/* * MIPS emulation helpers for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "exec.h" #include "host-utils.h" /*****************************************************************************/ /* Exceptions processing helpers */ void do_raise_exception_err (uint32_t exception, int error_code) { #if 1 if (logfile && exception < 0x100) fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code); #endif env->exception_index = exception; env->error_code = error_code; T0 = 0; cpu_loop_exit(); } void do_raise_exception (uint32_t exception) { do_raise_exception_err(exception, 0); } void do_interrupt_restart (void) { if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_IE)) && (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { env->CP0_Cause &= ~(0x1f << CP0Ca_EC); do_raise_exception(EXCP_EXT_INTERRUPT); } } void do_restore_state (void *pc_ptr) { TranslationBlock *tb; unsigned long pc = (unsigned long) pc_ptr; tb = tb_find_pc (pc); if (tb) { cpu_restore_state (tb, env, pc, NULL); } } void do_clo (void) { T0 = clo32(T0); } void do_clz (void) { T0 = clz32(T0); } #if defined(TARGET_MIPS64) #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void do_dsll (void) { T0 = T0 << T1; } void do_dsll32 (void) { T0 = T0 << (T1 + 32); } void do_dsra (void) { T0 = (int64_t)T0 >> T1; } void do_dsra32 (void) { T0 = (int64_t)T0 >> (T1 + 32); } void do_dsrl (void) { T0 = T0 >> T1; } void do_dsrl32 (void) { T0 = T0 >> (T1 + 32); } void do_drotr (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - T1); T0 = (T0 >> T1) | tmp; } } void do_drotr32 (void) { target_ulong tmp; tmp = T0 << (0x40 - (32 + T1)); T0 = (T0 >> (32 + T1)) | tmp; } void do_dsllv (void) { T0 = T1 << (T0 & 0x3F); } void do_dsrav (void) { T0 = (int64_t)T1 >> (T0 & 0x3F); } void do_dsrlv (void) { T0 = T1 >> (T0 & 0x3F); } void do_drotrv (void) { target_ulong tmp; T0 &= 0x3F; if (T0) { tmp = T1 << (0x40 - T0); T0 = (T1 >> T0) | tmp; } else T0 = T1; } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ void do_dclo (void) { T0 = clo64(T0); } void do_dclz (void) { T0 = clz64(T0); } #endif /* TARGET_MIPS64 */ /* 64 bits arithmetic for 32 bits hosts */ static always_inline uint64_t get_HILO (void) { return ((uint64_t)(env->HI[env->current_tc][0]) << 32) | (uint32_t)env->LO[env->current_tc][0]; } static always_inline void set_HILO (uint64_t HILO) { env->LO[env->current_tc][0] = (int32_t)HILO; env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } static always_inline void set_HIT0_LO (uint64_t HILO) { env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF); T0 = env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } static always_inline void set_HI_LOT0 (uint64_t HILO) { T0 = env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF); env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } #if TARGET_LONG_BITS > HOST_LONG_BITS void do_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); } void do_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); } void do_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); } void do_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ /* Multiplication variants of the vr54xx. */ void do_muls (void) { set_HI_LOT0(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_mulsu (void) { set_HI_LOT0(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } void do_macc (void) { set_HI_LOT0(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_macchi (void) { set_HIT0_LO(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_maccu (void) { set_HI_LOT0(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } void do_macchiu (void) { set_HIT0_LO(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } void do_msac (void) { set_HI_LOT0(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_msachi (void) { set_HIT0_LO(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_msacu (void) { set_HI_LOT0(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } void do_msachiu (void) { set_HIT0_LO(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } void do_mulhi (void) { set_HIT0_LO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); } void do_mulhiu (void) { set_HIT0_LO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); } void do_mulshi (void) { set_HIT0_LO(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); } void do_mulshiu (void) { set_HIT0_LO(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); } #ifdef TARGET_MIPS64 void do_dmult (void) { muls64(&(env->LO[env->current_tc][0]), &(env->HI[env->current_tc][0]), T0, T1); } void do_dmultu (void) { mulu64(&(env->LO[env->current_tc][0]), &(env->HI[env->current_tc][0]), T0, T1); } #endif #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK(v) ((v) & 3) #define GET_OFFSET(addr, offset) (addr + (offset)) #else #define GET_LMASK(v) (((v) & 3) ^ 3) #define GET_OFFSET(addr, offset) (addr - (offset)) #endif void do_lwl(int mem_idx) { target_ulong tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(T0); T1 = (T1 & 0x00FFFFFF) | (tmp << 24); if (GET_LMASK(T0) <= 2) { tmp = ldfun(GET_OFFSET(T0, 1)); T1 = (T1 & 0xFF00FFFF) | (tmp << 16); } if (GET_LMASK(T0) <= 1) { tmp = ldfun(GET_OFFSET(T0, 2)); T1 = (T1 & 0xFFFF00FF) | (tmp << 8); } if (GET_LMASK(T0) == 0) { tmp = ldfun(GET_OFFSET(T0, 3)); T1 = (T1 & 0xFFFFFF00) | tmp; } T1 = (int32_t)T1; } void do_lwr(int mem_idx) { target_ulong tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(T0); T1 = (T1 & 0xFFFFFF00) | tmp; if (GET_LMASK(T0) >= 1) { tmp = ldfun(GET_OFFSET(T0, -1)); T1 = (T1 & 0xFFFF00FF) | (tmp << 8); } if (GET_LMASK(T0) >= 2) { tmp = ldfun(GET_OFFSET(T0, -2)); T1 = (T1 & 0xFF00FFFF) | (tmp << 16); } if (GET_LMASK(T0) == 3) { tmp = ldfun(GET_OFFSET(T0, -3)); T1 = (T1 & 0x00FFFFFF) | (tmp << 24); } T1 = (int32_t)T1; } void