64_to_cpu(cmd->mptr);
uint16_t status;
if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
NvmeSglDescriptor sgl;
if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
return NVME_DATA_TRAS_ERROR;
}
status = nvme_map_sgl(n, sg, sgl, len, cmd);
if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
}
return status;
}
nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
status = nvme_map_addr(n, sg, mptr, len);
if (status) {
nvme_sg_unmap(sg);
}
return status;
}
static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t len = nvme_l2b(ns, nlb);
uint16_t status;
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
goto out;
}
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_m2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, &req->sg, NULL);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
out:
return nvme_map_dptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
size_t len = nvme_m2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_l2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, NULL, &req->sg);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_mptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
uint32_t len, uint32_t bytes,
int32_t skip_bytes, int64_t offset,
NvmeTxDirection dir)
{
hwaddr addr;
uint32_t trans_len, count = bytes;
bool dma = sg->flags & NVME_SG_DMA;
int64_t sge_len;
int sg_idx = 0;
int ret;
assert(sg->flags & NVME_SG_ALLOC);
while (len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
if (sge_len - offset < 0) {
offset -= sge_len;
sg_idx++;
continue;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
continue;
}
trans_len = MIN(len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dma) {
addr = sg->qsg.sg[sg_idx].base + offset;
} else {
addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
}
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
ret = nvme_addr_read(n, addr, ptr, trans_len);
} else {
ret = nvme_addr_write(n, addr, ptr, trans_len);
}
if (ret) {
return NVME_DATA_TRAS_ERROR;
}
ptr += trans_len;
len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
count = bytes;
offset += skip_bytes;
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir)
{
assert(sg->flags & NVME_SG_ALLOC);
if (sg->flags & NVME_SG_DMA) {
uint64_t residual;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
residual = dma_buf_write(ptr, len, &sg->qsg);
} else {
residual = dma_buf_read(ptr, len, &sg->qsg);
}
if (unlikely(residual)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
} else {
size_t bytes;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
} else {
bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
}
if (unlikely(bytes != len)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
}
static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
}
uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
if (nvme_ns_ext(ns) &&
!(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
return nvme_tx_interleaved(n, &req->sg, ptr, len, lsize, msize, 0,
dir);
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t status;
if (nvme_ns_ext(ns)) {
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
return nvme_tx_interleaved(n, &req->sg, ptr, len, msize, lsize, lsize,
dir);
}
nvme_sg_unmap(&req->sg);
status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static void nvme_post_cqes(void *opaque)
{
NvmeCQueue *cq = opaque;
NvmeCtrl *n = cq->ctrl;
NvmeRequest *req, *next;
int ret;
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
NvmeSQueue *sq;
hwaddr addr;
if (nvme_cq_full(cq)) {
break;
}
sq = req->sq;
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
req->cqe.sq_id = cpu_to_le16(sq->sqid);
req->cqe.sq_head = cpu_to_le16(sq->head);
addr = cq->dma_addr + cq->tail * n->cqe_size;
ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
sizeof(req->cqe));
if (ret) {
trace_pci_nvme_err_addr_write(addr);
trace_pci_nvme_err_cfs();
n->bar.csts = NVME_CSTS_FAILED;
break;
}
QTAILQ_REMOVE(&cq->req_list, req, entry);
nvme_inc_cq_tail(cq);
nvme_sg_unmap(&req->sg);
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
if (cq->tail != cq->head) {
nvme_irq_assert(n, cq);
}
}
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
assert(cq->cqid == req->sq->cqid);
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
req->status);
if (req->status) {
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
req->status, req->cmd.opcode);
}
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
static void nvme_process_aers(void *opaque)
{
NvmeCtrl *n = opaque;
NvmeAsyncEvent *event, *next;
trace_pci_nvme_process_aers(n->aer_queued);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
NvmeRequest *req;
NvmeAerResult *result;
/* can't post cqe if there is nothing to complete */
if (!n->outstanding_aers) {
trace_pci_nvme_no_outstanding_aers();
break;
}
/* ignore if masked (cqe posted, but event not cleared) */
if (n->aer_mask & (1 << event->result.event_type)) {
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
continue;
}
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
n->aer_mask |= 1 << event->result.event_type;
n->outstanding_aers--;
req = n->aer_reqs[n->outstanding_aers];
result = (NvmeAerResult *) &req->cqe.result;
result->event_type = event->result.event_type;
result->event_info = event->result.event_info;
result->log_page = event->result.log_page;
g_free(event);
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
result->log_page);
nvme_enqueue_req_completion(&n->admin_cq, req);
}
}
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
uint8_t event_info, uint8_t log_page)
{
NvmeAsyncEvent *event;
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
if (n->aer_queued == n->params.aer_max_queued) {
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
return;
}
event = g_new(NvmeAsyncEvent, 1);
event->result = (NvmeAerResult) {
.event_type = event_type,
.event_info = event_info,
.log_page = log_page,
};
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
n->aer_queued++;
nvme_process_aers(n);
}
static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
{
uint8_t aer_info;
/* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
return;
}
switch (event) {
case NVME_SMART_SPARE:
aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
break;
case NVME_SMART_TEMPERATURE:
aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
break;
case NVME_SMART_RELIABILITY:
case NVME_SMART_MEDIA_READ_ONLY:
case NVME_SMART_FAILED_VOLATILE_MEDIA:
case NVME_SMART_PMR_UNRELIABLE:
aer_info = NVME_AER_INFO_SMART_RELIABILITY;
break;
default:
return;
}
nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
}
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
{
n->aer_mask &= ~(1 << event_type);
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
}
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
{
uint8_t mdts = n->params.mdts;
if (mdts && len > n->page_size << mdts) {
trace_pci_nvme_err_mdts(len);
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
return NVME_LBA_RANGE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
BlockDriverState *bs = blk_bs(ns->blkconf.blk);
int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
bool zeroed;
int ret;
Error *local_err = NULL;
/*
* `pnum` holds the number of bytes after offset that shares the same
* allocation status as the byte at offset. If `pnum` is different from
* `bytes`, we should check the allocation status of the next range and
* continue this until all bytes have been checked.
*/
do {
bytes -= pnum;
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
if (ret < 0) {
error_setg_errno(&local_err, -ret, "unable to get block status");
error_report_err(local_err);
return NVME_INTERNAL_DEV_ERROR;
}
zeroed = !!(ret & BDRV_BLOCK_ZERO);
trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
if (zeroed) {
return NVME_DULB;
}
offset += pnum;
} while (pnum != bytes);
return NVME_SUCCESS;
}
static void nvme_aio_err(NvmeRequest *req, int ret)
{
uint16_t status = NVME_SUCCESS;
Error *local_err = NULL;
switch (req->cmd.opcode) {
case NVME_CMD_READ:
status = NVME_UNRECOVERED_READ;
break;
case NVME_CMD_FLUSH:
case NVME_CMD_WRITE:
case NVME_CMD_WRITE_ZEROES:
case NVME_CMD_ZONE_APPEND:
status = NVME_WRITE_FAULT;
break;
default:
status = NVME_INTERNAL_DEV_ERROR;
break;
}
trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
error_setg_errno(&local_err, -ret, "aio failed");
error_report_err(local_err);
/*
* Set the command status code to the first encountered error but allow a
* subsequent Internal Device Error to trump it.
*/
if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
return;
}
req->status = status;
}
static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
{
return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
slba / ns->zone_size;
}
static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
{
uint32_t zone_idx = nvme_zone_idx(ns, slba);
assert(zone_idx < ns->num_zones);
return &ns->zone_array[zone_idx];
}
static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
{
uint64_t zslba = zone->d.zslba;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
case NVME_ZONE_STATE_FULL:
trace_pci_nvme_err_zone_is_full(zslba);
return NVME_ZONE_FULL;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zslba);
return NVME_ZONE_OFFLINE;
case NVME_ZONE_STATE_READ_ONLY:
trace_pci_nvme_err_zone_is_read_only(zslba);
return NVME_ZONE_READ_ONLY;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
uint64_t slba, uint32_t nlb)
{
uint64_t zcap = nvme_zone_wr_boundary(zone);
uint16_t status;
status = nvme_check_zone_state_for_write(zone);
if (status) {
return status;
}
if (unlikely(slba != zone->w_ptr)) {
trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
if (unlikely((slba + nlb) > zcap)) {
trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
return NVME_ZONE_BOUNDARY_ERROR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_FULL:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_READ_ONLY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
return NVME_ZONE_OFFLINE;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
uint64_t end = slba + nlb;
uint16_t status;
status = nvme_check_zone_state_for_read(zone);
if (status) {
;
} else if (unlikely(end > bndry)) {
if (!ns->params.cross_zone_read) {
status = NVME_ZONE_BOUNDARY_ERROR;
} else {
/*
* Read across zone boundary - check that all subsequent
* zones that are being read have an appropriate state.
*/
do {
zone++;
status = nvme_check_zone_state_for_read(zone);
if (status) {
break;
}
} while (end > nvme_zone_rd_boundary(ns, zone));
}
}
return status;
}
static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_FULL:
return NVME_SUCCESS;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
{
NvmeZone *zone;
if (ns->params.max_open_zones &&
ns->nr_open_zones == ns->params.max_open_zones) {
zone = QTAILQ_FIRST(&ns->imp_open_zones);
if (zone) {
/*
* Automatically close this implicitly open zone.
