/* * Intel XScale PXA255/270 DMA controller. * * Copyright (c) 2006 Openedhand Ltd. * Copyright (c) 2006 Thorsten Zitterell * Written by Andrzej Zaborowski * * This code is licenced under the GPL. */ #include "vl.h" struct pxa2xx_dma_channel_s { target_phys_addr_t descr; target_phys_addr_t src; target_phys_addr_t dest; uint32_t cmd; uint32_t state; int request; }; /* Allow the DMA to be used as a PIC. */ typedef void (*pxa2xx_dma_handler_t)(void *opaque, int irq, int level); struct pxa2xx_dma_state_s { pxa2xx_dma_handler_t handler; target_phys_addr_t base; qemu_irq irq; uint32_t stopintr; uint32_t eorintr; uint32_t rasintr; uint32_t startintr; uint32_t endintr; uint32_t align; uint32_t pio; int channels; struct pxa2xx_dma_channel_s *chan; uint8_t *req; /* Flag to avoid recursive DMA invocations. */ int running; }; #define PXA255_DMA_NUM_CHANNELS 16 #define PXA27X_DMA_NUM_CHANNELS 32 #define PXA2XX_DMA_NUM_REQUESTS 75 #define DCSR0 0x0000 /* DMA Control / Status register for Channel 0 */ #define DCSR31 0x007c /* DMA Control / Status register for Channel 31 */ #define DALGN 0x00a0 /* DMA Alignment register */ #define DPCSR 0x00a4 /* DMA Programmed I/O Control Status register */ #define DRQSR0 0x00e0 /* DMA DREQ<0> Status register */ #define DRQSR1 0x00e4 /* DMA DREQ<1> Status register */ #define DRQSR2 0x00e8 /* DMA DREQ<2> Status register */ #define DINT 0x00f0 /* DMA Interrupt register */ #define DRCMR0 0x0100 /* Request to Channel Map register 0 */ #define DRCMR63 0x01fc /* Request to Channel Map register 63 */ #define D_CH0 0x0200 /* Channel 0 Descriptor start */ #define DRCMR64 0x1100 /* Request to Channel Map register 64 */ #define DRCMR74 0x1128 /* Request to Channel Map register 74 */ /* Per-channel register */ #define DDADR 0x00 #define DSADR 0x01 #define DTADR 0x02 #define DCMD 0x03 /* Bit-field masks */ #define DRCMR_CHLNUM 0x1f #define DRCMR_MAPVLD (1 << 7) #define DDADR_STOP (1 << 0) #define DDADR_BREN (1 << 1) #define DCMD_LEN 0x1fff #define DCMD_WIDTH(x) (1 << ((((x) >> 14) & 3) - 1)) #define DCMD_SIZE(x) (4 << (((x) >> 16) & 3)) #define DCMD_FLYBYT (1 << 19) #define DCMD_FLYBYS (1 << 20) #define DCMD_ENDIRQEN (1 << 21) #define DCMD_STARTIRQEN (1 << 22) #define DCMD_CMPEN (1 << 25) #define DCMD_FLOWTRG (1 << 28) #define DCMD_FLOWSRC (1 << 29) #define DCMD_INCTRGADDR (1 << 30) #define DCMD_INCSRCADDR (1 << 31) #define DCSR_BUSERRINTR (1 << 0) #define DCSR_STARTINTR (1 << 1) #define DCSR_ENDINTR (1 << 2) #define DCSR_STOPINTR (1 << 3) #define DCSR_RASINTR (1 << 4) #define DCSR_REQPEND (1 << 8) #define DCSR_EORINT (1 << 9) #define DCSR_CMPST (1 << 10) #define DCSR_MASKRUN (1 << 22) #define DCSR_RASIRQEN (1 << 23) #define DCSR_CLRCMPST (1 << 24) #define DCSR_SETCMPST (1 << 25) #define DCSR_EORSTOPEN (1 << 26) #define DCSR_EORJMPEN (1 << 27) #define DCSR_EORIRQEN (1 << 28) #define