do_swl(int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(T0, (uint8_t)(T1 >> 24)); if (GET_LMASK(T0) <= 2) stfun(GET_OFFSET(T0, 1), (uint8_t)(T1 >> 16)); if (GET_LMASK(T0) <= 1) stfun(GET_OFFSET(T0, 2), (uint8_t)(T1 >> 8)); if (GET_LMASK(T0) == 0) stfun(GET_OFFSET(T0, 3), (uint8_t)T1); } void do_swr(int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(T0, (uint8_t)T1); if (GET_LMASK(T0) >= 1) stfun(GET_OFFSET(T0, -1), (uint8_t)(T1 >> 8)); if (GET_LMASK(T0) >= 2) stfun(GET_OFFSET(T0, -2), (uint8_t)(T1 >> 16)); if (GET_LMASK(T0) == 3) stfun(GET_OFFSET(T0, -3), (uint8_t)(T1 >> 24)); } #if defined(TARGET_MIPS64) /* "half" load and stores. We must do the memory access inline, or fault handling won't work. */ #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK64(v) ((v) & 7) #else #define GET_LMASK64(v) (((v) & 7) ^ 7) #endif void do_ldl(int mem_idx) { uint64_t tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else target_ulong (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(T0); T1 = (T1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); if (GET_LMASK64(T0) <= 6) { tmp = ldfun(GET_OFFSET(T0, 1)); T1 = (T1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); } if (GET_LMASK64(T0) <= 5) { tmp = ldfun(GET_OFFSET(T0, 2)); T1 = (T1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); } if (GET_LMASK64(T0) <= 4) { tmp = ldfun(GET_OFFSET(T0, 3)); T1 = (T1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); } if (GET_LMASK64(T0) <= 3) { tmp = ldfun(GET_OFFSET(T0, 4)); T1 = (T1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); } if (GET_LMASK64(T0) <= 2) { tmp = ldfun(GET_OFFSET(T0, 5)); T1 = (T1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); } if (GET_LMASK64(T0) <= 1) { tmp = ldfun(GET_OFFSET(T0, 6)); T1 = (T1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); } if (GET_LMASK64(T0) == 0) { tmp = ldfun(GET_OFFSET(T0, 7)); T1 = (T1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; } } void do_ldr(int mem_idx) { uint64_t tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else target_ulong (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(T0); T1 = (T1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; if (GET_LMASK64(T0) >= 1) { tmp = ldfun(GET_OFFSET(T0, -1)); T1 = (T1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); } if (GET_LMASK64(T0) >= 2) { tmp = ldfun(GET_OFFSET(T0, -2)); T1 = (T1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); } if (GET_LMASK64(T0) >= 3) { tmp = ldfun(GET_OFFSET(T0, -3)); T1 = (T1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); } if (GET_LMASK64(T0) >= 4) { tmp = ldfun(GET_OFFSET(T0, -4)); T1 = (T1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); } if (GET_LMASK64(T0) >= 5) { tmp = ldfun(GET_OFFSET(T0, -5)); T1 = (T1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); } if (GET_LMASK64(T0) >= 6) { tmp = ldfun(GET_OFFSET(T0, -6)); T1 = (T1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); } if (GET_LMASK64(T0) == 7) { tmp = ldfun(GET_OFFSET(T0, -7)); T1 = (T1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); } } void do_sdl(int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(T0, (uint8_t)(T1 >> 56)); if (GET_LMASK64(T0) <= 6) stfun(GET_OFFSET(T0, 1), (uint8_t)(T1 >> 48)); if (GET_LMASK64(T0) <= 5) stfun(GET_OFFSET(T0, 2), (uint8_t)(T1 >> 40)); if (GET_LMASK64(T0) <= 4) stfun(GET_OFFSET(T0, 3), (uint8_t)(T1 >> 32)); if (GET_LMASK64(T0) <= 3) stfun(GET_OFFSET(T0, 4), (uint8_t)(T1 >> 24)); if (GET_LMASK64(T0) <= 2) stfun(GET_OFFSET(T0, 5), (uint8_t)(T1 >> 16)); if (GET_LMASK64(T0) <= 1) stfun(GET_OFFSET(T0, 6), (uint8_t)(T1 >> 8)); if (GET_LMASK64(T0) <= 0) stfun(GET_OFFSET(T0, 7), (uint8_t)T1); } void do_sdr(int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(T0, (uint8_t)T1); if (GET_LMASK64(T0) >= 1) stfun(GET_OFFSET(T0, -1), (uint8_t)(T1 >> 8)); if (GET_LMASK64(T0) >= 2) stfun(GET_OFFSET(T0, -2), (uint8_t)(T1 >> 16)); if (GET_LMASK64(T0) >= 3) stfun(GET_OFFSET(T0, -3), (uint8_t)(T1 >> 24)); if (GET_LMASK64(T0) >= 4) stfun(GET_OFFSET(T0, -4), (uint8_t)(T1 >> 32)); if (GET_LMASK64(T0) >= 5) stfun(GET_OFFSET(T0, -5), (uint8_t)(T1 >> 40)); if (GET_LMASK64(T0) >= 6) stfun(GET_OFFSET(T0, -6), (uint8_t)(T1 >> 48)); if (GET_LMASK64(T0) == 7) stfun(GET_OFFSET(T0, -7), (uint8_t)(T1 >> 56)); } #endif /* TARGET_MIPS64 */ #ifdef CONFIG_USER_ONLY void do_mfc0_random (void) { cpu_abort(env, "mfc0 random\n"); } void do_mfc0_count (void) { cpu_abort(env, "mfc0 count\n"); } void cpu_mips_store_count(CPUState *env, uint32_t value) { cpu_abort(env, "mtc0 count\n"); } void cpu_mips_store_compare(CPUState *env, uint32_t value) { cpu_abort(env, "mtc0 compare\n"); } void cpu_mips_start_count(CPUState *env) { cpu_abort(env, "start count\n"); } void cpu_mips_stop_count(CPUState *env) { cpu_abort(env, "stop count\n"); } void cpu_mips_update_irq(CPUState *env) { cpu_abort(env, "mtc0 status / mtc0 cause\n"); } void do_mtc0_status_debug(uint32_t old, uint32_t val) { cpu_abort(env, "mtc0 status debug\n"); } void do_mtc0_status_irqraise_debug (void) { cpu_abort(env, "mtc0 status irqraise debug\n"); } void cpu_mips_tlb_flush (CPUState *env, int flush_global) { cpu_abort(env, "mips_tlb_flush\n"); } #else /* CP0 helpers */ void do_mfc0_mvpcontrol (void) { T0 = env->mvp->CP0_MVPControl; } void do_mfc0_mvpconf0 (void) { T0 = env->mvp->CP0_MVPConf0; } void do_mfc0_mvpconf1 (void) { T0 = env->mvp->CP0_MVPConf1; } void do_mfc0_random (void) { T0 = (int32_t)cpu_mips_get_random(env); } void do_mfc0_tcstatus (void) { T0 = env->CP0_TCStatus[env->current_tc]; } void do_mftc0_tcstatus(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCStatus[other_tc]; } void do_mfc0_tcbind (void) { T0 = env->CP0_TCBind[env->current_tc]; } void do_mftc0_tcbind(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCBind[other_tc]; } void