*/
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_zrm_close(ns, zone);
}
}
}
static uint16_t __nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone,
bool implicit)
{
int act = 0;
uint16_t status;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
act = 1;
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_zrm_auto_transition_zone(ns);
status = nvme_aor_check(ns, act, 1);
if (status) {
return status;
}
if (act) {
nvme_aor_inc_active(ns);
}
nvme_aor_inc_open(ns);
if (implicit) {
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
return NVME_SUCCESS;
}
/* fallthrough */
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
if (implicit) {
return NVME_SUCCESS;
}
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
/* fallthrough */
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
{
return __nvme_zrm_open(ns, zone, true);
}
static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
{
return __nvme_zrm_open(ns, zone, false);
}
static void __nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlb)
{
zone->d.wp += nlb;
if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
nvme_zrm_finish(ns, zone);
}
}
static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeZone *zone;
uint64_t slba;
uint32_t nlb;
slba = le64_to_cpu(rw->slba);
nlb = le16_to_cpu(rw->nlb) + 1;
zone = nvme_get_zone_by_slba(ns, slba);
__nvme_advance_zone_wp(ns, zone, nlb);
}
static inline bool nvme_is_write(NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
return rw->opcode == NVME_CMD_WRITE ||
rw->opcode == NVME_CMD_ZONE_APPEND ||
rw->opcode == NVME_CMD_WRITE_ZEROES;
}
static void nvme_misc_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
void nvme_rw_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
if (ns->params.zoned && nvme_is_write(req)) {
nvme_finalize_zoned_write(ns, req);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_rw_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
size_t mlen = nvme_m2b(ns, nlb);
req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
BDRV_REQ_MAY_UNMAP,
nvme_rw_complete_cb, req);
return;
}
if (nvme_ns_ext(ns) || req->cmd.mptr) {
uint16_t status;
nvme_sg_unmap(&req->sg);
status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
if (status) {
ret = -EFAULT;
goto out;
}
if (req->cmd.opcode == NVME_CMD_READ) {
return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
}
return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
}
}
out:
nvme_rw_complete_cb(req, ret);
}
struct nvme_aio_format_ctx {
NvmeRequest *req;
NvmeNamespace *ns;
/* number of outstanding write zeroes for this namespace */
int *count;
};
static void nvme_aio_format_cb(void *opaque, int ret)
{
struct nvme_aio_format_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = ctx->ns;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
int *count = ctx->count;
g_free(ctx);
if (ret) {
nvme_aio_err(req, ret);
}
if (--(*count)) {
return;
}
g_free(count);
ns->status = 0x0;
if (--(*num_formats)) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
struct nvme_aio_flush_ctx {
NvmeRequest *req;
NvmeNamespace *ns;
BlockAcctCookie acct;
};
static void nvme_aio_flush_cb(void *opaque, int ret)
{
struct nvme_aio_flush_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
BlockBackend *blk = ctx->ns->blkconf.blk;
BlockAcctCookie *acct = &ctx->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
if (!ret) {
block_acct_done(stats, acct);
} else {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
}
(*num_flushes)--;
g_free(ctx);
if (*num_flushes) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
uint16_t status;
trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
appmask, reftag);
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(stats, acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
ctx->mdata.iov.size, slba);
if (status) {
req->status = status;
goto out;
}
req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size,
ctrl, slba, apptag, appmask, reftag);
}
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_mdata_in_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_reset(&ctx->mdata.iov);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_verify_cb, ctx);
return;
out:
nvme_verify_cb(ctx, ret);
}
static void nvme_aio_discard_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
uintptr_t *discards = (uintptr_t *)&req->opaque;
trace_pci_nvme_aio_discard_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
(*discards)--;
if (*discards) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
struct nvme_zone_reset_ctx {
NvmeRequest *req;
NvmeZone *zone;
};
static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret)
{
struct nvme_zone_reset_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeZone *zone = ctx->zone;
uintptr_t *resets = (uintptr_t *)&req->opaque;
if (ret) {
nvme_aio_err(req, ret);
goto out;
}
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
/* fall through */
case NVME_ZONE_STATE_FULL:
zone->w_ptr = zone->d.zslba;
zone->d.wp = zone->w_ptr;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
/* fall through */
default:
break;
}
out:
g_free(ctx);
(*resets)--;
if (*resets) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_aio_zone_reset_cb(void *opaque, int ret)
{
struct nvme_zone_reset_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeZone *zone = ctx->zone;
trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
int64_t offset = ns->mdata_offset + nvme_m2b(ns, zone->d.zslba);
blk_aio_pwrite_zeroes(ns->blkconf.blk, offset,
nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
nvme_aio_zone_reset_complete_cb, ctx);
return;
}
out:
nvme_aio_zone_reset_complete_cb(opaque, ret);
}
struct nvme_copy_ctx {
int copies;
uint8_t *bounce;
uint8_t *mbounce;
uint32_t nlb;
NvmeCopySourceRange *ranges;
};
struct nvme_copy_in_ctx {
NvmeRequest *req;
QEMUIOVector iov;
NvmeCopySourceRange *range;
};
static void nvme_copy_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
if (ret) {
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
out:
if (ns->params.zoned) {
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
__nvme_advance_zone_wp(ns, zone, ctx->nlb);
}
g_free(ctx->bounce);
g_free(ctx->mbounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_copy_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
trace_pci_nvme_copy_cb(nvme_cid(req));
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
int64_t offset = ns->mdata_offset + nvme_m2b(ns, sdlba);
qemu_iovec_reset(&req->sg.iov);
qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb));
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0,
nvme_copy_complete_cb, req);
return;
}
out:
nvme_copy_complete_cb(opaque, ret);
}
static void nvme_copy_in_complete(NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
struct nvme_copy_ctx *ctx = req->opaque;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
uint16_t status;
trace_pci_nvme_copy_in_complete(nvme_cid(req));
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
uint16_t nr = copy->nr + 1;
NvmeCopySourceRange *range;
uint64_t slba;
uint32_t nlb;
uint16_t apptag, appmask;
uint32_t reftag;
uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
size_t len, mlen;
int i;
/*
* The dif helpers expects prinfo to be similar to the control field of
* the NvmeRwCmd, so shift by 10 to fake it.
*/
prinfor = prinfor << 10;
prinfow = prinfow << 10;
for (i = 0; i < nr; i++) {
range = &ctx->ranges[i];
slba = le64_to_cpu(range->slba);
nlb = le16_to_cpu(range->nlb) + 1;
len = nvme_l2b(ns, nlb);
mlen = nvme_m2b(ns, nlb);
apptag = le16_to_cpu(range->apptag);
appmask = le16_to_cpu(range->appmask);
reftag = le32_to_cpu(range->reftag);
status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
apptag, appmask, reftag);
if (status) {
goto invalid;
}
buf += len;
mbuf += mlen;
}
apptag = le16_to_cpu(copy->apptag);
appmask = le16_to_cpu(copy->appmask);
reftag = le32_to_cpu(copy->reftag);
if (prinfow & NVME_RW_PRINFO_PRACT) {
size_t len = nvme_l2b(ns, ctx->nlb);
size_t mlen = nvme_m2b(ns, ctx->nlb);
status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
if (status) {
goto invalid;
}
nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
mlen, apptag, reftag);
} else {
status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
prinfow, sdlba, apptag, appmask, reftag);
if (status) {
goto invalid;
}
}
}
status = nvme_check_bounds(ns, sdlba, ctx->nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(sdlba, ctx->nlb, ns->id_ns.nsze);
goto invalid;
}
if (ns->params.zoned) {
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
if (status) {
goto invalid;
}
status = nvme_zrm_auto(ns, zone);
if (status) {
goto invalid;
}
zone->w_ptr += ctx->nlb;
}
qemu_iovec_init(&req->sg.iov, 1);
qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_WRITE);
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
&req->sg.iov, 0, nvme_copy_cb, req);
return;
invalid:
req->status = status;
g_free(ctx->bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_aio_copy_in_cb(void *opaque, int ret)
{
struct nvme_copy_in_ctx *in_ctx = opaque;
NvmeRequest *req = in_ctx->req;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
qemu_iovec_destroy(&in_ctx->iov);
g_free(in_ctx);
trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
ctx->copies--;
if (ctx->copies) {
return;
}
if (req->status) {
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
g_free(ctx->bounce);
g_free(ctx->mbounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
return;
}
nvme_copy_in_complete(req);
}
struct nvme_compare_ctx {
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} mdata;
};
static void nvme_compare_mdata_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
buf = g_malloc(ctx->mdata.iov.size);
status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t *bufp;
uint8_t *mbufp = ctx->mdata.bounce;
uint8_t *end = mbufp + ctx->mdata.iov.size;
size_t msize = nvme_msize(ns);
int16_t pil = 0;
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
slba, apptag, appmask, reftag);
if (status) {
req->status = status;
goto out;
}
/*
* When formatted with protection information, do not compare the DIF
* tuple.
*/
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
for (bufp = buf; mbufp < end; bufp += msize, mbufp += msize) {
if (memcmp(bufp + pil, mbufp + pil, msize - pil)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
}
goto out;
}
if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_compare_data_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status;
trace_pci_nvme_compare_data_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->data.iov.size);
status = nvme_bounce_data(n, buf, ctx->data.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
if (nvme_msize(ns)) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_compare_mdata_cb, req);
return;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
uint32_t attr = le32_to_cpu(dsm->attributes);
uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
if (attr & NVME_DSMGMT_AD) {
int64_t offset;
size_t len;
NvmeDsmRange range[nr];
uintptr_t *discards = (uintptr_t *)&req->opaque;
status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
if (status) {
return status;
}
/*
* AIO callbacks may be called immediately, so initialize discards to 1
* to make sure the the callback does not complete the request before
* all discards have been issued.
*/
*discards = 1;
for (int i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(range[i].slba);
uint32_t nlb = le32_to_cpu(range[i].nlb);
if (nvme_check_bounds(ns, slba, nlb)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb,
ns->id_ns.nsze);
continue;
}
trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
nlb);
if (nlb > n->dmrsl) {
trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
}
offset = nvme_l2b(ns, slba);
len = nvme_l2b(ns, nlb);
while (len) {
size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
(*discards)++;
blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
nvme_aio_discard_cb, req);
offset += bytes;
len -= bytes;
}
}
/* account for the 1-initialization */
(*discards)--;
if (*discards) {
status = NVME_NO_COMPLETE;
} else {
status = req->status;
}
}
return status;
}
static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint32_t reftag = le32_to_cpu(rw->reftag);
NvmeBounceContext *ctx = NULL;
uint16_t status;
trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_check_prinfo(ns, ctrl, slba, reftag);
if (status) {
return status;
}
if (ctrl & NVME_RW_PRINFO_PRACT) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
}
if (len > n->page_size << n->params.vsl) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
ctx = g_new0(NvmeBounceContext, 1);
ctx->req = req;
ctx->data.bounce = g_malloc(len);
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_verify_mdata_in_cb, ctx);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint16_t nr = copy->nr + 1;
uint8_t format = copy->control[0] & 0xf;
/*
* Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
* NVME_RW_PRINFO constants.
