mirror of
https://github.com/qemu/qemu.git
synced 2024-12-29 23:23:55 +08:00
e70372fcaf
QemuLockable is a polymorphic lock type that takes an object and knows which function to use for locking and unlocking. The implementation could use C11 _Generic, but since the support is not very widespread I am instead using __builtin_choose_expr and __builtin_types_compatible_p, which are already used by include/qemu/atomic.h. QemuLockable can be used to implement lock guards, or to pass around a lock in such a way that a function can release it and re-acquire it. The next patch will do this for CoQueue. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20180203153935.8056-3-pbonzini@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Fam Zheng <famz@redhat.com>
515 lines
12 KiB
C
515 lines
12 KiB
C
/*
|
|
* Coroutine tests
|
|
*
|
|
* Copyright IBM, Corp. 2011
|
|
*
|
|
* Authors:
|
|
* Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
|
|
* See the COPYING.LIB file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/coroutine.h"
|
|
#include "qemu/coroutine_int.h"
|
|
#include "qemu/lockable.h"
|
|
|
|
/*
|
|
* Check that qemu_in_coroutine() works
|
|
*/
|
|
|
|
static void coroutine_fn verify_in_coroutine(void *opaque)
|
|
{
|
|
g_assert(qemu_in_coroutine());
|
|
}
|
|
|
|
static void test_in_coroutine(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
|
|
g_assert(!qemu_in_coroutine());
|
|
|
|
coroutine = qemu_coroutine_create(verify_in_coroutine, NULL);
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
|
|
/*
|
|
* Check that qemu_coroutine_self() works
|
|
*/
|
|
|
|
static void coroutine_fn verify_self(void *opaque)
|
|
{
|
|
Coroutine **p_co = opaque;
|
|
g_assert(qemu_coroutine_self() == *p_co);
|
|
}
|
|
|
|
static void test_self(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
|
|
coroutine = qemu_coroutine_create(verify_self, &coroutine);
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
|
|
/*
|
|
* Check that qemu_coroutine_entered() works
|
|
*/
|
|
|
|
static void coroutine_fn verify_entered_step_2(void *opaque)
|
|
{
|
|
Coroutine *caller = (Coroutine *)opaque;
|
|
|
|
g_assert(qemu_coroutine_entered(caller));
|
|
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
|
|
qemu_coroutine_yield();
|
|
|
|
/* Once more to check it still works after yielding */
|
|
g_assert(qemu_coroutine_entered(caller));
|
|
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
|
|
}
|
|
|
|
static void coroutine_fn verify_entered_step_1(void *opaque)
|
|
{
|
|
Coroutine *self = qemu_coroutine_self();
|
|
Coroutine *coroutine;
|
|
|
|
g_assert(qemu_coroutine_entered(self));
|
|
|
|
coroutine = qemu_coroutine_create(verify_entered_step_2, self);
|
|
g_assert(!qemu_coroutine_entered(coroutine));
|
|
qemu_coroutine_enter(coroutine);
|
|
g_assert(!qemu_coroutine_entered(coroutine));
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
|
|
static void test_entered(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
|
|
coroutine = qemu_coroutine_create(verify_entered_step_1, NULL);
|
|
g_assert(!qemu_coroutine_entered(coroutine));
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
|
|
/*
|
|
* Check that coroutines may nest multiple levels