do_mfc0_tcrestart (void) { T0 = env->PC[env->current_tc]; } void do_mftc0_tcrestart(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->PC[other_tc]; } void do_mfc0_tchalt (void) { T0 = env->CP0_TCHalt[env->current_tc]; } void do_mftc0_tchalt(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCHalt[other_tc]; } void do_mfc0_tccontext (void) { T0 = env->CP0_TCContext[env->current_tc]; } void do_mftc0_tccontext(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCContext[other_tc]; } void do_mfc0_tcschedule (void) { T0 = env->CP0_TCSchedule[env->current_tc]; } void do_mftc0_tcschedule(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCSchedule[other_tc]; } void do_mfc0_tcschefback (void) { T0 = env->CP0_TCScheFBack[env->current_tc]; } void do_mftc0_tcschefback(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCScheFBack[other_tc]; } void do_mfc0_count (void) { T0 = (int32_t)cpu_mips_get_count(env); } void do_mftc0_entryhi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = (env->CP0_EntryHi & ~0xff) | (env->CP0_TCStatus[other_tc] & 0xff); } void do_mftc0_status(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t tcstatus = env->CP0_TCStatus[other_tc]; T0 = env->CP0_Status & ~0xf1000018; T0 |= tcstatus & (0xf << CP0TCSt_TCU0); T0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX); T0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU); } void do_mfc0_lladdr (void) { T0 = (int32_t)env->CP0_LLAddr >> 4; } void do_mfc0_watchlo (uint32_t sel) { T0 = (int32_t)env->CP0_WatchLo[sel]; } void do_mfc0_watchhi (uint32_t sel) { T0 = env->CP0_WatchHi[sel]; } void do_mfc0_debug (void) { T0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) T0 |= 1 << CP0DB_DM; } void do_mftc0_debug(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); /* XXX: Might be wrong, check with EJTAG spec. */ T0 = (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (env->CP0_Debug_tcstatus[other_tc] & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } #if defined(TARGET_MIPS64) void do_dmfc0_tcrestart (void) { T0 = env->PC[env->current_tc]; } void do_dmfc0_tchalt (void) { T0 = env->CP0_TCHalt[env->current_tc]; } void do_dmfc0_tccontext (void) { T0 = env->CP0_TCContext[env->current_tc]; } void do_dmfc0_tcschedule (void) { T0 = env->CP0_TCSchedule[env->current_tc]; } void do_dmfc0_tcschefback (void) { T0 = env->CP0_TCScheFBack[env->current_tc]; } void do_dmfc0_lladdr (void) { T0 = env->CP0_LLAddr >> 4; } void do_dmfc0_watchlo (uint32_t sel) { T0 = env->CP0_WatchLo[sel]; } #endif /* TARGET_MIPS64 */ void do_mtc0_index (void) { int num = 1; unsigned int tmp = env->tlb->nb_tlb; do { tmp >>= 1; num <<= 1; } while (tmp); env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 & (num - 1)); } void do_mtc0_mvpcontrol (void) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | (1 << CP0MVPCo_EVP); if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0MVPCo_STLB); newval = (env->mvp->CP0_MVPControl & ~mask) | (T0 & mask); // TODO: Enable/disable shared TLB, enable/disable VPEs. env->mvp->CP0_MVPControl = newval; } void do_mtc0_vpecontrol (void) { uint32_t mask; uint32_t newval; mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); newval = (env->CP0_VPEControl & ~mask) | (T0 & mask); /* Yield scheduler intercept not implemented. */ /* Gating storage scheduler intercept not implemented. */ // TODO: Enable/disable TCs. env->CP0_VPEControl = newval; } void do_mtc0_vpeconf0 (void) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) mask |= (0xff << CP0VPEC0_XTC); mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); } newval = (env->CP0_VPEConf0 & ~mask) | (T0 & mask); // TODO: TC exclusive handling due to ERL/EXL. env->CP0_VPEConf0 = newval; } void do_mtc0_vpeconf1 (void) { uint32_t mask = 0; uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | (0xff << CP0VPEC1_NCP1); newval = (env->CP0_VPEConf1 & ~mask) | (T0 & mask); /* UDI not implemented. */ /* CP2 not implemented. */ // TODO: Handle FPU (CP1) binding. env->CP0_VPEConf1 = newval; } void do_mtc0_yqmask (void) { /* Yield qualifier inputs not implemented. */ env->CP0_YQMask = 0x00000000; } void do_mtc0_vpeopt (void) { env->CP0_VPEOpt = T0 & 0x0000ffff; } void do_mtc0_entrylo0 (void) { /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = T0 & 0x3FFFFFFF; } void do_mtc0_tcstatus (void) { uint32_t mask = env->CP0_TCStatus_rw_bitmask; uint32_t newval; newval = (env->CP0_TCStatus[env->current_tc] & ~mask) | (T0 & mask); // TODO: Sync with CP0_Status. env->CP0_TCStatus[env->current_tc] = newval; } void do_mttc0_tcstatus (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Sync with CP0_Status. env->CP0_TCStatus[other_tc] = T0; } void do_mtc0_tcbind (void) { uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); newval = (env->CP0_TCBind[env->current_tc] & ~mask) | (T0 & mask); env->CP0_TCBind[env->current_tc] = newval; } void do_mttc0_tcbind (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); newval = (env->CP0_TCBind[other_tc] & ~mask) | (T0 & mask); env->CP0_TCBind[other_tc] = newval; } void do_mtc0_tcrestart (void) { env->PC[env->current_tc] = T0; env->CP0_TCStatus[env->current_tc] &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ } void do_mttc0_tcrestart (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->PC[other_tc] = T0; env->CP0_TCStatus[other_tc] &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ } void do_mtc0_tchalt (void) { env->CP0_TCHalt[env->current_tc] = T0 & 0x1; // TODO: Halt TC / Restart (if allocated+active) TC. } void do_mttc0_tchalt (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Halt TC / Restart (if allocated+active) TC. env->CP0_TCHalt[other_tc] = T0; } void do_mtc0_tccontext (void) { env->CP0_TCContext[env->current_tc] = T0; } void