*/
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
uint32_t nlb = 0;
uint8_t *bounce = NULL, *bouncep = NULL;
uint8_t *mbounce = NULL, *mbouncep = NULL;
struct nvme_copy_ctx *ctx;
uint16_t status;
int i;
trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(n->id_ctrl.ocfs & (1 << format))) {
trace_pci_nvme_err_copy_invalid_format(format);
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nr > ns->id_ns.msrc + 1) {
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
}
ctx = g_new(struct nvme_copy_ctx, 1);
ctx->ranges = g_new(NvmeCopySourceRange, nr);
status = nvme_h2c(n, (uint8_t *)ctx->ranges,
nr * sizeof(NvmeCopySourceRange), req);
if (status) {
goto out;
}
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
status = nvme_check_bounds(ns, slba, _nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, _nlb, ns->id_ns.nsze);
goto out;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, _nlb);
if (status) {
goto out;
}
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, _nlb);
if (status) {
goto out;
}
}
nlb += _nlb;
}
if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
if (nvme_msize(ns)) {
mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb));
}
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_READ);
ctx->bounce = bounce;
ctx->mbounce = mbounce;
ctx->nlb = nlb;
ctx->copies = 1;
req->opaque = ctx;
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
trace_pci_nvme_copy_source_range(slba, nlb);
struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
in_ctx->req = req;
qemu_iovec_init(&in_ctx->iov, 1);
qemu_iovec_add(&in_ctx->iov, bouncep, len);
ctx->copies++;
blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
nvme_aio_copy_in_cb, in_ctx);
bouncep += len;
if (nvme_msize(ns)) {
len = nvme_m2b(ns, nlb);
offset = ns->mdata_offset + nvme_m2b(ns, slba);
in_ctx = g_new(struct nvme_copy_in_ctx, 1);
in_ctx->req = req;
qemu_iovec_init(&in_ctx->iov, 1);
qemu_iovec_add(&in_ctx->iov, mbouncep, len);
ctx->copies++;
blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
nvme_aio_copy_in_cb, in_ctx);
mbouncep += len;
}
}
/* account for the 1-initialization */
ctx->copies--;
if (!ctx->copies) {
nvme_copy_in_complete(req);
}
return NVME_NO_COMPLETE;
out:
g_free(ctx->ranges);
g_free(ctx);
return status;
}
static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t data_len = nvme_l2b(ns, nlb);
size_t len = data_len;
int64_t offset = nvme_l2b(ns, slba);
struct nvme_compare_ctx *ctx = NULL;
uint16_t status;
trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
if (nvme_ns_ext(ns)) {
len += nvme_m2b(ns, nlb);
}
status = nvme_check_mdts(n, len);
if (status) {
return status;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
ctx = g_new(struct nvme_compare_ctx, 1);
ctx->data.bounce = g_malloc(data_len);
req->opaque = ctx;
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
block_acct_start(blk_get_stats(blk), &req->acct, data_len,
BLOCK_ACCT_READ);
blk_aio_preadv(blk, offset, &ctx->data.iov, 0, nvme_compare_data_cb, req);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
uint16_t status;
struct nvme_aio_flush_ctx *ctx;
NvmeNamespace *ns;
trace_pci_nvme_flush(nvme_cid(req), nsid);
if (nsid != NVME_NSID_BROADCAST) {
req->ns = nvme_ns(n, nsid);
if (unlikely(!req->ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_FLUSH);
req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req);
return NVME_NO_COMPLETE;
}
/* 1-initialize; see comment in nvme_dsm */
*num_flushes = 1;
for (int i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
ctx = g_new(struct nvme_aio_flush_ctx, 1);
ctx->req = req;
ctx->ns = ns;
(*num_flushes)++;
block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
BLOCK_ACCT_FLUSH);
blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
}
/* account for the 1-initialization */
(*num_flushes)--;
if (*num_flushes) {
status = NVME_NO_COMPLETE;
} else {
status = req->status;
}
return status;
}
static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size = data_size;
}
}
}
trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
goto invalid;
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
goto invalid;
}
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
goto invalid;
}
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
data_offset = nvme_l2b(ns, slba);
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_READ);
nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
return status | NVME_DNR;
}
static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
bool wrz)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
NvmeZone *zone;
NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size -= nvme_m2b(ns, nlb);
}
}
}
trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
nvme_nsid(ns), nlb, mapped_size, slba);
if (!wrz) {
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
goto invalid;
}
if (ns->params.zoned) {
zone = nvme_get_zone_by_slba(ns, slba);
if (append) {
bool piremap = !!(ctrl & NVME_RW_PIREMAP);
if (unlikely(slba != zone->d.zslba)) {
trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
status = NVME_INVALID_FIELD;
goto invalid;
}
if (n->params.zasl &&
data_size > (uint64_t)n->page_size << n->params.zasl) {
trace_pci_nvme_err_zasl(data_size);
return NVME_INVALID_FIELD | NVME_DNR;
}
slba = zone->w_ptr;
rw->slba = cpu_to_le64(slba);
res->slba = cpu_to_le64(slba);
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_1:
if (!piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
/* fallthrough */
case NVME_ID_NS_DPS_TYPE_2:
if (piremap) {
uint32_t reftag = le32_to_cpu(rw->reftag);
rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
}
break;
case NVME_ID_NS_DPS_TYPE_3:
if (piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
break;
}
}
status = nvme_check_zone_write(ns, zone, slba, nlb);
if (status) {
goto invalid;
}
status = nvme_zrm_auto(ns, zone);
if (status) {
goto invalid;
}
zone->w_ptr += nlb;
}
data_offset = nvme_l2b(ns, slba);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
if (!wrz) {
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_WRITE);
nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
} else {
req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
req);
}
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
return status | NVME_DNR;
}
static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, false);
}
static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, true);
}
static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, true, false);
}
static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
uint64_t *slba, uint32_t *zone_idx)
{
uint32_t dw10 = le32_to_cpu(c->cdw10);
uint32_t dw11 = le32_to_cpu(c->cdw11);
if (!ns->params.zoned) {
trace_pci_nvme_err_invalid_opc(c->opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
*slba = ((uint64_t)dw11) << 32 | dw10;
if (unlikely(*slba >= ns->id_ns.nsze)) {
trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
*slba = 0;
return NVME_LBA_RANGE | NVME_DNR;
}
*zone_idx = nvme_zone_idx(ns, *slba);
assert(*zone_idx < ns->num_zones);
return NVME_SUCCESS;
}
typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
NvmeRequest *);
enum NvmeZoneProcessingMask {
NVME_PROC_CURRENT_ZONE = 0,
NVME_PROC_OPENED_ZONES = 1 << 0,
NVME_PROC_CLOSED_ZONES = 1 << 1,
NVME_PROC_READ_ONLY_ZONES = 1 << 2,
NVME_PROC_FULL_ZONES = 1 << 3,
};
static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_open(ns, zone);
}
static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_close(ns, zone);
}
static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_finish(ns, zone);
}
static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
uintptr_t *resets = (uintptr_t *)&req->opaque;
struct nvme_zone_reset_ctx *ctx;
switch (state) {
case NVME_ZONE_STATE_EMPTY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_FULL:
break;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
/*
* The zone reset aio callback needs to know the zone that is being reset
* in order to transition the zone on completion.