|
|
*/
|
|
|
|
typedef struct {
|
|
unsigned int n_enter; /* num coroutines entered */
|
|
unsigned int n_return; /* num coroutines returned */
|
|
unsigned int max; /* maximum level of nesting */
|
|
} NestData;
|
|
|
|
static void coroutine_fn nest(void *opaque)
|
|
{
|
|
NestData *nd = opaque;
|
|
|
|
nd->n_enter++;
|
|
|
|
if (nd->n_enter < nd->max) {
|
|
Coroutine *child;
|
|
|
|
child = qemu_coroutine_create(nest, nd);
|
|
qemu_coroutine_enter(child);
|
|
}
|
|
|
|
nd->n_return++;
|
|
}
|
|
|
|
static void test_nesting(void)
|
|
{
|
|
Coroutine *root;
|
|
NestData nd = {
|
|
.n_enter = 0,
|
|
.n_return = 0,
|
|
.max = 128,
|
|
};
|
|
|
|
root = qemu_coroutine_create(nest, &nd);
|
|
qemu_coroutine_enter(root);
|
|
|
|
/* Must enter and return from max nesting level */
|
|
g_assert_cmpint(nd.n_enter, ==, nd.max);
|
|
g_assert_cmpint(nd.n_return, ==, nd.max);
|
|
}
|
|
|
|
/*
|
|
* Check that yield/enter transfer control correctly
|
|
*/
|
|
|
|
static void coroutine_fn yield_5_times(void *opaque)
|
|
{
|
|
bool *done = opaque;
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
qemu_coroutine_yield();
|
|
}
|
|
*done = true;
|
|
}
|
|
|
|
static void test_yield(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
bool done = false;
|
|
int i = -1; /* one extra time to return from coroutine */
|
|
|
|
coroutine = qemu_coroutine_create(yield_5_times, &done);
|
|
while (!done) {
|
|
qemu_coroutine_enter(coroutine);
|
|
i++;
|
|
}
|
|
g_assert_cmpint(i, ==, 5); /* coroutine must yield 5 times */
|
|
}
|
|
|
|
static void coroutine_fn c2_fn(void *opaque)
|
|
{
|
|
qemu_coroutine_yield();
|
|
}
|
|
|
|
static void coroutine_fn c1_fn(void *opaque)
|
|
{
|
|
Coroutine *c2 = opaque;
|
|
qemu_coroutine_enter(c2);
|
|
}
|
|
|
|
static void test_no_dangling_access(void)
|
|
{
|
|
Coroutine *c1;
|
|
Coroutine *c2;
|
|
Coroutine tmp;
|
|
|
|
c2 = qemu_coroutine_create(c2_fn, NULL);
|
|
c1 = qemu_coroutine_create(c1_fn, c2);
|
|
|
|
qemu_coroutine_enter(c1);
|
|
|
|
/* c1 shouldn't be used any more now; make sure we segfault if it is */
|
|
tmp = *c1;
|
|
memset(c1, 0xff, sizeof(Coroutine));
|
|
qemu_coroutine_enter(c2);
|
|
|
|
/* Must restore the coroutine now to avoid corrupted pool */
|
|
*c1 = tmp;
|
|
}
|
|
|
|
static bool locked;
|
|
static int done;
|
|
|
|
static void coroutine_fn mutex_fn(void *opaque)
|
|
{
|
|
CoMutex *m = opaque;
|
|
qemu_co_mutex_lock(m);
|
|
assert(!locked);
|
|
locked = true;
|
|
qemu_coroutine_yield();
|
|
locked = false;
|
|
qemu_co_mutex_unlock(m);
|
|
done++;
|
|
}
|
|
|
|
static void coroutine_fn lockable_fn(void *opaque)
|
|
{
|
|
QemuLockable *x = opaque;
|
|
qemu_lockable_lock(x);
|
|
assert(!locked);
|
|
locked = true;
|
|
qemu_coroutine_yield();
|
|
locked = false;
|
|
qemu_lockable_unlock(x);
|
|
done++;
|
|
}
|
|
|
|
static void do_test_co_mutex(CoroutineEntry *entry, void *opaque)
|
|
{
|
|
Coroutine *c1 = qemu_coroutine_create(entry, opaque);
|
|
Coroutine *c2 = qemu_coroutine_create(entry, opaque);
|
|
|
|
done = 0;
|
|
qemu_coroutine_enter(c1);
|
|
g_assert(locked);
|
|
qemu_coroutine_enter(c2);
|
|
|
|
/* Unlock queues c2. It is then started automatically when c1 yields or
|
|
* terminates.