do_mttc0_tccontext (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCContext[other_tc] = T0; } void do_mtc0_tcschedule (void) { env->CP0_TCSchedule[env->current_tc] = T0; } void do_mttc0_tcschedule (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCSchedule[other_tc] = T0; } void do_mtc0_tcschefback (void) { env->CP0_TCScheFBack[env->current_tc] = T0; } void do_mttc0_tcschefback (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCScheFBack[other_tc] = T0; } void do_mtc0_entrylo1 (void) { /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = T0 & 0x3FFFFFFF; } void do_mtc0_context (void) { env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (T0 & ~0x007FFFFF); } void do_mtc0_pagemask (void) { /* 1k pages not implemented */ env->CP0_PageMask = T0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); } void do_mtc0_pagegrain (void) { /* SmartMIPS not implemented */ /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = 0; } void do_mtc0_wired (void) { env->CP0_Wired = T0 % env->tlb->nb_tlb; } void do_mtc0_srsconf0 (void) { env->CP0_SRSConf0 |= T0 & env->CP0_SRSConf0_rw_bitmask; } void do_mtc0_srsconf1 (void) { env->CP0_SRSConf1 |= T0 & env->CP0_SRSConf1_rw_bitmask; } void do_mtc0_srsconf2 (void) { env->CP0_SRSConf2 |= T0 & env->CP0_SRSConf2_rw_bitmask; } void do_mtc0_srsconf3 (void) { env->CP0_SRSConf3 |= T0 & env->CP0_SRSConf3_rw_bitmask; } void do_mtc0_srsconf4 (void) { env->CP0_SRSConf4 |= T0 & env->CP0_SRSConf4_rw_bitmask; } void do_mtc0_hwrena (void) { env->CP0_HWREna = T0 & 0x0000000F; } void do_mtc0_count (void) { cpu_mips_store_count(env, T0); } void do_mtc0_entryhi (void) { target_ulong old, val; /* 1k pages not implemented */ val = T0 & ((TARGET_PAGE_MASK << 1) | 0xFF); #if defined(TARGET_MIPS64) val &= env->SEGMask; #endif old = env->CP0_EntryHi; env->CP0_EntryHi = val; if (env->CP0_Config3 & (1 << CP0C3_MT)) { uint32_t tcst = env->CP0_TCStatus[env->current_tc] & ~0xff; env->CP0_TCStatus[env->current_tc] = tcst | (val & 0xff); } /* If the ASID changes, flush qemu's TLB. */ if ((old & 0xFF) != (val & 0xFF)) cpu_mips_tlb_flush(env, 1); } void do_mttc0_entryhi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (T0 & ~0xff); env->CP0_TCStatus[other_tc] = (env->CP0_TCStatus[other_tc] & ~0xff) | (T0 & 0xff); } void do_mtc0_compare (void) { cpu_mips_store_compare(env, T0); } void do_mtc0_status (void) { uint32_t val, old; uint32_t mask = env->CP0_Status_rw_bitmask; val = T0 & mask; old = env->CP0_Status; env->CP0_Status = (env->CP0_Status & ~mask) | val; compute_hflags(env); if (loglevel & CPU_LOG_EXEC) do_mtc0_status_debug(old, val); cpu_mips_update_irq(env); } void do_mttc0_status(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t tcstatus = env->CP0_TCStatus[other_tc]; env->CP0_Status = T0 & ~0xf1000018; tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (T0 & (0xf << CP0St_CU0)); tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((T0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX)); tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((T0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU)); env->CP0_TCStatus[other_tc] = tcstatus; } void do_mtc0_intctl (void) { /* vectored interrupts not implemented, no performance counters. */ env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (T0 & 0x000002e0); } void do_mtc0_srsctl (void) { uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (T0 & mask); } void do_mtc0_cause (void) { uint32_t mask = 0x00C00300; uint32_t old = env->CP0_Cause; if (env->insn_flags & ISA_MIPS32R2) mask |= 1 << CP0Ca_DC; env->CP0_Cause = (env->CP0_Cause & ~mask) | (T0 & mask); if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { if (env->CP0_Cause & (1 << CP0Ca_DC)) cpu_mips_stop_count(env); else cpu_mips_start_count(env); } /* Handle the software interrupt as an hardware one, as they are very similar */ if (T0 & CP0Ca_IP_mask) { cpu_mips_update_irq(env); } } void do_mtc0_ebase (void) { /* vectored interrupts not implemented */ /* Multi-CPU not implemented */ env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000); } void do_mtc0_config0 (void) { env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (T0 & 0x00000007); } void do_mtc0_config2 (void) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); } void do_mtc0_watchlo (uint32_t sel) { /* Watch exceptions for instructions, data loads, data stores not implemented. */ env->CP0_WatchLo[sel] = (T0 & ~0x7); } void do_mtc0_watchhi (uint32_t sel) { env->CP0_WatchHi[sel] = (T0 & 0x40FF0FF8); env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & T0 & 0x7); } void do_mtc0_xcontext (void) { target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; env->CP0_XContext = (env->CP0_XContext & mask) | (T0 & ~mask); } void do_mtc0_framemask (void) { env->CP0_Framemask = T0; /* XXX */ } void do_mtc0_debug (void) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120); if (T0 & (1 << CP0DB_DM)) env->hflags |= MIPS_HFLAG_DM; else env->hflags &= ~MIPS_HFLAG_DM; } void do_mttc0_debug(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); /* XXX: Might be wrong, check with EJTAG spec. */ env->CP0_Debug_tcstatus[other_tc] = T0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (T0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } void do_mtc0_performance0 (void) { env->CP0_Performance0 = T0 & 0x000007ff; } void do_mtc0_taglo (void) { env->CP0_TagLo = T0 & 0xFFFFFCF6; } void do_mtc0_datalo (void) { env->CP0_DataLo = T0; /* XXX */ } void do_mtc0_taghi (void) { env->CP0_TagHi = T0; /* XXX */ } void do_mtc0_datahi (void) { env->CP0_DataHi = T0; /* XXX */ } void do_mtc0_status_debug(uint32_t old, uint32_t val) { fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x", old, old & env->CP0_Cause & CP0Ca_IP_mask, val, val & env->CP0_Cause & CP0Ca_IP_mask, env->CP0_Cause); switch (env->hflags & MIPS_HFLAG_KSU) { case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; case MIPS_HFLAG_KM: fputs("\n", logfile); break; default: cpu_abort(env, "Invalid MMU mode!