*/
ctx = g_new(struct nvme_zone_reset_ctx, 1);
ctx->req = req;
ctx->zone = zone;
(*resets)++;
blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
nvme_aio_zone_reset_cb, ctx);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
switch (state) {
case NVME_ZONE_STATE_READ_ONLY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
/* fall through */
case NVME_ZONE_STATE_OFFLINE:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
{
uint16_t status;
uint8_t state = nvme_get_zone_state(zone);
if (state == NVME_ZONE_STATE_EMPTY) {
status = nvme_aor_check(ns, 1, 0);
if (status) {
return status;
}
nvme_aor_inc_active(ns);
zone->d.za |= NVME_ZA_ZD_EXT_VALID;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
return NVME_SUCCESS;
}
return NVME_ZONE_INVAL_TRANSITION;
}
static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
uint16_t status = NVME_SUCCESS;
NvmeZoneState zs = nvme_get_zone_state(zone);
bool proc_zone;
switch (zs) {
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
break;
case NVME_ZONE_STATE_CLOSED:
proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
break;
case NVME_ZONE_STATE_READ_ONLY:
proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
break;
case NVME_ZONE_STATE_FULL:
proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
break;
default:
proc_zone = false;
}
if (proc_zone) {
status = op_hndlr(ns, zone, zs, req);
}
return status;
}
static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
NvmeZone *next;
uint16_t status = NVME_SUCCESS;
int i;
if (!proc_mask) {
status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
} else {
if (proc_mask & NVME_PROC_CLOSED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_OPENED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_FULL_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
for (i = 0; i < ns->num_zones; i++, zone++) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
}
out:
return status;
}
static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
NvmeZone *zone;
uintptr_t *resets;
uint8_t *zd_ext;
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint64_t slba = 0;
uint32_t zone_idx = 0;
uint16_t status;
uint8_t action;
bool all;
enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
action = dw13 & 0xff;
all = dw13 & 0x100;
req->status = NVME_SUCCESS;
if (!all) {
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
if (status) {
return status;
}
}
zone = &ns->zone_array[zone_idx];
if (slba != zone->d.zslba) {
trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (action) {
case NVME_ZONE_ACTION_OPEN:
if (all) {
proc_mask = NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_open_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
break;
case NVME_ZONE_ACTION_CLOSE:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES;
}
trace_pci_nvme_close_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
break;
case NVME_ZONE_ACTION_FINISH:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_finish_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
break;
case NVME_ZONE_ACTION_RESET:
resets = (uintptr_t *)&req->opaque;
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
NVME_PROC_FULL_ZONES;
}
trace_pci_nvme_reset_zone(slba, zone_idx, all);
*resets = 1;
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
(*resets)--;
return *resets ? NVME_NO_COMPLETE : req->status;
case NVME_ZONE_ACTION_OFFLINE:
if (all) {
proc_mask = NVME_PROC_READ_ONLY_ZONES;
}
trace_pci_nvme_offline_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
break;
case NVME_ZONE_ACTION_SET_ZD_EXT:
trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
if (all || !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zd_ext = nvme_get_zd_extension(ns, zone_idx);
status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
if (status) {
trace_pci_nvme_err_zd_extension_map_error(zone_idx);
return status;
}
status = nvme_set_zd_ext(ns, zone);
if (status == NVME_SUCCESS) {
trace_pci_nvme_zd_extension_set(zone_idx);
return status;
}
break;
default:
trace_pci_nvme_err_invalid_mgmt_action(action);
status = NVME_INVALID_FIELD;
}
if (status == NVME_ZONE_INVAL_TRANSITION) {
trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
zone->d.za);
}
if (status) {
status |= NVME_DNR;
}
return status;
}
static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
{
NvmeZoneState zs = nvme_get_zone_state(zl);
switch (zafs) {
case NVME_ZONE_REPORT_ALL:
return true;
case NVME_ZONE_REPORT_EMPTY:
return zs == NVME_ZONE_STATE_EMPTY;
case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
case NVME_ZONE_REPORT_CLOSED:
return zs == NVME_ZONE_STATE_CLOSED;
case NVME_ZONE_REPORT_FULL:
return zs == NVME_ZONE_STATE_FULL;
case NVME_ZONE_REPORT_READ_ONLY:
return zs == NVME_ZONE_STATE_READ_ONLY;
case NVME_ZONE_REPORT_OFFLINE:
return zs == NVME_ZONE_STATE_OFFLINE;
default:
return false;
}
}
static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
/* cdw12 is zero-based number of dwords to return. Convert to bytes */
uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint32_t zone_idx, zra, zrasf, partial;
uint64_t max_zones, nr_zones = 0;
uint16_t status;
uint64_t slba;
NvmeZoneDescr *z;
NvmeZone *zone;
NvmeZoneReportHeader *header;
void *buf, *buf_p;
size_t zone_entry_sz;
int i;
req->status = NVME_SUCCESS;
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
if (status) {
return status;
}
zra = dw13 & 0xff;
if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zrasf = (dw13 >> 8) & 0xff;
if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (data_size < sizeof(NvmeZoneReportHeader)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_mdts(n, data_size);
if (status) {
return status;
}
partial = (dw13 >> 16) & 0x01;
zone_entry_sz = sizeof(NvmeZoneDescr);
if (zra == NVME_ZONE_REPORT_EXTENDED) {
zone_entry_sz += ns->params.zd_extension_size;
}
max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
buf = g_malloc0(data_size);
zone = &ns->zone_array[zone_idx];
for (i = zone_idx; i < ns->num_zones; i++) {
if (partial && nr_zones >= max_zones) {
break;
}
if (nvme_zone_matches_filter(zrasf, zone++)) {
nr_zones++;
}
}
header = (NvmeZoneReportHeader *)buf;
header->nr_zones = cpu_to_le64(nr_zones);
buf_p = buf + sizeof(NvmeZoneReportHeader);
for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
zone = &ns->zone_array[zone_idx];
if (nvme_zone_matches_filter(zrasf, zone)) {
z = (NvmeZoneDescr *)buf_p;
buf_p += sizeof(NvmeZoneDescr);
z->zt = zone->d.zt;
z->zs = zone->d.zs;
z->zcap = cpu_to_le64(zone->d.zcap);
z->zslba = cpu_to_le64(zone->d.zslba);
z->za = zone->d.za;
if (nvme_wp_is_valid(zone)) {
z->wp = cpu_to_le64(zone->d.wp);
} else {
z->wp = cpu_to_le64(~0ULL);
}
if (zra == NVME_ZONE_REPORT_EXTENDED) {
if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
ns->params.zd_extension_size);
}
buf_p += ns->params.zd_extension_size;
}
max_zones--;
}
}
status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
g_free(buf);
return status;
}
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint16_t status;
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
/*
* In the base NVM command set, Flush may apply to all namespaces
* (indicated by NSID being set to 0xFFFFFFFF). But if that feature is used
* along with TP 4056 (Namespace Types), it may be pretty screwed up.
*
* If NSID is indeed set to 0xFFFFFFFF, we simply cannot associate the
* opcode with a specific command since we cannot determine a unique I/O
* command set. Opcode 0x0 could have any other meaning than something
* equivalent to flushing and say it DOES have completely different
* semantics in some other command set - does an NSID of 0xFFFFFFFF then
* mean "for all namespaces, apply whatever command set specific command
* that uses the 0x0 opcode?" Or does it mean "for all namespaces, apply
* whatever command that uses the 0x0 opcode if, and only if, it allows
* NSID to be 0xFFFFFFFF"?
*
* Anyway (and luckily), for now, we do not care about this since the
* device only supports namespace types that includes the NVM Flush command
* (NVM and Zoned), so always do an NVM Flush.
*/
if (req->cmd.opcode == NVME_CMD_FLUSH) {
return nvme_flush(n, req);
}
req->ns = nvme_ns(n, nsid);
if (unlikely(!req->ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
status = nvme_ns_status(req->ns);
if (unlikely(status)) {
return status;
}
switch (req->cmd.opcode) {
case NVME_CMD_WRITE_ZEROES:
return nvme_write_zeroes(n, req);
case NVME_CMD_ZONE_APPEND:
return nvme_zone_append(n, req);
case NVME_CMD_WRITE:
return nvme_write(n, req);
case NVME_CMD_READ:
return nvme_read(n, req);
case NVME_CMD_COMPARE:
return nvme_compare(n, req);
case NVME_CMD_DSM:
return nvme_dsm(n, req);
case NVME_CMD_VERIFY:
return nvme_verify(n, req);
case NVME_CMD_COPY:
return nvme_copy(n, req);
case NVME_CMD_ZONE_MGMT_SEND:
return nvme_zone_mgmt_send(n, req);
case NVME_CMD_ZONE_MGMT_RECV:
return nvme_zone_mgmt_recv(n, req);
default:
assert(false);
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
{
n->sq[sq->sqid] = NULL;
timer_free(sq->timer);
g_free(sq->io_req);
if (sq->sqid) {
g_free(sq);
}
}
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeRequest *r, *next;
NvmeSQueue *sq;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
trace_pci_nvme_err_invalid_del_sq(qid);
return NVME_INVALID_QID | NVME_DNR;
}
trace_pci_nvme_del_sq(qid);
sq = n->sq[qid];
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
r = QTAILQ_FIRST(&sq->out_req_list);
assert(r->aiocb);
blk_aio_cancel(r->aiocb);
}
if (!nvme_check_cqid(n, sq->cqid)) {
cq = n->cq[sq->cqid];
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
nvme_post_cqes(cq);
QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
if (r->sq == sq) {
QTAILQ_REMOVE(&cq->req_list, r, entry);
QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
}
}
}
nvme_free_sq(sq, n);
return NVME_SUCCESS;
}
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t sqid, uint16_t cqid, uint16_t size)
{
int i;
NvmeCQueue *cq;
sq->ctrl = n;
sq->dma_addr = dma_addr;
sq->sqid = sqid;
sq->size = size;
sq->cqid = cqid;
sq->head = sq->tail = 0;
sq->io_req = g_new0(NvmeRequest, sq->size);
QTAILQ_INIT(&sq->req_list);
QTAILQ_INIT(&sq->out_req_list);
for (i = 0; i < sq->size; i++) {
sq->io_req[i].sq = sq;
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
}
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
assert(n->cq[cqid]);
cq = n->cq[cqid];
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
n->sq[sqid] = sq;
}
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeSQueue *sq;
NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t sqid = le16_to_cpu(c->sqid);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->sq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
return NVME_INVALID_CQID | NVME_DNR;
}
if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
n->sq[sqid] != NULL)) {
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_sq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
sq = g_malloc0(sizeof(*sq));
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
return NVME_SUCCESS;
}
struct nvme_stats {
uint64_t units_read;
uint64_t units_written;
uint64_t read_commands;
uint64_t write_commands;
};
static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
{
BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
}
static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
struct nvme_stats stats = { 0 };
NvmeSmartLog smart = { 0 };
uint32_t trans_len;
NvmeNamespace *ns;
time_t current_ms;
if (off >= sizeof(smart)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nsid != 0xffffffff) {
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_NSID | NVME_DNR;
}
nvme_set_blk_stats(ns, &stats);
} else {
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_set_blk_stats(ns, &stats);
}
}
trans_len = MIN(sizeof(smart) - off, buf_len);
smart.critical_warning = n->smart_critical_warning;
smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
1000));
smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
1000));
smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
smart.temperature = cpu_to_le16(n->temperature);
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
smart.critical_warning |= NVME_SMART_TEMPERATURE;
}
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
smart.power_on_hours[0] =
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_SMART);
}
return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
}
static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
uint32_t trans_len;
NvmeFwSlotInfoLog fw_log = {
.afi = 0x1,
};
if (off >= sizeof(fw_log)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
trans_len = MIN(sizeof(fw_log) - off, buf_len);
return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
}
static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t trans_len;
NvmeErrorLog errlog;
if (off >= sizeof(errlog)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
}
memset(&errlog, 0x0, sizeof(errlog));
trans_len = MIN(sizeof(errlog) - off, buf_len);
return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
}
static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nslist[1024];
uint32_t trans_len;
int i = 0;
uint32_t nsid;
memset(nslist, 0x0, sizeof(nslist));
trans_len = MIN(sizeof(nslist) - off, buf_len);
while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
NVME_CHANGED_NSID_SIZE) {
/*
* If more than 1024 namespaces, the first entry in the log page should
* be set to 0xffffffff and the others to 0 as spec.