|
|
*/
|
|
qemu_coroutine_enter(c1);
|
|
g_assert_cmpint(done, ==, 1);
|
|
g_assert(locked);
|
|
|
|
qemu_coroutine_enter(c2);
|
|
g_assert_cmpint(done, ==, 2);
|
|
g_assert(!locked);
|
|
}
|
|
|
|
static void test_co_mutex(void)
|
|
{
|
|
CoMutex m;
|
|
|
|
qemu_co_mutex_init(&m);
|
|
do_test_co_mutex(mutex_fn, &m);
|
|
}
|
|
|
|
static void test_co_mutex_lockable(void)
|
|
{
|
|
CoMutex m;
|
|
CoMutex *null_pointer = NULL;
|
|
|
|
qemu_co_mutex_init(&m);
|
|
do_test_co_mutex(lockable_fn, QEMU_MAKE_LOCKABLE(&m));
|
|
|
|
g_assert(QEMU_MAKE_LOCKABLE(null_pointer) == NULL);
|
|
}
|
|
|
|
/*
|
|
* Check that creation, enter, and return work
|
|
*/
|
|
|
|
static void coroutine_fn set_and_exit(void *opaque)
|
|
{
|
|
bool *done = opaque;
|
|
|
|
*done = true;
|
|
}
|
|
|
|
static void test_lifecycle(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
bool done = false;
|
|
|
|
/* Create, enter, and return from coroutine */
|
|
coroutine = qemu_coroutine_create(set_and_exit, &done);
|
|
qemu_coroutine_enter(coroutine);
|
|
g_assert(done); /* expect done to be true (first time) */
|
|
|
|
/* Repeat to check that no state affects this test */
|
|
done = false;
|
|
coroutine = qemu_coroutine_create(set_and_exit, &done);
|
|
qemu_coroutine_enter(coroutine);
|
|
g_assert(done); /* expect done to be true (second time) */
|
|
}
|
|
|
|
|
|
#define RECORD_SIZE 10 /* Leave some room for expansion */
|
|
struct coroutine_position {
|
|
int func;
|
|
int state;
|
|
};
|
|
static struct coroutine_position records[RECORD_SIZE];
|
|
static unsigned record_pos;
|
|
|
|
static void record_push(int func, int state)
|
|
{
|
|
struct coroutine_position *cp = &records[record_pos++];
|
|
g_assert_cmpint(record_pos, <, RECORD_SIZE);
|
|
cp->func = func;
|
|
cp->state = state;
|
|
}
|
|
|
|
static void coroutine_fn co_order_test(void *opaque)
|
|
{
|
|
record_push(2, 1);
|
|
g_assert(qemu_in_coroutine());
|
|
qemu_coroutine_yield();
|
|
record_push(2, 2);
|
|
g_assert(qemu_in_coroutine());
|
|
}
|
|
|
|
static void do_order_test(void)
|
|
{
|
|
Coroutine *co;
|
|
|
|
co = qemu_coroutine_create(co_order_test, NULL);
|
|
record_push(1, 1);
|
|
qemu_coroutine_enter(co);
|
|
record_push(1, 2);
|
|
g_assert(!qemu_in_coroutine());
|
|
qemu_coroutine_enter(co);
|
|
record_push(1, 3);
|
|
g_assert(!qemu_in_coroutine());
|
|
}
|
|
|
|
static void test_order(void)
|
|
{
|
|
int i;
|
|
const struct coroutine_position expected_pos[] = {
|
|
{1, 1,}, {2, 1}, {1, 2}, {2, 2}, {1, 3}
|
|
};
|
|
do_order_test();
|
|
g_assert_cmpint(record_pos, ==, 5);
|
|
for (i = 0; i < record_pos; i++) {
|
|
g_assert_cmpint(records[i].func , ==, expected_pos[i].func );
|
|
g_assert_cmpint(records[i].state, ==, expected_pos[i].state);
|
|
}
|
|
}
|
|
/*
|
|
* Lifecycle benchmark
|
|
*/
|
|
|
|
static void coroutine_fn empty_coroutine(void *opaque)
|
|
{
|
|
/* Do nothing */
|
|
}
|
|
|
|
static void perf_lifecycle(void)
|
|
{
|
|
Coroutine *coroutine;
|
|
unsigned int i, max;
|
|
double duration;
|
|
|
|
max = 1000000;
|
|
|
|
g_test_timer_start();
|
|
for (i = 0; i < max; i++) {
|
|
coroutine = qemu_coroutine_create(empty_coroutine, NULL);
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
duration = g_test_timer_elapsed();
|
|
|
|
g_test_message("Lifecycle %u iterations: %f s\n", max, duration);
|
|
}
|
|
|
|
static void perf_nesting(void)
|
|
{
|
|
unsigned int i, maxcycles, maxnesting;
|
|
double duration;
|
|
|
|
maxcycles = 10000;
|
|
maxnesting = 1000;