\n"); break; } } void do_mtc0_status_irqraise_debug(void) { fprintf(logfile, "Raise pending IRQs\n"); } #endif /* !CONFIG_USER_ONLY */ /* MIPS MT functions */ void do_mftgpr(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->gpr[other_tc][sel]; } void do_mftlo(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->LO[other_tc][sel]; } void do_mfthi(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->HI[other_tc][sel]; } void do_mftacx(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->ACX[other_tc][sel]; } void do_mftdsp(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->DSPControl[other_tc]; } void do_mttgpr(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->gpr[other_tc][sel]; } void do_mttlo(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->LO[other_tc][sel]; } void do_mtthi(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->HI[other_tc][sel]; } void do_mttacx(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->ACX[other_tc][sel]; } void do_mttdsp(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->DSPControl[other_tc]; } /* MIPS MT functions */ void do_dmt(void) { // TODO T0 = 0; // rt = T0 } void do_emt(void) { // TODO T0 = 0; // rt = T0 } void do_dvpe(void) { // TODO T0 = 0; // rt = T0 } void do_evpe(void) { // TODO T0 = 0; // rt = T0 } void do_fork(void) { // T0 = rt, T1 = rs T0 = 0; // TODO: store to TC register } void do_yield(void) { if (T0 < 0) { /* No scheduling policy implemented. */ if (T0 != -2) { if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && env->CP0_TCStatus[env->current_tc] & (1 << CP0TCSt_DT)) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; do_raise_exception(EXCP_THREAD); } } } else if (T0 == 0) { if (0 /* TODO: TC underflow */) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); do_raise_exception(EXCP_THREAD); } else { // TODO: Deallocate TC } } else if (T0 > 0) { /* Yield qualifier inputs not implemented. */ env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; do_raise_exception(EXCP_THREAD); } T0 = env->CP0_YQMask; } /* CP1 functions */ void fpu_handle_exception(void) { #ifdef CONFIG_SOFTFLOAT int flags = get_float_exception_flags(&env->fpu->fp_status); unsigned int cpuflags = 0, enable, cause = 0; enable = GET_FP_ENABLE(env->fpu->fcr31); /* determine current flags */ if (flags & float_flag_invalid) { cpuflags |= FP_INVALID; cause |= FP_INVALID & enable; } if (flags & float_flag_divbyzero) { cpuflags |= FP_DIV0; cause |= FP_DIV0 & enable; } if (flags & float_flag_overflow) { cpuflags |= FP_OVERFLOW; cause |= FP_OVERFLOW & enable; } if (flags & float_flag_underflow) { cpuflags |= FP_UNDERFLOW; cause |= FP_UNDERFLOW & enable; } if (flags & float_flag_inexact) { cpuflags |= FP_INEXACT; cause |= FP_INEXACT & enable; } SET_FP_FLAGS(env->fpu->fcr31, cpuflags); SET_FP_CAUSE(env->fpu->fcr31, cause); #else SET_FP_FLAGS(env->fpu->fcr31, 0); SET_FP_CAUSE(env->fpu->fcr31, 0); #endif } #ifndef CONFIG_USER_ONLY /* TLB management */ void cpu_mips_tlb_flush (CPUState *env, int flush_global) { /* Flush qemu's TLB and discard all shadowed entries. */ tlb_flush (env, flush_global); env->tlb->tlb_in_use = env->tlb->nb_tlb; } static void r4k_mips_tlb_flush_extra (CPUState *env, int first) { /* Discard entries from env->tlb[first] onwards. */ while (env->tlb->tlb_in_use > first) { r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); } } static void r4k_fill_tlb (int idx) { r4k_tlb_t *tlb; /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) tlb->VPN &= env->SEGMask; #endif tlb->ASID = env->CP0_EntryHi & 0xFF; tlb->PageMask = env->CP0_PageMask; tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; } void r4k_do_tlbwi (void) { /* Discard cached TLB entries. We could avoid doing this if the tlbwi is just upgrading access permissions on the current entry; that might be a further win. */ r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0); r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb); } void r4k_do_tlbwr (void) { int r = cpu_mips_get_random(env); r4k_invalidate_tlb(env, r, 1); r4k_fill_tlb(r); } void r4k_do_tlbp (void) { r4k_tlb_t *tlb; target_ulong mask; target_ulong tag; target_ulong VPN; uint8_t ASID; int i; ASID = env->CP0_EntryHi & 0xFF; for (i = 0; i < env->tlb->nb_tlb; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { /* TLB match */ env->CP0_Index = i; break; } } if (i == env->tlb->nb_tlb) { /* No match. Discard any shadow entries, if any of them match. */ for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { r4k_mips_tlb_flush_extra (env, i); break; } } env->CP0_Index |= 0x80000000; } } void r4k_do_tlbr (void) { r4k_tlb_t *tlb; uint8_t ASID; ASID = env->CP0_EntryHi & 0xFF; tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb]; /* If this will change the current ASID, flush qemu's TLB. */ if (ASID != tlb->ASID) cpu_mips_tlb_flush (env, 1); r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); env->CP0_EntryHi = tlb->VPN | tlb->ASID; env->CP0_PageMask = tlb->PageMask; env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | (tlb->C0 << 3) | (tlb->PFN[0] >> 6); env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | (tlb->C1 << 3) | (tlb->PFN[1] >> 6); } #endif /* !CONFIG_USER_ONLY */ void dump_ldst (const unsigned char *func) { if (loglevel) fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1); } void dump_sc (void) { if (loglevel) { fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__, T1, T0, env->CP0_LLAddr); } } /* Specials */ void do_di (void) { T0 = env->CP0_Status; env->CP0_Status = T0 & ~(1 << CP0St_IE); cpu_mips_update_irq(env); } void do_ei (void) { T0 = env->CP0_Status; env->CP0_Status = T0 | (1 << CP0St_IE); cpu_mips_update_irq(env); } void debug_pre_eret (void) { fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->PC[env->current_tc], env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); fputs("\n", logfile); } void debug_post_eret (void) { fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->PC[env->current_tc], env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); switch (env->hflags & MIPS_HFLAG_KSU) { case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; case MIPS_HFLAG_KM: fputs("\n", logfile); break; default: cpu_abort(env, "Invalid MMU mode!