*/
if (i == ARRAY_SIZE(nslist)) {
memset(nslist, 0x0, sizeof(nslist));
nslist[0] = 0xffffffff;
break;
}
nslist[i++] = nsid;
clear_bit(nsid, n->changed_nsids);
}
/*
* Remove all the remaining list entries in case returns directly due to
* more than 1024 namespaces.
*/
if (nslist[0] == 0xffffffff) {
bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
}
return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
}
static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
NvmeEffectsLog log = {};
const uint32_t *src_iocs = NULL;
uint32_t trans_len;
if (off >= sizeof(log)) {
trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (NVME_CC_CSS(n->bar.cc)) {
case NVME_CC_CSS_NVM:
src_iocs = nvme_cse_iocs_nvm;
/* fall through */
case NVME_CC_CSS_ADMIN_ONLY:
break;
case NVME_CC_CSS_CSI:
switch (csi) {
case NVME_CSI_NVM:
src_iocs = nvme_cse_iocs_nvm;
break;
case NVME_CSI_ZONED:
src_iocs = nvme_cse_iocs_zoned;
break;
}
}
memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
if (src_iocs) {
memcpy(log.iocs, src_iocs, sizeof(log.iocs));
}
trans_len = MIN(sizeof(log) - off, buf_len);
return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
}
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint8_t lid = dw10 & 0xff;
uint8_t lsp = (dw10 >> 8) & 0xf;
uint8_t rae = (dw10 >> 15) & 0x1;
uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
uint32_t numdl, numdu;
uint64_t off, lpol, lpou;
size_t len;
uint16_t status;
numdl = (dw10 >> 16);
numdu = (dw11 & 0xffff);
lpol = dw12;
lpou = dw13;
len = (((numdu << 16) | numdl) + 1) << 2;
off = (lpou << 32ULL) | lpol;
if (off & 0x3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
status = nvme_check_mdts(n, len);
if (status) {
return status;
}
switch (lid) {
case NVME_LOG_ERROR_INFO:
return nvme_error_info(n, rae, len, off, req);
case NVME_LOG_SMART_INFO:
return nvme_smart_info(n, rae, len, off, req);
case NVME_LOG_FW_SLOT_INFO:
return nvme_fw_log_info(n, len, off, req);
case NVME_LOG_CHANGED_NSLIST:
return nvme_changed_nslist(n, rae, len, off, req);
case NVME_LOG_CMD_EFFECTS:
return nvme_cmd_effects(n, csi, len, off, req);
default:
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
{
n->cq[cq->cqid] = NULL;
timer_free(cq->timer);
if (msix_enabled(&n->parent_obj)) {
msix_vector_unuse(&n->parent_obj, cq->vector);
}
if (cq->cqid) {
g_free(cq);
}
}
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
return NVME_INVALID_CQID | NVME_DNR;
}
cq = n->cq[qid];
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
return NVME_INVALID_QUEUE_DEL;
}
nvme_irq_deassert(n, cq);
trace_pci_nvme_del_cq(qid);
nvme_free_cq(cq, n);
return NVME_SUCCESS;
}
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t cqid, uint16_t vector, uint16_t size,
uint16_t irq_enabled)
{
int ret;
if (msix_enabled(&n->parent_obj)) {
ret = msix_vector_use(&n->parent_obj, vector);
assert(ret == 0);
}
cq->ctrl = n;
cq->cqid = cqid;
cq->size = size;
cq->dma_addr = dma_addr;
cq->phase = 1;
cq->irq_enabled = irq_enabled;
cq->vector = vector;
cq->head = cq->tail = 0;
QTAILQ_INIT(&cq->req_list);
QTAILQ_INIT(&cq->sq_list);
n->cq[cqid] = cq;
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
}
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCQueue *cq;
NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t vector = le16_to_cpu(c->irq_vector);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->cq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
NVME_CQ_FLAGS_IEN(qflags) != 0);
if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
n->cq[cqid] != NULL)) {
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_cq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(vector >= n->params.msix_qsize)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
cq = g_malloc0(sizeof(*cq));
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
NVME_CQ_FLAGS_IEN(qflags));
/*
* It is only required to set qs_created when creating a completion queue;
* creating a submission queue without a matching completion queue will
* fail.
*/
n->qs_created = true;
return NVME_SUCCESS;
}
static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
return nvme_c2h(n, id, sizeof(id), req);
}
static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
{
switch (ns->csi) {
case NVME_CSI_NVM:
case NVME_CSI_ZONED:
return true;
}
return false;
}
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_identify_ctrl();
return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
}
static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
trace_pci_nvme_identify_ctrl_csi(c->csi);
switch (c->csi) {
case NVME_CSI_NVM:
id_nvm->vsl = n->params.vsl;
id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
break;
case NVME_CSI_ZONED:
((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
return nvme_c2h(n, id, sizeof(id), req);
}
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
}
return NVME_INVALID_CMD_SET | NVME_DNR;
}
static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint16_t min_id = le16_to_cpu(c->ctrlid);
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint16_t *ids = &list[1];
NvmeNamespace *ns;
NvmeCtrl *ctrl;
int cntlid, nr_ids = 0;
trace_pci_nvme_identify_ns_attached_list(min_id);
if (c->nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ns = nvme_subsys_ns(n->subsys, c->nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
if (!ctrl) {
continue;
}
if (!nvme_ns_is_attached(ctrl, ns)) {
continue;
}
ids[nr_ids++] = cntlid;
}
list[0] = nr_ids;
return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
}
static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns_csi(nsid, c->csi);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
return nvme_rpt_empty_id_struct(n, req);
} else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
req);
}
return NVME_INVALID_FIELD | NVME_DNR;
}
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist(min_nsid);
/*
* Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
* since the Active Namespace ID List should return namespaces with ids
* *higher* than the NSID specified in the command. This is also specified
* in the spec (NVM Express v1.3d, Section 5.15.4).
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
/*
* Same as in nvme_identify_nslist(), 0xffffffff/0xfffffffe are invalid.
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
struct data {
struct {
NvmeIdNsDescr hdr;
uint8_t v[NVME_NIDL_UUID];
} uuid;
struct {
NvmeIdNsDescr hdr;
uint8_t v;
} csi;
};
struct data *ns_descrs = (struct data *)list;
trace_pci_nvme_identify_ns_descr_list(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
/*
* Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
* structure, a Namespace UUID (nidt = 0x3) must be reported in the
* Namespace Identification Descriptor. Add the namespace UUID here.
*/
ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
ns_descrs->csi.v = ns->csi;
return nvme_c2h(n, list, sizeof(list), req);
}
static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
trace_pci_nvme_identify_cmd_set();
NVME_SET_CSI(*list, NVME_CSI_NVM);
NVME_SET_CSI(*list, NVME_CSI_ZONED);
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
c->csi);
switch (c->cns) {
case NVME_ID_CNS_NS:
return nvme_identify_ns(n, req, true);
case NVME_ID_CNS_NS_PRESENT:
return nvme_identify_ns(n, req, false);
case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
return nvme_identify_ns_attached_list(n, req);
case NVME_ID_CNS_CS_NS:
return nvme_identify_ns_csi(n, req, true);
case NVME_ID_CNS_CS_NS_PRESENT:
return nvme_identify_ns_csi(n, req, false);
case NVME_ID_CNS_CTRL:
return nvme_identify_ctrl(n, req);
case NVME_ID_CNS_CS_CTRL:
return nvme_identify_ctrl_csi(n, req);
case NVME_ID_CNS_NS_ACTIVE_LIST:
return nvme_identify_nslist(n, req, true);
case NVME_ID_CNS_NS_PRESENT_LIST:
return nvme_identify_nslist(n, req, false);
case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
return nvme_identify_nslist_csi(n, req, true);
case NVME_ID_CNS_CS_NS_PRESENT_LIST:
return nvme_identify_nslist_csi(n, req, false);
case NVME_ID_CNS_NS_DESCR_LIST:
return nvme_identify_ns_descr_list(n, req);
case NVME_ID_CNS_IO_COMMAND_SET:
return nvme_identify_cmd_set(n, req);
default:
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
req->cqe.result = 1;
if (nvme_check_sqid(n, sqid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
{
trace_pci_nvme_setfeat_timestamp(ts);
n->host_timestamp = le64_to_cpu(ts);
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
}
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
{
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
union nvme_timestamp {
struct {
uint64_t timestamp:48;
uint64_t sync:1;
uint64_t origin:3;
uint64_t rsvd1:12;
};
uint64_t all;
};
union nvme_timestamp ts;
ts.all = 0;
ts.timestamp = n->host_timestamp + elapsed_time;
/* If the host timestamp is non-zero, set the timestamp origin */
ts.origin = n->host_timestamp ? 0x01 : 0x00;
trace_pci_nvme_getfeat_timestamp(ts.all);
return cpu_to_le64(ts.all);
}
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint64_t timestamp = nvme_get_timestamp(n);
return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
}
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint32_t result;
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
uint16_t iv;
NvmeNamespace *ns;
int i;
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
};
trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
/*
* The Reservation Notification Mask and Reservation Persistence
* features require a status code of Invalid Field in Command when
* NSID is 0xFFFFFFFF. Since the device does not support those
* features we can always return Invalid Namespace or Format as we
* should do for all other features.