DCSR_STOPIRQEN (1 << 29) #define DCSR_NODESCFETCH (1 << 30) #define DCSR_RUN (1 << 31) static inline void pxa2xx_dma_update(struct pxa2xx_dma_state_s *s, int ch) { if (ch >= 0) { if ((s->chan[ch].state & DCSR_STOPIRQEN) && (s->chan[ch].state & DCSR_STOPINTR)) s->stopintr |= 1 << ch; else s->stopintr &= ~(1 << ch); if ((s->chan[ch].state & DCSR_EORIRQEN) && (s->chan[ch].state & DCSR_EORINT)) s->eorintr |= 1 << ch; else s->eorintr &= ~(1 << ch); if ((s->chan[ch].state & DCSR_RASIRQEN) && (s->chan[ch].state & DCSR_RASINTR)) s->rasintr |= 1 << ch; else s->rasintr &= ~(1 << ch); if (s->chan[ch].state & DCSR_STARTINTR) s->startintr |= 1 << ch; else s->startintr &= ~(1 << ch); if (s->chan[ch].state & DCSR_ENDINTR) s->endintr |= 1 << ch; else s->endintr &= ~(1 << ch); } if (s->stopintr | s->eorintr | s->rasintr | s->startintr | s->endintr) qemu_irq_raise(s->irq); else qemu_irq_lower(s->irq); } static inline void pxa2xx_dma_descriptor_fetch( struct pxa2xx_dma_state_s *s, int ch) { uint32_t desc[4]; target_phys_addr_t daddr = s->chan[ch].descr & ~0xf; if ((s->chan[ch].descr & DDADR_BREN) && (s->chan[ch].state & DCSR_CMPST)) daddr += 32; cpu_physical_memory_read(daddr, (uint8_t *) desc, 16); s->chan[ch].descr = desc[DDADR]; s->chan[ch].src = desc[DSADR]; s->chan[ch].dest = desc[DTADR]; s->chan[ch].cmd = desc[DCMD]; if (s->chan[ch].cmd & DCMD_FLOWSRC) s->chan[ch].src &= ~3; if (s->chan[ch].cmd & DCMD_FLOWTRG) s->chan[ch].dest &= ~3; if (s->chan[ch].cmd & (DCMD_CMPEN | DCMD_FLYBYS | DCMD_FLYBYT)) printf("%s: unsupported mode in channel %i\n", __FUNCTION__, ch); if (s->chan[ch].cmd & DCMD_STARTIRQEN) s->chan[ch].state |= DCSR_STARTINTR; } static void pxa2xx_dma_run(struct pxa2xx_dma_state_s *s) { int c, srcinc, destinc; uint32_t n, size; uint32_t width; uint32_t length; char buffer[32]; struct pxa2xx_dma_channel_s *ch; if (s->running ++) return; while (s->running) { s->running = 1; for (c = 0; c < s->channels; c ++) { ch = &s->chan[c]; while ((ch->state & DCSR_RUN) && !(ch->state & DCSR_STOPINTR)) { /* Test for pending requests */ if ((ch->cmd & (DCMD_FLOWSRC | DCMD_FLOWTRG)) && !ch->request) break; length = ch->cmd & DCMD_LEN; size = DCMD_SIZE(ch->cmd); width = DCMD_WIDTH(ch->cmd); srcinc = (ch->cmd & DCMD_INCSRCADDR) ? width : 0; destinc = (ch->cmd & DCMD_INCTRGADDR) ? width : 0; while (length) { size = MIN(length, size); for (n = 0; n < size; n += width) { cpu_physical_memory_read(ch->src, buffer + n, width); ch->src += srcinc; } for (n = 0; n < size; n += width) { cpu_physical_memory_write(ch->dest, buffer + n, width); ch->dest += destinc; } length -= size; if ((ch->cmd & (DCMD_FLOWSRC | DCMD_FLOWTRG)) && !ch->request) { ch->state |= DCSR_EORINT; if (ch->state & DCSR_EORSTOPEN) ch->state |= DCSR_STOPINTR; if ((ch->state & DCSR_EORJMPEN) && !