\n"); break; } } void do_eret (void) { if (loglevel & CPU_LOG_EXEC) debug_pre_eret(); if (env->CP0_Status & (1 << CP0St_ERL)) { env->PC[env->current_tc] = env->CP0_ErrorEPC; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->PC[env->current_tc] = env->CP0_EPC; env->CP0_Status &= ~(1 << CP0St_EXL); } compute_hflags(env); if (loglevel & CPU_LOG_EXEC) debug_post_eret(); env->CP0_LLAddr = 1; } void do_deret (void) { if (loglevel & CPU_LOG_EXEC) debug_pre_eret(); env->PC[env->current_tc] = env->CP0_DEPC; env->hflags &= MIPS_HFLAG_DM; compute_hflags(env); if (loglevel & CPU_LOG_EXEC) debug_post_eret(); env->CP0_LLAddr = 1; } void do_rdhwr_cpunum(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 0))) T0 = env->CP0_EBase & 0x3ff; else do_raise_exception(EXCP_RI); } void do_rdhwr_synci_step(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 1))) T0 = env->SYNCI_Step; else do_raise_exception(EXCP_RI); } void do_rdhwr_cc(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 2))) T0 = env->CP0_Count; else do_raise_exception(EXCP_RI); } void do_rdhwr_ccres(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 3))) T0 = env->CCRes; else do_raise_exception(EXCP_RI); } /* Bitfield operations. */ void do_ext(uint32_t pos, uint32_t size) { T0 = (int32_t)((T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0)); } void do_ins(uint32_t pos, uint32_t size) { target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (int32_t)((T0 & ~mask) | ((T1 << pos) & mask)); } void do_wsbh(void) { T0 = (int32_t)(((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF)); } #if defined(TARGET_MIPS64) void do_dext(uint32_t pos, uint32_t size) { T0 = (T1 >> pos) & ((size < 64) ? ((1ULL << size) - 1) : ~0ULL); } void do_dins(uint32_t pos, uint32_t size) { target_ulong mask = ((size < 64) ? ((1ULL << size) - 1) : ~0ULL) << pos; T0 = (T0 & ~mask) | ((T1 << pos) & mask); } void do_dsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL); } void do_dshd(void) { T1 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL); T0 = (T1 << 32) | (T1 >> 32); } #endif void do_pmon (int function) { function /= 2; switch (function) { case 2: /* TODO: char inbyte(int waitflag); */ if (env->gpr[env->current_tc][4] == 0) env->gpr[env->current_tc][2] = -1; /* Fall through */ case 11: /* TODO: char inbyte (void); */ env->gpr[env->current_tc][2] = -1; break; case 3: case 12: printf("%c", (char)(env->gpr[env->current_tc][4] & 0xFF)); break; case 17: break; case 158: { unsigned char *fmt = (void *)(unsigned long)env->gpr[env->current_tc][4]; printf("%s", fmt); } break; } } void do_wait (void) { env->halted = 1; do_raise_exception(EXCP_HLT); } #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) { env->CP0_BadVAddr = addr; do_restore_state (retaddr); do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); } void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } do_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int unused) { if (is_exec) do_raise_exception(EXCP_IBE); else do_raise_exception(EXCP_DBE); } #endif /* !CONFIG_USER_ONLY */ /* Complex FPU operations which may need stack space. */ #define FLOAT_ONE32 make_float32(0x3f8 << 20) #define FLOAT_ONE64 make_float64(0x3ffULL << 52) #define FLOAT_TWO32 make_float32(1 << 30) #define FLOAT_TWO64 make_float64(1ULL << 62) #define FLOAT_QNAN32 0x7fbfffff #define FLOAT_QNAN64 0x7ff7ffffffffffffULL #define FLOAT_SNAN32 0x7fffffff #define FLOAT_SNAN64 0x7fffffffffffffffULL /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; #define RESTORE_ROUNDING_MODE \ set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status) void do_cfc1 (uint32_t reg) { switch (reg) { case 0: T0 = (int32_t)env->fpu->fcr0; break; case 25: T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1); break; case 26: T0 = env->fpu->fcr31 & 0x0003f07c; break; case 28: T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4); break; default: T0 = (int32_t)env->fpu->fcr31; break; } } void do_ctc1 (uint32_t reg) { switch(reg) { case 25: if (T0 & 0xffffff00) return; env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) | ((T0 & 0x1) << 23); break; case 26: if (T0 & 0x007c0000) return; env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c); break; case 28: if (T0 & 0x007c0000) return; env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) | ((T0 & 0x4) << 22); break; case 31: if (T0 & 0x007c0000) return; env->fpu->fcr31 = T0; break; default: return; } /* set rounding mode */ RESTORE_ROUNDING_MODE; set_float_exception_flags(0, &env->fpu->fp_status); if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31)) do_raise_exception(EXCP_FPE); } static always_inline char ieee_ex_to_mips(char xcpt) { return (xcpt & float_flag_inexact) >> 5 | (xcpt & float_flag_underflow) >> 3 | (xcpt & float_flag_overflow) >> 1 | (xcpt & float_flag_divbyzero) << 1 | (xcpt & float_flag_invalid) << 4; } static always_inline char mips_ex_to_ieee(char xcpt) { return (xcpt & FP_INEXACT) << 5 | (xcpt & FP_UNDERFLOW) << 3 | (xcpt & FP_OVERFLOW) << 1 | (xcpt & FP_DIV0) >> 1 | (xcpt & FP_INVALID) >> 4; } static always_inline void update_fcr31(void) { int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status)); SET_FP_CAUSE(env->fpu->fcr31, tmp); if (GET_FP_ENABLE(env->fpu->fcr31) & tmp) do_raise_exception(EXCP_FPE); else UPDATE_FP_FLAGS(env->fpu->fcr31, tmp); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", paired single lower "pl", paired single upper "pu". */ #define FLOAT_OP(name, p) void do_float_##name##_##p(void) /* unary operations, modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0, &env->fpu->fp_status); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0, &env->fpu->fp_status); \ } FLOAT_UNOP(sqrt) #undef FLOAT_UNOP FLOAT_OP(cvtd, s) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float32_to_float64(FST0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvtd, w) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = int32_to_float64(WT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvtd, l) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = int64_to_float64(DT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvtl, d) { set_float_exception_flags(0, &env->fpu->fp_status); DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(cvtl, s) { set_float_exception_flags(0, &env->fpu->fp_status); DT2 = float32_to_int64(FST0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(cvtps, pw) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = int32_to_float32(WT0, &env->fpu->fp_status); FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvtpw, ps) { set_float_exception_flags(0, &env->fpu->fp_status); WT2 = float32_to_int32(FST0, &env->fpu->fp_status); WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(cvts, d) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float64_to_float32(FDT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvts, w) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = int32_to_float32(WT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvts, l) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = int64_to_float32(DT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(cvts, pl) { set_float_exception_flags(0, &env->fpu->fp_status); WT2 = WT0; update_fcr31(); } FLOAT_OP(cvts, pu) { set_float_exception_flags(0, &env->fpu->fp_status); WT2 = WTH0; update_fcr31(); } FLOAT_OP(cvtw, s) { set_float_exception_flags(0, &env->fpu->fp_status); WT2 = float32_to_int32(FST0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(cvtw, d) { set_float_exception_flags(0, &env->fpu->fp_status); WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(roundl, d) { set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(roundl, s) { set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); DT2 = float32_to_int64(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(roundw, d) { set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(roundw, s) { set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); WT2 = float32_to_int32(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(truncl, d) { DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(truncl, s) { DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(truncw, d) { WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(truncw, s) { WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status); update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(ceill, d) { set_float_rounding_mode(float_round_up, &env->fpu->fp_status); DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(ceill, s) { set_float_rounding_mode(float_round_up, &env->fpu->fp_status); DT2 = float32_to_int64(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(ceilw, d) { set_float_rounding_mode(float_round_up, &env->fpu->fp_status); WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(ceilw, s) { set_float_rounding_mode(float_round_up, &env->fpu->fp_status); WT2 = float32_to_int32(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(floorl, d) { set_float_rounding_mode(float_round_down, &env->fpu->fp_status); DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(floorl, s) { set_float_rounding_mode(float_round_down, &env->fpu->fp_status); DT2 = float32_to_int64(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) DT2 = FLOAT_SNAN64; } FLOAT_OP(floorw, d) { set_float_rounding_mode(float_round_down, &env->fpu->fp_status); WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } FLOAT_OP(floorw, s) { set_float_rounding_mode(float_round_down, &env->fpu->fp_status); WT2 = float32_to_int32(FST0, &env->fpu->fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) WT2 = FLOAT_SNAN32; } /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0); \ } \ FLOAT_OP(name, ps) \ { \ FST2 = float32_ ## name(FST0); \ FSTH2 = float32_ ## name(FSTH0); \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP /* MIPS specific unary operations */ FLOAT_OP(recip, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(recip, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(rsqrt, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(rsqrt, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_sqrt(FST0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(recip1, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(recip1, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(recip1, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status); FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_sqrt(FST0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(rsqrt1, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_sqrt(FST0, &env->fpu->fp_status); FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status); FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status); update_fcr31(); } /* binary operations */ #define FLOAT_BINOP(name) \ FLOAT_OP(name, d) \ { \ set_float_exception_flags(0, &env->fpu->fp_status); \ FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \ DT2 = FLOAT_QNAN64; \ } \ FLOAT_OP(name, s) \ { \ set_float_exception_flags(0, &env->fpu->fp_status); \ FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \ WT2 = FLOAT_QNAN32; \ } \ FLOAT_OP(name, ps) \ { \ set_float_exception_flags(0, &env->fpu->fp_status); \ FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \ FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \ WT2 = FLOAT_QNAN32; \ WTH2 = FLOAT_QNAN32; \ } \ } FLOAT_BINOP(add) FLOAT_BINOP(sub) FLOAT_BINOP(mul) FLOAT_BINOP(div) #undef FLOAT_BINOP /* ternary operations */ #define FLOAT_TERNOP(name1, name2) \ FLOAT_OP(name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ } \ FLOAT_OP(name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ } \ FLOAT_OP(name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ } FLOAT_TERNOP(mul, add) FLOAT_TERNOP(mul, sub) #undef FLOAT_TERNOP /* negated ternary operations */ #define FLOAT_NTERNOP(name1, name2) \ FLOAT_OP(n ## name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ FDT2 = float64_chs(FDT2); \ } \ FLOAT_OP(n ## name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FST2 = float32_chs(FST2); \ } \ FLOAT_OP(n ## name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ FST2 = float32_chs(FST2); \ FSTH2 = float32_chs(FSTH2); \ } FLOAT_NTERNOP(mul, add) FLOAT_NTERNOP(mul, sub) #undef FLOAT_NTERNOP /* MIPS specific binary operations */ FLOAT_OP(recip2, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status); FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(recip2, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(recip2, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status); FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status)); FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(rsqrt2, d) { set_float_exception_flags(0, &env->fpu->fp_status); FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status); FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status); FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(rsqrt2, s) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status); FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(rsqrt2, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status); FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status); FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status); FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status)); FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status)); update_fcr31(); } FLOAT_OP(addr, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status); FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status); update_fcr31(); } FLOAT_OP(mulr, ps) { set_float_exception_flags(0, &env->fpu->fp_status); FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status); FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status); update_fcr31(); } /* compare operations */ #define FOP_COND_D(op, cond) \ void do_cmp_d_ ## op (long cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ } \ void do_cmpabs_d_ ## op (long cc) \ { \ int c; \ FDT0 = float64_abs(FDT0); \ FDT1 = float64_abs(FDT1); \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ } int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b) || (sig && (float64_is_nan(a) || float64_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float64_is_nan(a) || float64_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0)) FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)) FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0)) FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)) FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status)) FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status)) #define FOP_COND_S(op, cond) \ void do_cmp_s_ ## op (long cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ } \ void do_cmpabs_s_ ## op (long cc) \ { \ int c; \ FST0 = float32_abs(FST0); \ FST1 = float32_abs(FST1); \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ } flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b) || (sig && (float32_is_nan(a) || float32_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float32_is_nan(a) || float32_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0)) FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)) FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0)) FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)) FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status)) FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status)) #define FOP_COND_PS(op, condl, condh) \ void do_cmp_ps_ ## op (long cc) \ { \ int cl = condl; \ int ch = condh; \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->fpu); \ else \ CLEAR_FP_COND(cc + 1, env->fpu); \ } \ void do_cmpabs_ps_ ## op (long cc) \ { \ int cl, ch; \ FST0 = float32_abs(FST0); \ FSTH0 = float32_abs(FSTH0); \ FST1 = float32_abs(FST1); \ FSTH1 = float32_abs(FSTH1); \ cl = condl; \ ch = condh; \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env->fpu); \ else \ CLEAR_FP_COND(cc, env->fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->fpu); \ else \ CLEAR_FP_COND(cc + 1, env->fpu); \ } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0), (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0)) FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)) FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0), (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0)) FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)) FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status), !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status), float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))