*/
return NVME_INVALID_NSID | NVME_DNR;
}
if (!nvme_ns(n, nsid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
switch (sel) {
case NVME_GETFEAT_SELECT_CURRENT:
break;
case NVME_GETFEAT_SELECT_SAVED:
/* no features are saveable by the controller; fallthrough */
case NVME_GETFEAT_SELECT_DEFAULT:
goto defaults;
case NVME_GETFEAT_SELECT_CAP:
result = nvme_feature_cap[fid];
goto out;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
/*
* The controller only implements the Composite Temperature sensor, so
* return 0 for all other sensors.
*/
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
goto out;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
result = n->features.temp_thresh_hi;
goto out;
case NVME_TEMP_THSEL_UNDER:
result = n->features.temp_thresh_low;
goto out;
}
return NVME_INVALID_FIELD | NVME_DNR;
case NVME_ERROR_RECOVERY:
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = ns->features.err_rec;
goto out;
case NVME_VOLATILE_WRITE_CACHE:
result = 0;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
result = blk_enable_write_cache(ns->blkconf.blk);
if (result) {
break;
}
}
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
goto out;
case NVME_ASYNCHRONOUS_EVENT_CONF:
result = n->features.async_config;
goto out;
case NVME_TIMESTAMP:
return nvme_get_feature_timestamp(n, req);
default:
break;
}
defaults:
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
result = NVME_TEMPERATURE_WARNING;
}
break;
case NVME_NUMBER_OF_QUEUES:
result = (n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16);
trace_pci_nvme_getfeat_numq(result);
break;
case NVME_INTERRUPT_VECTOR_CONF:
iv = dw11 & 0xffff;
if (iv >= n->params.max_ioqpairs + 1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = iv;
if (iv == n->admin_cq.vector) {
result |= NVME_INTVC_NOCOALESCING;
}
break;
case NVME_COMMAND_SET_PROFILE:
result = 0;
break;
default:
result = nvme_feature_default[fid];
break;
}
out:
req->cqe.result = cpu_to_le32(result);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t ret;
uint64_t timestamp;
ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
if (ret) {
return ret;
}
nvme_set_timestamp(n, timestamp);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = NULL;
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
uint8_t save = NVME_SETFEAT_SAVE(dw10);
int i;
trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
}
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
}
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
break;
case NVME_TEMP_THSEL_UNDER:
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
}
break;
case NVME_ERROR_RECOVERY:
if (nsid == NVME_NSID_BROADCAST) {
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
}
break;
}
assert(ns);
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
break;
case NVME_VOLATILE_WRITE_CACHE:
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
blk_flush(ns->blkconf.blk);
}
blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
}
break;
case NVME_NUMBER_OF_QUEUES:
if (n->qs_created) {
return NVME_CMD_SEQ_ERROR | NVME_DNR;
}
/*
* NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
* and NSQR.
*/
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
((dw11 >> 16) & 0xFFFF) + 1,
n->params.max_ioqpairs,
n->params.max_ioqpairs);
req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16));
break;
case NVME_ASYNCHRONOUS_EVENT_CONF:
n->features.async_config = dw11;
break;
case NVME_TIMESTAMP:
return nvme_set_feature_timestamp(n, req);
case NVME_COMMAND_SET_PROFILE:
if (dw11 & 0x1ff) {
trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
}
break;
default:
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_aer(nvme_cid(req));
if (n->outstanding_aers > n->params.aerl) {
trace_pci_nvme_aer_aerl_exceeded();
return NVME_AER_LIMIT_EXCEEDED;
}
n->aer_reqs[n->outstanding_aers] = req;
n->outstanding_aers++;
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
return NVME_NO_COMPLETE;
}
static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns);
static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeCtrl *ctrl;
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
bool attach = !(dw10 & 0xf);
uint16_t *nr_ids = &list[0];
uint16_t *ids = &list[1];
uint16_t ret;
int i;
trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
if (ret) {
return ret;
}
if (!*nr_ids) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
for (i = 0; i < *nr_ids; i++) {
ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
if (!ctrl) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
if (attach) {
if (nvme_ns_is_attached(ctrl, ns)) {
return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
}
nvme_ns_attach(ctrl, ns);
__nvme_select_ns_iocs(ctrl, ns);
} else {
if (!nvme_ns_is_attached(ctrl, ns)) {
return NVME_NS_NOT_ATTACHED | NVME_DNR;
}
nvme_ns_detach(ctrl, ns);
}
/*
* Add namespace id to the changed namespace id list for event clearing
* via Get Log Page command.
*/
if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
NVME_LOG_CHANGED_NSLIST);
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf,
uint8_t mset, uint8_t pi, uint8_t pil,
NvmeRequest *req)
{
int64_t len, offset;
struct nvme_aio_format_ctx *ctx;
BlockBackend *blk = ns->blkconf.blk;
uint16_t ms;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
int *count;
if (ns->params.zoned) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil);
if (lbaf > ns->id_ns.nlbaf) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
ms = ns->id_ns.lbaf[lbaf].ms;
if (pi && (ms < sizeof(NvmeDifTuple))) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
nvme_ns_drain(ns);
nvme_ns_shutdown(ns);
nvme_ns_cleanup(ns);
ns->id_ns.dps = (pil << 3) | pi;
ns->id_ns.flbas = lbaf | (mset << 4);
nvme_ns_init_format(ns);
ns->status = NVME_FORMAT_IN_PROGRESS;
len = ns->size;
offset = 0;
count = g_new(int, 1);
*count = 1;
(*num_formats)++;
while (len) {
ctx = g_new(struct nvme_aio_format_ctx, 1);
ctx->req = req;
ctx->ns = ns;
ctx->count = count;
size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
(*count)++;
blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP,
nvme_aio_format_cb, ctx);
offset += bytes;
len -= bytes;
}
(*count)--;
return NVME_NO_COMPLETE;
}
static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint8_t lbaf = dw10 & 0xf;
uint8_t mset = (dw10 >> 4) & 0x1;
uint8_t pi = (dw10 >> 5) & 0x7;
uint8_t pil = (dw10 >> 8) & 0x1;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
uint16_t status;
int i;
trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil);
/* 1-initialize; see the comment in nvme_dsm */
*num_formats = 1;
if (nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
if (status && status != NVME_NO_COMPLETE) {
req->status = status;
}
} else {
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
if (status && status != NVME_NO_COMPLETE) {
req->status = status;
break;
}
}
}
/* account for the 1-initialization */
if (--(*num_formats)) {
return NVME_NO_COMPLETE;
}
return req->status;
}
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
nvme_adm_opc_str(req->cmd.opcode));
if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
/* SGLs shall not be used for Admin commands in NVMe over PCIe */
if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (req->cmd.opcode) {
case NVME_ADM_CMD_DELETE_SQ:
return nvme_del_sq(n, req);
case NVME_ADM_CMD_CREATE_SQ:
return nvme_create_sq(n, req);
case NVME_ADM_CMD_GET_LOG_PAGE:
return nvme_get_log(n, req);
case NVME_ADM_CMD_DELETE_CQ:
return nvme_del_cq(n, req);
case NVME_ADM_CMD_CREATE_CQ:
return nvme_create_cq(n, req);
case NVME_ADM_CMD_IDENTIFY:
return nvme_identify(n, req);
case NVME_ADM_CMD_ABORT:
return nvme_abort(n, req);
case NVME_ADM_CMD_SET_FEATURES:
return nvme_set_feature(n, req);
case NVME_ADM_CMD_GET_FEATURES:
return nvme_get_feature(n, req);
case NVME_ADM_CMD_ASYNC_EV_REQ:
return nvme_aer(n, req);
case NVME_ADM_CMD_NS_ATTACHMENT:
return nvme_ns_attachment(n, req);
case NVME_ADM_CMD_FORMAT_NVM:
return nvme_format(n, req);
default:
assert(false);
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_process_sq(void *opaque)
{
NvmeSQueue *sq = opaque;
NvmeCtrl *n = sq->ctrl;
NvmeCQueue *cq = n->cq[sq->cqid];
uint16_t status;
hwaddr addr;
NvmeCmd cmd;
NvmeRequest *req;
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
addr = sq->dma_addr + sq->head * n->sqe_size;
if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
trace_pci_nvme_err_addr_read(addr);
trace_pci_nvme_err_cfs();
n->bar.csts = NVME_CSTS_FAILED;
break;
}
nvme_inc_sq_head(sq);
req = QTAILQ_FIRST(&sq->req_list);
QTAILQ_REMOVE(&sq->req_list, req, entry);
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
nvme_req_clear(req);
req->cqe.cid = cmd.cid;
memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
status = sq->sqid ? nvme_io_cmd(n, req) :
nvme_admin_cmd(n, req);
if (status != NVME_NO_COMPLETE) {
req->status = status;
nvme_enqueue_req_completion(cq, req);
}
}
}
static void nvme_ctrl_reset(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_drain(ns);
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->sq[i] != NULL) {
nvme_free_sq(n->sq[i], n);
}
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->cq[i] != NULL) {
nvme_free_cq(n->cq[i], n);
}
}
while (!QTAILQ_EMPTY(&n->aer_queue)) {
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
QTAILQ_REMOVE(&n->aer_queue, event, entry);
g_free(event);
}
n->aer_queued = 0;
n->outstanding_aers = 0;
n->qs_created = false;
n->bar.cc = 0;
}
static void nvme_ctrl_shutdown(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
if (n->pmr.dev) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_shutdown(ns);
}
}
static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns)
{
ns->iocs = nvme_cse_iocs_none;
switch (ns->csi) {
case NVME_CSI_NVM:
if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
case NVME_CSI_ZONED:
if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
ns->iocs = nvme_cse_iocs_zoned;
} else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
}
}
static void nvme_select_ns_iocs(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
__nvme_select_ns_iocs(n, ns);
}
}
static int nvme_start_ctrl(NvmeCtrl *n)
{
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
uint32_t page_size = 1 << page_bits;
if (unlikely(n->cq[0])) {
trace_pci_nvme_err_startfail_cq();
return -1;
}
if (unlikely(n->sq[0])) {
trace_pci_nvme_err_startfail_sq();
return -1;
}
if (unlikely(!n->bar.asq)) {
trace_pci_nvme_err_startfail_nbarasq();
return -1;
}
if (unlikely(!n->bar.acq)) {
trace_pci_nvme_err_startfail_nbaracq();
return -1;
}
if (unlikely(n->bar.asq & (page_size - 1))) {
trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
return -1;
}
if (unlikely(n->bar.acq & (page_size - 1))) {
trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
return -1;
}
if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) <
NVME_CAP_MPSMIN(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_small(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) >
NVME_CAP_MPSMAX(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_large(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_small(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_large(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_small(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_large(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_asqent_sz_zero();
return -1;
}
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_acqent_sz_zero();
return -1;
}
n->page_bits = page_bits;
n->page_size = page_size;
n->max_prp_ents = n->page_size / sizeof(uint64_t);
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
NVME_AQA_ASQS(n->bar.aqa) + 1);
nvme_set_timestamp(n, 0ULL);
QTAILQ_INIT(&n->aer_queue);
