qemu/softmmu/dma-helpers.c
Philippe Mathieu-Daudé f02b664aad hw/dma: Let dma_buf_read() / dma_buf_write() propagate MemTxResult
Since commit 292e13142d, dma_buf_rw() returns a MemTxResult type.
Do not discard it, return it to the caller. Pass the previously
returned value (the QEMUSGList residual size, which was rarely used)
as an optional argument.

With this new API, SCSIRequest::residual might now be accessed via
a pointer. Since the size_t type does not have the same size on
32 and 64-bit host architectures, convert it to a uint64_t, which
is big enough to hold the residual size, and the type is constant
on both 32/64-bit hosts.

Update the few dma_buf_read() / dma_buf_write() callers to the new
API.

Reviewed-by: Klaus Jensen <k.jensen@samsung.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Acked-by: Peter Xu <peterx@redhat.com>
Message-Id: <20220117125130.131828-1-f4bug@amsat.org>
2022-01-18 12:56:29 +01:00

367 lines
10 KiB
C

/*
* DMA helper functions
*
* Copyright (c) 2009,2020 Red Hat
*
* This work is licensed under the terms of the GNU General Public License
* (GNU GPL), version 2 or later.
*/
#include "qemu/osdep.h"
#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include "trace/trace-root.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"
#include "sysemu/cpu-timers.h"
#include "qemu/range.h"
/* #define DEBUG_IOMMU */
MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr,
uint8_t c, dma_addr_t len, MemTxAttrs attrs)
{
dma_barrier(as, DMA_DIRECTION_FROM_DEVICE);
#define FILLBUF_SIZE 512
uint8_t fillbuf[FILLBUF_SIZE];
int l;
MemTxResult error = MEMTX_OK;
memset(fillbuf, c, FILLBUF_SIZE);
while (len > 0) {
l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
error |= address_space_write(as, addr, attrs, fillbuf, l);
len -= l;
addr += l;
}
return error;
}
void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
AddressSpace *as)
{
qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
qsg->nsg = 0;
qsg->nalloc = alloc_hint;
qsg->size = 0;
qsg->as = as;
qsg->dev = dev;
object_ref(OBJECT(dev));
}
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
{
if (qsg->nsg == qsg->nalloc) {
qsg->nalloc = 2 * qsg->nalloc + 1;
qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
}
qsg->sg[qsg->nsg].base = base;
qsg->sg[qsg->nsg].len = len;
qsg->size += len;
++qsg->nsg;
}
void qemu_sglist_destroy(QEMUSGList *qsg)
{
object_unref(OBJECT(qsg->dev));
g_free(qsg->sg);
memset(qsg, 0, sizeof(*qsg));
}
typedef struct {
BlockAIOCB common;
AioContext *ctx;
BlockAIOCB *acb;
QEMUSGList *sg;
uint32_t align;
uint64_t offset;
DMADirection dir;
int sg_cur_index;
dma_addr_t sg_cur_byte;
QEMUIOVector iov;
QEMUBH *bh;
DMAIOFunc *io_func;
void *io_func_opaque;
} DMAAIOCB;
static void dma_blk_cb(void *opaque, int ret);
static void reschedule_dma(void *opaque)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
assert(!dbs->acb && dbs->bh);
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
dma_blk_cb(dbs, 0);
}
static void dma_blk_unmap(DMAAIOCB *dbs)
{
int i;
for (i = 0; i < dbs->iov.niov; ++i) {
dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, dbs->dir,
dbs->iov.iov[i].iov_len);
}
qemu_iovec_reset(&dbs->iov);
}
static void dma_complete(DMAAIOCB *dbs, int ret)
{
trace_dma_complete(dbs, ret, dbs->common.cb);
assert(!dbs->acb && !dbs->bh);
dma_blk_unmap(dbs);
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, ret);
}
qemu_iovec_destroy(&dbs->iov);
qemu_aio_unref(dbs);
}
static void dma_blk_cb(void *opaque, int ret)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
dma_addr_t cur_addr, cur_len;
void *mem;
trace_dma_blk_cb(dbs, ret);
dbs->acb = NULL;
dbs->offset += dbs->iov.size;
if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
dma_complete(dbs, ret);
return;
}
dma_blk_unmap(dbs);
while (dbs->sg_cur_index < dbs->sg->nsg) {
cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir,
MEMTXATTRS_UNSPECIFIED);
/*
* Make reads deterministic in icount mode. Windows sometimes issues
* disk read requests with overlapping SGs. It leads
* to non-determinism, because resulting buffer contents may be mixed
* from several sectors. This code splits all SGs into several
* groups. SGs in every group do not overlap.
*/
if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) {