(ch->state & DCSR_NODESCFETCH)) pxa2xx_dma_descriptor_fetch(s, c); break; } } ch->cmd = (ch->cmd & ~DCMD_LEN) | length; /* Is the transfer complete now? */ if (!length) { if (ch->cmd & DCMD_ENDIRQEN) ch->state |= DCSR_ENDINTR; if ((ch->state & DCSR_NODESCFETCH) || (ch->descr & DDADR_STOP) || (ch->state & DCSR_EORSTOPEN)) { ch->state |= DCSR_STOPINTR; ch->state &= ~DCSR_RUN; break; } ch->state |= DCSR_STOPINTR; break; } } } s->running --; } } static uint32_t pxa2xx_dma_read(void *opaque, target_phys_addr_t offset) { struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque; unsigned int channel; offset -= s->base; switch (offset) { case DRCMR64 ... DRCMR74: offset -= DRCMR64 - DRCMR0 - (64 << 2); /* Fall through */ case DRCMR0 ... DRCMR63: channel = (offset - DRCMR0) >> 2; return s->req[channel]; case DRQSR0: case DRQSR1: case DRQSR2: return 0; case DCSR0 ... DCSR31: channel = offset >> 2; if (s->chan[channel].request) return s->chan[channel].state | DCSR_REQPEND; return s->chan[channel].state; case DINT: return s->stopintr | s->eorintr | s->rasintr | s->startintr | s->endintr; case DALGN: return s->align; case DPCSR: return s->pio; } if (offset >= D_CH0 && offset < D_CH0 + (s->channels << 4)) { channel = (offset - D_CH0) >> 4; switch ((offset & 0x0f) >> 2) { case DDADR: return s->chan[channel].descr; case DSADR: return s->chan[channel].src; case DTADR: return s->chan[channel].dest; case DCMD: return s->chan[channel].cmd; } } cpu_abort(cpu_single_env, "%s: Bad offset 0x%04lx\n", __FUNCTION__, offset); return 7; } static void pxa2xx_dma_write(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque; unsigned int channel; offset -= s->base; switch (offset) { case DRCMR64 ... DRCMR74: offset -= DRCMR64 - DRCMR0 - (64 << 2); /* Fall through */ case DRCMR0 ... DRCMR63: channel = (offset - DRCMR0) >> 2; if (value & DRCMR_MAPVLD) if ((value & DRCMR_CHLNUM) > s->channels) cpu_abort(cpu_single_env, "%s: Bad DMA channel %i\n", __FUNCTION__, value & DRCMR_CHLNUM); s->req[channel] = value; break; case DRQSR0: case DRQSR1: case DRQSR2: /* Nothing to do */ break; case DCSR0 ... DCSR31: channel = offset >> 2; s->chan[channel].state &= 0x0000071f & ~(value & (DCSR_EORINT | DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERRINTR)); s->chan[channel].state |= value & 0xfc800000; if (s->chan[channel].state & DCSR_STOPIRQEN) s->chan[channel].state &= ~DCSR_STOPINTR; if (value & DCSR_NODESCFETCH) { /* No-descriptor-fetch mode */ if (value & DCSR_RUN) pxa2xx_dma_run(s); } else { /* Descriptor-fetch mode */ if (value & DCSR_RUN) { s->chan[channel].state &= ~DCSR_STOPINTR; pxa2xx_dma_descriptor_fetch(s, channel); pxa2xx_dma_run(s); } } /* Shouldn't matter as our DMA is synchronous. */ if (!