|
|
Coroutine *root;
|
|
|
|
g_test_timer_start();
|
|
for (i = 0; i < maxcycles; i++) {
|
|
NestData nd = {
|
|
.n_enter = 0,
|
|
.n_return = 0,
|
|
.max = maxnesting,
|
|
};
|
|
root = qemu_coroutine_create(nest, &nd);
|
|
qemu_coroutine_enter(root);
|
|
}
|
|
duration = g_test_timer_elapsed();
|
|
|
|
g_test_message("Nesting %u iterations of %u depth each: %f s\n",
|
|
maxcycles, maxnesting, duration);
|
|
}
|
|
|
|
/*
|
|
* Yield benchmark
|
|
*/
|
|
|
|
static void coroutine_fn yield_loop(void *opaque)
|
|
{
|
|
unsigned int *counter = opaque;
|
|
|
|
while ((*counter) > 0) {
|
|
(*counter)--;
|
|
qemu_coroutine_yield();
|
|
}
|
|
}
|
|
|
|
static void perf_yield(void)
|
|
{
|
|
unsigned int i, maxcycles;
|
|
double duration;
|
|
|
|
maxcycles = 100000000;
|
|
i = maxcycles;
|
|
Coroutine *coroutine = qemu_coroutine_create(yield_loop, &i);
|
|
|
|
g_test_timer_start();
|
|
while (i > 0) {
|
|
qemu_coroutine_enter(coroutine);
|
|
}
|
|
duration = g_test_timer_elapsed();
|
|
|
|
g_test_message("Yield %u iterations: %f s\n",
|
|
maxcycles, duration);
|
|
}
|
|
|
|
static __attribute__((noinline)) void dummy(unsigned *i)
|
|
{
|
|
(*i)--;
|
|
}
|
|
|
|
static void perf_baseline(void)
|
|
{
|
|
unsigned int i, maxcycles;
|
|
double duration;
|
|
|
|
maxcycles = 100000000;
|
|
i = maxcycles;
|
|
|
|
g_test_timer_start();
|
|
while (i > 0) {
|
|
dummy(&i);
|
|
}
|
|
duration = g_test_timer_elapsed();
|
|
|
|
g_test_message("Function call %u iterations: %f s\n",
|
|
maxcycles, duration);
|
|
}
|
|
|
|
static __attribute__((noinline)) void perf_cost_func(void *opaque)
|
|
{
|
|
qemu_coroutine_yield();
|
|
}
|
|
|
|
static void perf_cost(void)
|
|
{
|
|
const unsigned long maxcycles = 40000000;
|
|
unsigned long i = 0;
|
|
double duration;
|
|
unsigned long ops;
|
|
Coroutine *co;
|
|
|
|
g_test_timer_start();
|
|
while (i++ < maxcycles) {
|
|
co = qemu_coroutine_create(perf_cost_func, &i);
|
|
qemu_coroutine_enter(co);
|
|
qemu_coroutine_enter(co);
|
|
}
|
|
duration = g_test_timer_elapsed();
|
|
ops = (long)(maxcycles / (duration * 1000));
|
|
|
|
g_test_message("Run operation %lu iterations %f s, %luK operations/s, "
|
|
"%luns per coroutine",
|
|
maxcycles,
|
|
duration, ops,
|
|
(unsigned long)(1000000000.0 * duration / maxcycles));
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
/* This test assumes there is a freelist and marks freed coroutine memory
|
|
* with a sentinel value. If there is no freelist this would legitimately
|
|
* crash, so skip it.
|
|
*/
|
|
if (CONFIG_COROUTINE_POOL) {
|
|
g_test_add_func("/basic/no-dangling-access", test_no_dangling_access);
|
|
}
|
|
|
|
g_test_add_func("/basic/lifecycle", test_lifecycle);
|
|
g_test_add_func("/basic/yield", test_yield);
|
|
g_test_add_func("/basic/nesting", test_nesting);
|
|
g_test_add_func("/basic/self", test_self);
|
|
g_test_add_func("/basic/entered", test_entered);
|
|
g_test_add_func("/basic/in_coroutine", test_in_coroutine);
|
|
g_test_add_func("/basic/order", test_order);
|
|
g_test_add_func("/locking/co-mutex", test_co_mutex);
|
|
g_test_add_func("/locking/co-mutex/lockable", test_co_mutex_lockable);
|
|
if (g_test_perf()) {
|
|
g_test_add_func("/perf/lifecycle", perf_lifecycle);
|
|
g_test_add_func("/perf/nesting", perf_nesting);
|
|
g_test_add_func("/perf/yield", perf_yield);
|
|
g_test_add_func("/perf/function-call", perf_baseline);
|
|
g_test_add_func("/perf/cost", perf_cost);
|
|
}
|
|
return g_test_run();
|
|
}
|