qemu/hw/intc/spapr_xive_kvm.c
Cédric Le Goater 0c575703e4 spapr/xive: add hcall support when under KVM
XIVE hcalls are all redirected to QEMU as none are on a fast path.
When necessary, QEMU invokes KVM through specific ioctls to perform
host operations. QEMU should have done the necessary checks before
calling KVM and, in case of failure, H_HARDWARE is simply returned.

H_INT_ESB is a special case that could have been handled under KVM
but the impact on performance was low when under QEMU. Here are some
figures :

    kernel irqchip      OFF          ON
    H_INT_ESB                    KVM   QEMU

    rtl8139 (LSI )      1.19     1.24  1.23  Gbits/sec
    virtio             31.80    42.30   --   Gbits/sec

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-05-29 11:39:45 +10:00

435 lines
12 KiB
C

/*
* QEMU PowerPC sPAPR XIVE interrupt controller model
*
* Copyright (c) 2017-2019, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_xive.h"
#include "hw/ppc/xive.h"
#include "kvm_ppc.h"
#include <sys/ioctl.h>
/*
* Helpers for CPU hotplug
*
* TODO: make a common KVMEnabledCPU layer for XICS and XIVE
*/
typedef struct KVMEnabledCPU {
unsigned long vcpu_id;
QLIST_ENTRY(KVMEnabledCPU) node;
} KVMEnabledCPU;
static QLIST_HEAD(, KVMEnabledCPU)
kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
static bool kvm_cpu_is_enabled(CPUState *cs)
{
KVMEnabledCPU *enabled_cpu;
unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
if (enabled_cpu->vcpu_id == vcpu_id) {
return true;
}
}
return false;
}
static void kvm_cpu_enable(CPUState *cs)
{
KVMEnabledCPU *enabled_cpu;
unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
enabled_cpu = g_malloc(sizeof(*enabled_cpu));
enabled_cpu->vcpu_id = vcpu_id;
QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
}
/*
* XIVE Thread Interrupt Management context (KVM)
*/
void kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
{
SpaprXive *xive = SPAPR_MACHINE(qdev_get_machine())->xive;
unsigned long vcpu_id;
int ret;
/* Check if CPU was hot unplugged and replugged. */
if (kvm_cpu_is_enabled(tctx->cs)) {
return;
}
vcpu_id = kvm_arch_vcpu_id(tctx->cs);
ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
vcpu_id, 0);
if (ret < 0) {
error_setg(errp, "XIVE: unable to connect CPU%ld to KVM device: %s",
vcpu_id, strerror(errno));
return;
}
kvm_cpu_enable(tctx->cs);
}
/*
* XIVE Interrupt Source (KVM)
*/
void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
Error **errp)
{
uint32_t end_idx;
uint32_t end_blk;
uint8_t priority;
uint32_t server;
bool masked;
uint32_t eisn;
uint64_t kvm_src;
Error *local_err = NULL;
assert(xive_eas_is_valid(eas));
end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
eisn = xive_get_field64(EAS_END_DATA, eas->w);
masked = xive_eas_is_masked(eas);
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
KVM_XIVE_SOURCE_PRIORITY_MASK;
kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
KVM_XIVE_SOURCE_SERVER_MASK;
kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
KVM_XIVE_SOURCE_MASKED_MASK;
kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
KVM_XIVE_SOURCE_EISN_MASK;
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
&kvm_src, true, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
{
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
NULL, true, errp);
}
/*
* At reset, the interrupt sources are simply created and MASKED. We
* only need to inform the KVM XIVE device about their type: LSI or
* MSI.
*/
void kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
{
SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
uint64_t state = 0;
if (xive_source_irq_is_lsi(xsrc, srcno)) {
state |= KVM_XIVE_LEVEL_SENSITIVE;
if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
state |= KVM_XIVE_LEVEL_ASSERTED;
}
}
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
true, errp);
}
void kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
{
int i;
for (i = 0; i < xsrc->nr_irqs; i++) {
Error *local_err = NULL;
kvmppc_xive_source_reset_one(xsrc, i, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
}
/*
* This is used to perform the magic loads on the ESB pages, described
* in xive.h.
*
* Memory barriers should not be needed for loads (no store for now).
*/
static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
uint64_t data, bool write)
{
uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
offset;
if (write) {
*addr = cpu_to_be64(data);
return -1;
} else {
/* Prevent the compiler from optimizing away the load */
volatile uint64_t value = be64_to_cpu(*addr);
return value;
}
}
static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
{
return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
}
static void xive_esb_trigger(XiveSource *xsrc, int srcno)
{
uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
*addr = 0x0;
}
uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
uint64_t data, bool write)
{
if (write) {