(value & (DCSR_RUN | DCSR_MASKRUN))) s->chan[channel].state |= DCSR_STOPINTR; if (value & DCSR_CLRCMPST) s->chan[channel].state &= ~DCSR_CMPST; if (value & DCSR_SETCMPST) s->chan[channel].state |= DCSR_CMPST; pxa2xx_dma_update(s, channel); break; case DALGN: s->align = value; break; case DPCSR: s->pio = value & 0x80000001; break; default: if (offset >= D_CH0 && offset < D_CH0 + (s->channels << 4)) { channel = (offset - D_CH0) >> 4; switch ((offset & 0x0f) >> 2) { case DDADR: s->chan[channel].descr = value; break; case DSADR: s->chan[channel].src = value; break; case DTADR: s->chan[channel].dest = value; break; case DCMD: s->chan[channel].cmd = value; break; default: goto fail; } break; } fail: cpu_abort(cpu_single_env, "%s: Bad offset 0x%04lx\n", __FUNCTION__, offset); } } static uint32_t pxa2xx_dma_readbad(void *opaque, target_phys_addr_t offset) { cpu_abort(cpu_single_env, "%s: Bad access width\n", __FUNCTION__); return 5; } static void pxa2xx_dma_writebad(void *opaque, target_phys_addr_t offset, uint32_t value) { cpu_abort(cpu_single_env, "%s: Bad access width\n", __FUNCTION__); } static CPUReadMemoryFunc *pxa2xx_dma_readfn[] = { pxa2xx_dma_readbad, pxa2xx_dma_readbad, pxa2xx_dma_read }; static CPUWriteMemoryFunc *pxa2xx_dma_writefn[] = { pxa2xx_dma_writebad, pxa2xx_dma_writebad, pxa2xx_dma_write }; static struct pxa2xx_dma_state_s *pxa2xx_dma_init(target_phys_addr_t base, qemu_irq irq, int channels) { int i, iomemtype; struct pxa2xx_dma_state_s *s; s = (struct pxa2xx_dma_state_s *) qemu_mallocz(sizeof(struct pxa2xx_dma_state_s)); s->channels = channels; s->chan = qemu_mallocz(sizeof(struct pxa2xx_dma_channel_s) * s->channels); s->base = base; s->irq = irq; s->handler = (pxa2xx_dma_handler_t) pxa2xx_dma_request; s->req = qemu_mallocz(sizeof(int) * PXA2XX_DMA_NUM_REQUESTS); memset(s->chan, 0, sizeof(struct pxa2xx_dma_channel_s) * s->channels); for (i = 0; i < s->channels; i ++) s->chan[i].state = DCSR_STOPINTR; memset(s->req, 0, sizeof(int) * PXA2XX_DMA_NUM_REQUESTS); iomemtype = cpu_register_io_memory(0, pxa2xx_dma_readfn, pxa2xx_dma_writefn, s); cpu_register_physical_memory(base, 0x0000ffff, iomemtype); return s; } struct pxa2xx_dma_state_s *pxa27x_dma_init(target_phys_addr_t base, qemu_irq irq) { return pxa2xx_dma_init(base, irq, PXA27X_DMA_NUM_CHANNELS); } struct pxa2xx_dma_state_s *pxa255_dma_init(target_phys_addr_t base, qemu_irq irq) { return pxa2xx_dma_init(base, irq, PXA255_DMA_NUM_CHANNELS); } void pxa2xx_dma_request(struct pxa2xx_dma_state_s *s, int req_num, int on) { int ch; if (req_num < 0 || req_num >= PXA2XX_DMA_NUM_REQUESTS) cpu_abort(cpu_single_env, "%s: Bad DMA request %i\n", __FUNCTION__, req_num); if (!(s->req[req_num] & DRCMR_MAPVLD)) return; ch = s->req[req_num] & DRCMR_CHLNUM; if (!s->chan[ch].request && on) s->chan[ch].state |= DCSR_RASINTR; else s->chan[ch].state &= ~DCSR_RASINTR; if (s->chan[ch].request && !on) s->chan[ch].state |= DCSR_EORINT; s->chan[ch].request = on; if (on) { pxa2xx_dma_run(s); pxa2xx_dma_update(s, ch); } }