int i;
for (i = 0 ; i < dbs->iov.niov ; ++i) {
if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, (intptr_t)mem,
cur_len)) {
dma_memory_unmap(dbs->sg->as, mem, cur_len,
dbs->dir, cur_len);
mem = NULL;
break;
}
}
}
if (!mem)
break;
qemu_iovec_add(&dbs->iov, mem, cur_len);
dbs->sg_cur_byte += cur_len;
if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
dbs->sg_cur_byte = 0;
++dbs->sg_cur_index;
}
}
if (dbs->iov.size == 0) {
trace_dma_map_wait(dbs);
dbs->bh = aio_bh_new(dbs->ctx, reschedule_dma, dbs);
cpu_register_map_client(dbs->bh);
return;
}
if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) {
qemu_iovec_discard_back(&dbs->iov,
QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align));
}
aio_context_acquire(dbs->ctx);
dbs->acb = dbs->io_func(dbs->offset, &dbs->iov,
dma_blk_cb, dbs, dbs->io_func_opaque);
aio_context_release(dbs->ctx);
assert(dbs->acb);
}
static void dma_aio_cancel(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
trace_dma_aio_cancel(dbs);
assert(!(dbs->acb && dbs->bh));
if (dbs->acb) {
/* This will invoke dma_blk_cb. */
blk_aio_cancel_async(dbs->acb);
return;
}
if (dbs->bh) {
cpu_unregister_map_client(dbs->bh);
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
}
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, -ECANCELED);
}
}
static AioContext *dma_get_aio_context(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
return dbs->ctx;
}
static const AIOCBInfo dma_aiocb_info = {
.aiocb_size = sizeof(DMAAIOCB),
.cancel_async = dma_aio_cancel,
.get_aio_context = dma_get_aio_context,
};
BlockAIOCB *dma_blk_io(AioContext *ctx,
QEMUSGList *sg, uint64_t offset, uint32_t align,
DMAIOFunc *io_func, void *io_func_opaque,
BlockCompletionFunc *cb,
void *opaque, DMADirection dir)
{
DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque);
trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE));
dbs->acb = NULL;
dbs->sg = sg;
dbs->ctx = ctx;
dbs->offset = offset;
dbs->align = align;
dbs->sg_cur_index = 0;
dbs->sg_cur_byte = 0;
dbs->dir = dir;
dbs->io_func = io_func;
dbs->io_func_opaque = io_func_opaque;
dbs->bh = NULL;
qemu_iovec_init(&dbs->iov, sg->nsg);
dma_blk_cb(dbs, 0);
return &dbs->common;
}
static
BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_read(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_read_io_func, blk, cb, opaque,
DMA_DIRECTION_FROM_DEVICE);
}
static
BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_write(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_write_io_func, blk, cb, opaque,
DMA_DIRECTION_TO_DEVICE);
}
static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, DMADirection dir,
MemTxAttrs attrs)
{
uint8_t *ptr = buf;
dma_addr_t xresidual;
int sg_cur_index;
MemTxResult res = MEMTX_OK;
xresidual = sg->size;
sg_cur_index = 0;
len = MIN(len, xresidual);
while (len > 0) {
ScatterGatherEntry entry = sg->sg[sg_cur_index++];
dma_addr_t xfer = MIN(len, entry.len);
res |= dma_memory_rw(sg->as, entry.base, ptr, xfer, dir, attrs);
ptr += xfer;
len -= xfer;
xresidual -= xfer;
}
if (residual) {
*residual = xresidual;
}
return res;
}
MemTxResult dma_buf_read(void *ptr, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, MemTxAttrs attrs)
{
return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_FROM_DEVICE, attrs);
}
MemTxResult dma_buf_write(void *ptr, dma_addr_t len, dma_addr_t *residual,
QEMUSGList *sg, MemTxAttrs attrs)
{
return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_TO_DEVICE, attrs);
}
void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
QEMUSGList *sg, enum BlockAcctType type)
{
block_acct_start(blk_get_stats(blk), cookie, sg->size, type);
}
uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits)
{
uint64_t max_mask = UINT64_MAX, addr_mask = end - start;
uint64_t alignment_mask, size_mask;
if (max_addr_bits != 64) {
max_mask = (1ULL << max_addr_bits) - 1;
}
alignment_mask = start ? (start & -start) - 1 : max_mask;
alignment_mask = MIN(alignment_mask, max_mask);
size_mask = MIN(addr_mask, max_mask);
if (alignment_mask <= size_mask) {
/* Increase the alignment of start */
return alignment_mask;
} else {
/* Find the largest page mask from size */
if (addr_mask == UINT64_MAX) {
return UINT64_MAX;
}
return (1ULL << (63 - clz64(addr_mask + 1))) - 1;
}
}