nvme_select_ns_iocs(n);
return 0;
}
static void nvme_cmb_enable_regs(NvmeCtrl *n)
{
NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
}
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
unsigned size)
{
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
"MMIO write not 32-bit aligned,"
" offset=0x%"PRIx64"", offset);
/* should be ignored, fall through for now */
}
if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
"MMIO write smaller than 32-bits,"
" offset=0x%"PRIx64", size=%u",
offset, size);
/* should be ignored, fall through for now */
}
switch (offset) {
case 0xc: /* INTMS */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask set"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms |= data & 0xffffffff;
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x10: /* INTMC */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask clr"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms &= ~(data & 0xffffffff);
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x14: /* CC */
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
/* Windows first sends data, then sends enable bit */
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
{
n->bar.cc = data;
}
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
n->bar.cc = data;
if (unlikely(nvme_start_ctrl(n))) {
trace_pci_nvme_err_startfail();
n->bar.csts = NVME_CSTS_FAILED;
} else {
trace_pci_nvme_mmio_start_success();
n->bar.csts = NVME_CSTS_READY;
}
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
trace_pci_nvme_mmio_stopped();
nvme_ctrl_reset(n);
n->bar.csts &= ~NVME_CSTS_READY;
}
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
trace_pci_nvme_mmio_shutdown_set();
nvme_ctrl_shutdown(n);
n->bar.cc = data;
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
trace_pci_nvme_mmio_shutdown_cleared();
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
n->bar.cc = data;
}
break;
case 0x1C: /* CSTS */
if (data & (1 << 4)) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
"attempted to W1C CSTS.NSSRO"
" but CAP.NSSRS is zero (not supported)");
} else if (data != 0) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
"attempted to set a read only bit"
" of controller status");
}
break;
case 0x20: /* NSSR */
if (data == 0x4E564D65) {
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
} else {
/* The spec says that writes of other values have no effect */
return;
}
break;
case 0x24: /* AQA */
n->bar.aqa = data & 0xffffffff;
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
break;
case 0x28: /* ASQ */
n->bar.asq = size == 8 ? data :
(n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
trace_pci_nvme_mmio_asqaddr(data);
break;
case 0x2c: /* ASQ hi */
n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
break;
case 0x30: /* ACQ */
trace_pci_nvme_mmio_acqaddr(data);
n->bar.acq = size == 8 ? data :
(n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
break;
case 0x34: /* ACQ hi */
n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
break;
case 0x38: /* CMBLOC */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
"invalid write to reserved CMBLOC"
" when CMBSZ is zero, ignored");
return;
case 0x3C: /* CMBSZ */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
"invalid write to read only CMBSZ, ignored");
return;
case 0x50: /* CMBMSC */
if (!NVME_CAP_CMBS(n->bar.cap)) {
return;
}
n->bar.cmbmsc = size == 8 ? data :
(n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
n->cmb.cmse = false;
if (NVME_CMBMSC_CRE(data)) {
nvme_cmb_enable_regs(n);
if (NVME_CMBMSC_CMSE(data)) {
hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
if (cba + int128_get64(n->cmb.mem.size) < cba) {
NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
return;
}
n->cmb.cba = cba;
n->cmb.cmse = true;
}
} else {
n->bar.cmbsz = 0;
n->bar.cmbloc = 0;
}
return;
case 0x54: /* CMBMSC hi */
n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
return;
case 0xE00: /* PMRCAP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
"invalid write to PMRCAP register, ignored");
return;
case 0xE04: /* PMRCTL */
n->bar.pmrctl = data;
if (NVME_PMRCTL_EN(data)) {
memory_region_set_enabled(&n->pmr.dev->mr, true);
n->bar.pmrsts = 0;
} else {
memory_region_set_enabled(&n->pmr.dev->mr, false);
NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
n->pmr.cmse = false;
}
return;
case 0xE08: /* PMRSTS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
"invalid write to PMRSTS register, ignored");
return;
case 0xE0C: /* PMREBS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
"invalid write to PMREBS register, ignored");
return;
case 0xE10: /* PMRSWTP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
"invalid write to PMRSWTP register, ignored");
return;
case 0xE14: /* PMRMSCL */
if (!NVME_CAP_PMRS(n->bar.cap)) {
return;
}
n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
n->pmr.cmse = false;
if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
return;
}
n->pmr.cmse = true;
n->pmr.cba = cba;
}
return;
case 0xE18: /* PMRMSCU */
if (!NVME_CAP_PMRS(n->bar.cap)) {
return;
}
n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
return;
default:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
"invalid MMIO write,"
" offset=0x%"PRIx64", data=%"PRIx64"",
offset, data);
break;
}
}
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
uint8_t *ptr = (uint8_t *)&n->bar;
uint64_t val = 0;
trace_pci_nvme_mmio_read(addr, size);
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
"MMIO read not 32-bit aligned,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
} else if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
"MMIO read smaller than 32-bits,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
}
if (addr < sizeof(n->bar)) {
/*
* When PMRWBM bit 1 is set then read from
* from PMRSTS should ensure prior writes
* made it to persistent media
*/
if (addr == 0xE08 &&
(NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
memcpy(&val, ptr + addr, size);
} else {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
"MMIO read beyond last register,"
" offset=0x%"PRIx64", returning 0", addr);
}
return val;
}
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
{
uint32_t qid;
if (unlikely(addr & ((1 << 2) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
"doorbell write not 32-bit aligned,"
" offset=0x%"PRIx64", ignoring", addr);
return;
}
if (((addr - 0x1000) >> 2) & 1) {
/* Completion queue doorbell write */
uint16_t new_head = val & 0xffff;
int start_sqs;
NvmeCQueue *cq;
qid = (addr - (0x1000 + (1 << 2))) >> 3;
if (unlikely(nvme_check_cqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
"completion queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
/*
* NVM Express v1.3d, Section 4.1 state: "If host software writes
* an invalid value to the Submission Queue Tail Doorbell or
* Completion Queue Head Doorbell regiter and an Asynchronous Event
* Request command is outstanding, then an asynchronous event is
* posted to the Admin Completion Queue with a status code of
* Invalid Doorbell Write Value."
*
* Also note that the spec includes the "Invalid Doorbell Register"
* status code, but nowhere does it specify when to use it.
* However, it seems reasonable to use it here in a similar
* fashion.
*/
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
cq = n->cq[qid];
if (unlikely(new_head >= cq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
"completion queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_head=%"PRIu16", ignoring",
qid, new_head);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
start_sqs = nvme_cq_full(cq) ? 1 : 0;
cq->head = new_head;
if (start_sqs) {
NvmeSQueue *sq;
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
if (cq->tail == cq->head) {
nvme_irq_deassert(n, cq);
}
} else {
/* Submission queue doorbell write */
uint16_t new_tail = val & 0xffff;
NvmeSQueue *sq;
qid = (addr - 0x1000) >> 3;
if (unlikely(nvme_check_sqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
"submission queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
sq = n->sq[qid];
if (unlikely(new_tail >= sq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
"submission queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_tail=%"PRIu16", ignoring",
qid, new_tail);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
sq->tail = new_tail;
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
}
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
trace_pci_nvme_mmio_write(addr, data, size);
if (addr < sizeof(n->bar)) {
nvme_write_bar(n, addr, data, size);
} else {
nvme_process_db(n, addr, data);
}
}
static const MemoryRegionOps nvme_mmio_ops = {
.read = nvme_mmio_read,
.write = nvme_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 2,
.max_access_size = 8,
},
};
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
stn_le_p(&n->cmb.buf[addr], size, data);
}
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
return ldn_le_p(&n->cmb.buf[addr], size);
}
static const MemoryRegionOps nvme_cmb_ops = {
.read = nvme_cmb_read,
.write = nvme_cmb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
{
NvmeParams *params = &n->params;
if (params->num_queues) {
warn_report("num_queues is deprecated; please use max_ioqpairs "
"instead");
params->max_ioqpairs = params->num_queues - 1;
}
if (n->conf.blk) {
warn_report("drive property is deprecated; "
"please use an nvme-ns device instead");
}
if (params->max_ioqpairs < 1 ||
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
error_setg(errp, "max_ioqpairs must be between 1 and %d",
NVME_MAX_IOQPAIRS);
return;
}
if (params->msix_qsize < 1 ||
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
error_setg(errp, "msix_qsize must be between 1 and %d",
PCI_MSIX_FLAGS_QSIZE + 1);
return;
}
if (!params->serial) {
error_setg(errp, "serial property not set");
return;
}
if (n->pmr.dev) {
if (host_memory_backend_is_mapped(n->pmr.dev)) {
error_setg(errp, "can't use already busy memdev: %s",
object_get_canonical_path_component(OBJECT(n->pmr.dev)));
return;
}
if (!is_power_of_2(n->pmr.dev->size)) {
error_setg(errp, "pmr backend size needs to be power of 2 in size");
return;
}
host_memory_backend_set_mapped(n->pmr.dev, true);
}
if (n->params.zasl > n->params.mdts) {
error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
"than or equal to mdts (Maximum Data Transfer Size)");
return;
}
if (!n->params.vsl) {
error_setg(errp, "vsl must be non-zero");
return;
}
}
static void nvme_init_state(NvmeCtrl *n)
{
n->num_namespaces = NVME_MAX_NAMESPACES;
/* add one to max_ioqpairs to account for the admin queue pair */
n->reg_size = pow2ceil(sizeof(NvmeBar) +
2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
n->temperature = NVME_TEMPERATURE;
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
}
static int nvme_attach_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
{
if (nvme_ns_is_attached(n, ns)) {
error_setg(errp,
"namespace %d is already attached to controller %d",
nvme_nsid(ns), n->cntlid);
return -1;
}
nvme_ns_attach(n, ns);
return 0;
}
int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
{
uint32_t nsid = nvme_nsid(ns);
if (nsid > NVME_MAX_NAMESPACES) {
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
NVME_MAX_NAMESPACES);
return -1;
}
if (!nsid) {
for (int i = 1; i <= n->num_namespaces; i++) {
if (!nvme_ns(n, i)) {
nsid = ns->params.nsid = i;
break;
}
}
if (!nsid) {
error_setg(errp, "no free namespace id");
return -1;
}
} else {
if (n->namespaces[nsid - 1]) {
error_setg(errp, "namespace id '%d' is already in use", nsid);
return -1;
}
}
trace_pci_nvme_register_namespace(nsid);
/*
* If subsys is not given, namespae is always attached to the controller
* because there's no subsystem to manage namespace allocation.