return xive_esb_rw(xsrc, srcno, offset, data, 1);
}
/*
* Special Load EOI handling for LSI sources. Q bit is never set
* and the interrupt should be re-triggered if the level is still
* asserted.
*/
if (xive_source_irq_is_lsi(xsrc, srcno) &&
offset == XIVE_ESB_LOAD_EOI) {
xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
xive_esb_trigger(xsrc, srcno);
}
return 0;
} else {
return xive_esb_rw(xsrc, srcno, offset, 0, 0);
}
}
void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
{
XiveSource *xsrc = opaque;
struct kvm_irq_level args;
int rc;
args.irq = srcno;
if (!xive_source_irq_is_lsi(xsrc, srcno)) {
if (!val) {
return;
}
args.level = KVM_INTERRUPT_SET;
} else {
if (val) {
xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
args.level = KVM_INTERRUPT_SET_LEVEL;
} else {
xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
args.level = KVM_INTERRUPT_UNSET;
}
}
rc = kvm_vm_ioctl(kvm_state, KVM_IRQ_LINE, &args);
if (rc < 0) {
error_report("XIVE: kvm_irq_line() failed : %s", strerror(errno));
}
}
/*
* sPAPR XIVE interrupt controller (KVM)
*/
void kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
uint32_t end_idx, XiveEND *end,
Error **errp)
{
struct kvm_ppc_xive_eq kvm_eq = { 0 };
uint64_t kvm_eq_idx;
uint8_t priority;
uint32_t server;
Error *local_err = NULL;
assert(xive_end_is_valid(end));
/* Encode the tuple (server, prio) as a KVM EQ index */
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
KVM_XIVE_EQ_PRIORITY_MASK;
kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
KVM_XIVE_EQ_SERVER_MASK;
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
&kvm_eq, false, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* The EQ index and toggle bit are updated by HW. These are the
* only fields from KVM we want to update QEMU with. The other END
* fields should already be in the QEMU END table.
*/
end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
}
void kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
uint32_t end_idx, XiveEND *end,
Error **errp)
{
struct kvm_ppc_xive_eq kvm_eq = { 0 };
uint64_t kvm_eq_idx;
uint8_t priority;
uint32_t server;
Error *local_err = NULL;
/*
* Build the KVM state from the local END structure.
*/
kvm_eq.flags = 0;
if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
}
/*
* If the hcall is disabling the EQ, set the size and page address
* to zero. When migrating, only valid ENDs are taken into
* account.
*/
if (xive_end_is_valid(end)) {
kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
kvm_eq.qaddr = xive_end_qaddr(end);
/*
* The EQ toggle bit and index should only be relevant when
* restoring the EQ state
*/
kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
} else {
kvm_eq.qshift = 0;
kvm_eq.qaddr = 0;
}
/* Encode the tuple (server, prio) as a KVM EQ index */
spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
KVM_XIVE_EQ_PRIORITY_MASK;
kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
KVM_XIVE_EQ_SERVER_MASK;
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
&kvm_eq, true, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
{
kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
NULL, true, errp);
}
static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
Error **errp)
{
void *addr;
uint32_t page_shift = 16; /* TODO: fix page_shift */
addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
pgoff << page_shift);
if (addr == MAP_FAILED) {
error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
return NULL;
}
return addr;
}
/*
* All the XIVE memory regions are now backed by mappings from the KVM
* XIVE device.
*/
void kvmppc_xive_connect(SpaprXive *xive, Error **errp)
{
XiveSource *xsrc = &xive->source;
XiveENDSource *end_xsrc = &xive->end_source;
Error *local_err = NULL;
size_t esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
size_t tima_len = 4ull << TM_SHIFT;
if (!kvmppc_has_cap_xive()) {
error_setg(errp, "IRQ_XIVE capability must be present for KVM");
return;
}
/* First, create the KVM XIVE device */
xive->fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
if (xive->fd < 0) {
error_setg_errno(errp, -xive->fd, "XIVE: error creating KVM device");
return;
}
/*
* 1. Source ESB pages - KVM mapping
*/
xsrc->esb_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
memory_region_init_ram_device_ptr(&xsrc->esb_mmio, OBJECT(xsrc),
"xive.esb", esb_len, xsrc->esb_mmap);
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
/*
* 2. END ESB pages (No KVM support yet)
*/
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
/*
* 3. TIMA pages - KVM mapping
*/
xive->tm_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
memory_region_init_ram_device_ptr(&xive->tm_mmio, OBJECT(xive),
"xive.tima", tima_len, xive->tm_mmap);
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
kvm_kernel_irqchip = true;
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_direct_mapping = true;
/* Map all regions */
spapr_xive_map_mmio(xive);
}