*/
if (!n->subsys) {
if (ns->params.detached) {
error_setg(errp,
"detached needs nvme-subsys specified nvme or nvme-ns");
return -1;
}
return nvme_attach_namespace(n, ns, errp);
} else {
if (!ns->params.detached) {
return nvme_attach_namespace(n, ns, errp);
}
}
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
return 0;
}
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
{
uint64_t cmb_size = n->params.cmb_size_mb * MiB;
n->cmb.buf = g_malloc0(cmb_size);
memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
"nvme-cmb", cmb_size);
pci_register_bar(pci_dev, NVME_CMB_BIR,
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
NVME_CAP_SET_CMBS(n->bar.cap, 1);
if (n->params.legacy_cmb) {
nvme_cmb_enable_regs(n);
n->cmb.cmse = true;
}
}
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
{
NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
/* Turn on bit 1 support */
NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
memory_region_set_enabled(&n->pmr.dev->mr, false);
}
static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
{
uint8_t *pci_conf = pci_dev->config;
uint64_t bar_size, msix_table_size, msix_pba_size;
unsigned msix_table_offset, msix_pba_offset;
int ret;
Error *err = NULL;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x2);
if (n->params.use_intel_id) {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, 0x5845);
} else {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
}
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
pcie_endpoint_cap_init(pci_dev, 0x80);
bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
msix_table_offset = bar_size;
msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
bar_size += msix_table_size;
bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
msix_pba_offset = bar_size;
msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
bar_size += msix_pba_size;
bar_size = pow2ceil(bar_size);
memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
n->reg_size);
memory_region_add_subregion(&n->bar0, 0, &n->iomem);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
ret = msix_init(pci_dev, n->params.msix_qsize,
&n->bar0, 0, msix_table_offset,
&n->bar0, 0, msix_pba_offset, 0, &err);
if (ret < 0) {
if (ret == -ENOTSUP) {
warn_report_err(err);
} else {
error_propagate(errp, err);
return ret;
}
}
if (n->params.cmb_size_mb) {
nvme_init_cmb(n, pci_dev);
}
if (n->pmr.dev) {
nvme_init_pmr(n, pci_dev);
}
return 0;
}
static void nvme_init_subnqn(NvmeCtrl *n)
{
NvmeSubsystem *subsys = n->subsys;
NvmeIdCtrl *id = &n->id_ctrl;
if (!subsys) {
snprintf((char *)id->subnqn, sizeof(id->subnqn),
"nqn.2019-08.org.qemu:%s", n->params.serial);
} else {
pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
}
}
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
{
NvmeIdCtrl *id = &n->id_ctrl;
uint8_t *pci_conf = pci_dev->config;
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
id->cntlid = cpu_to_le16(n->cntlid);
id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
id->rab = 6;
if (n->params.use_intel_id) {
id->ieee[0] = 0xb3;
id->ieee[1] = 0x02;
id->ieee[2] = 0x00;
} else {
id->ieee[0] = 0x00;
id->ieee[1] = 0x54;
id->ieee[2] = 0x52;
}
id->mdts = n->params.mdts;
id->ver = cpu_to_le32(NVME_SPEC_VER);
id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
id->cntrltype = 0x1;
/*
* Because the controller always completes the Abort command immediately,
* there can never be more than one concurrently executing Abort command,
* so this value is never used for anything. Note that there can easily be
* many Abort commands in the queues, but they are not considered
* "executing" until processed by nvme_abort.
*
* The specification recommends a value of 3 for Abort Command Limit (four
* concurrently outstanding Abort commands), so lets use that though it is
* inconsequential.
*/
id->acl = 3;
id->aerl = n->params.aerl;
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
/* recommended default value (~70 C) */
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
id->sqes = (0x6 << 4) | 0x6;
id->cqes = (0x4 << 4) | 0x4;
id->nn = cpu_to_le32(n->num_namespaces);
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
NVME_ONCS_FEATURES | NVME_ONCS_DSM |
NVME_ONCS_COMPARE | NVME_ONCS_COPY);
/*
* NOTE: If this device ever supports a command set that does NOT use 0x0
* as a Flush-equivalent operation, support for the broadcast NSID in Flush
* should probably be removed.
*
* See comment in nvme_io_cmd.
*/
id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
NVME_CTRL_SGLS_BITBUCKET);
nvme_init_subnqn(n);
id->psd[0].mp = cpu_to_le16(0x9c4);
id->psd[0].enlat = cpu_to_le32(0x10);
id->psd[0].exlat = cpu_to_le32(0x4);
if (n->subsys) {
id->cmic |= NVME_CMIC_MULTI_CTRL;
}
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
NVME_CAP_SET_CQR(n->bar.cap, 1);
NVME_CAP_SET_TO(n->bar.cap, 0xf);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
n->bar.vs = NVME_SPEC_VER;
n->bar.intmc = n->bar.intms = 0;
}
static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
{
int cntlid;
if (!n->subsys) {
return 0;
}
cntlid = nvme_subsys_register_ctrl(n, errp);
if (cntlid < 0) {
return -1;
}
n->cntlid = cntlid;
return 0;
}
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
{
NvmeCtrl *n = NVME(pci_dev);
NvmeNamespace *ns;
Error *local_err = NULL;
nvme_check_constraints(n, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
&pci_dev->qdev, n->parent_obj.qdev.id);
nvme_init_state(n);
if (nvme_init_pci(n, pci_dev, errp)) {
return;
}
if (nvme_init_subsys(n, errp)) {
error_propagate(errp, local_err);
return;
}
nvme_init_ctrl(n, pci_dev);
/* setup a namespace if the controller drive property was given */
if (n->namespace.blkconf.blk) {
ns = &n->namespace;
ns->params.nsid = 1;
if (nvme_ns_setup(ns, errp)) {
return;
}
if (nvme_register_namespace(n, ns, errp)) {
return;
}
}
}
static void nvme_exit(PCIDevice *pci_dev)
{
NvmeCtrl *n = NVME(pci_dev);
NvmeNamespace *ns;
int i;
nvme_ctrl_reset(n);
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_cleanup(ns);
}
g_free(n->cq);
g_free(n->sq);
g_free(n->aer_reqs);
if (n->params.cmb_size_mb) {
g_free(n->cmb.buf);
}
if (n->pmr.dev) {
host_memory_backend_set_mapped(n->pmr.dev, false);
}
msix_uninit_exclusive_bar(pci_dev);
}
static Property nvme_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
HostMemoryBackend *),
DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
NvmeSubsystem *),
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value = n->smart_critical_warning;
visit_type_uint8(v, name, &value, errp);
}
static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value, old_value, cap = 0, index, event;
if (!visit_type_uint8(v, name, &value, errp)) {
return;
}
cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
| NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
if (NVME_CAP_PMRS(n->bar.cap)) {
cap |= NVME_SMART_PMR_UNRELIABLE;
}
if ((value & cap) != value) {
error_setg(errp, "unsupported smart critical warning bits: 0x%x",
value & ~cap);
return;
}
old_value = n->smart_critical_warning;
n->smart_critical_warning = value;
/* only inject new bits of smart critical warning */
for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
event = 1 << index;
if (value & ~old_value & event)
nvme_smart_event(n, event);
}
}
static const VMStateDescription nvme_vmstate = {
.name = "nvme",
.unmigratable = 1,
};
static void nvme_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = nvme_realize;
pc->exit = nvme_exit;
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
pc->revision = 2;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Non-Volatile Memory Express";
device_class_set_props(dc, nvme_props);
dc->vmsd = &nvme_vmstate;
}
static void nvme_instance_init(Object *obj)
{
NvmeCtrl *n = NVME(obj);
if (n->namespace.blkconf.blk) {
device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
"bootindex", "/namespace@1,0",
DEVICE(obj));
}
object_property_add(obj, "smart_critical_warning", "uint8",
nvme_get_smart_warning,
nvme_set_smart_warning, NULL, NULL);
}
static const TypeInfo nvme_info = {
.name = TYPE_NVME,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvmeCtrl),
.instance_init = nvme_instance_init,
.class_init = nvme_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static const TypeInfo nvme_bus_info = {
.name = TYPE_NVME_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(NvmeBus),
};
static void nvme_register_types(void)
{
type_register_static(&nvme_info);
type_register_static(&nvme_bus_info);
}
type_init(nvme_register_types)