/* * Marvell MV88W8618 / Freecom MusicPal emulation. * * Copyright (c) 2008 Jan Kiszka * * This code is licenced under the GNU GPL v2. */ #include "hw.h" #include "arm-misc.h" #include "devices.h" #include "net.h" #include "sysemu.h" #include "boards.h" #include "pc.h" #include "qemu-timer.h" #include "block.h" #include "flash.h" #include "console.h" #include "audio/audio.h" #include "i2c.h" #define MP_ETH_BASE 0x80008000 #define MP_ETH_SIZE 0x00001000 #define MP_UART1_BASE 0x8000C840 #define MP_UART2_BASE 0x8000C940 #define MP_FLASHCFG_BASE 0x90006000 #define MP_FLASHCFG_SIZE 0x00001000 #define MP_AUDIO_BASE 0x90007000 #define MP_AUDIO_SIZE 0x00001000 #define MP_PIC_BASE 0x90008000 #define MP_PIC_SIZE 0x00001000 #define MP_PIT_BASE 0x90009000 #define MP_PIT_SIZE 0x00001000 #define MP_LCD_BASE 0x9000c000 #define MP_LCD_SIZE 0x00001000 #define MP_SRAM_BASE 0xC0000000 #define MP_SRAM_SIZE 0x00020000 #define MP_RAM_DEFAULT_SIZE 32*1024*1024 #define MP_FLASH_SIZE_MAX 32*1024*1024 #define MP_TIMER1_IRQ 4 /* ... */ #define MP_TIMER4_IRQ 7 #define MP_EHCI_IRQ 8 #define MP_ETH_IRQ 9 #define MP_UART1_IRQ 11 #define MP_UART2_IRQ 11 #define MP_GPIO_IRQ 12 #define MP_RTC_IRQ 28 #define MP_AUDIO_IRQ 30 static uint32_t gpio_in_state = 0xffffffff; static uint32_t gpio_out_state; static ram_addr_t sram_off; /* Address conversion helpers */ static void *target2host_addr(uint32_t addr) { if (addr < MP_SRAM_BASE) { if (addr >= MP_RAM_DEFAULT_SIZE) return NULL; return (void *)(phys_ram_base + addr); } else { if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE) return NULL; return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE); } } static uint32_t host2target_addr(void *addr) { if (addr < ((void *)phys_ram_base) + sram_off) return (unsigned long)addr - (unsigned long)phys_ram_base; else return (unsigned long)addr - (unsigned long)phys_ram_base - sram_off + MP_SRAM_BASE; } typedef enum i2c_state { STOPPED = 0, INITIALIZING, SENDING_BIT7, SENDING_BIT6, SENDING_BIT5, SENDING_BIT4, SENDING_BIT3, SENDING_BIT2, SENDING_BIT1, SENDING_BIT0, WAITING_FOR_ACK, RECEIVING_BIT7, RECEIVING_BIT6, RECEIVING_BIT5, RECEIVING_BIT4, RECEIVING_BIT3, RECEIVING_BIT2, RECEIVING_BIT1, RECEIVING_BIT0, SENDING_ACK } i2c_state; typedef struct i2c_interface { i2c_bus *bus; i2c_state state; int last_data; int last_clock; uint8_t buffer; int current_addr; } i2c_interface; static void i2c_enter_stop(i2c_interface *i2c) { if (i2c->current_addr >= 0) i2c_end_transfer(i2c->bus); i2c->current_addr = -1; i2c->state = STOPPED; } static void i2c_state_update(i2c_interface *i2c, int data, int clock) { if (!i2c) return; switch (i2c->state) { case STOPPED: if (data == 0 && i2c->last_data == 1 && clock == 1) i2c->state = INITIALIZING; break; case INITIALIZING: if (clock == 0 && i2c->last_clock == 1 && data == 0) i2c->state = SENDING_BIT7; else i2c_enter_stop(i2c); break; case SENDING_BIT7 ... SENDING_BIT0: if (clock == 0 && i2c->last_clock == 1) { i2c->buffer = (i2c->buffer << 1) | data; i2c->state++; /* will end up in WAITING_FOR_ACK */ } else if (data == 1 && i2c->last_data == 0 && clock == 1) i2c_enter_stop(i2c); break; case WAITING_FOR_ACK: if (clock == 0 && i2c->last_clock == 1) { if (i2c->current_addr < 0) { i2c->current_addr = i2c->buffer; i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe, i2c->buffer & 1); } else i2c_send(i2c->bus, i2c->buffer); if (i2c->current_addr & 1) { i2c->state = RECEIVING_BIT7; i2c->buffer = i2c_recv(i2c->bus); } else i2c->state = SENDING_BIT7; } else if (data == 1 && i2c->last_data == 0 && clock == 1) i2c_enter_stop(i2c); break; case RECEIVING_BIT7 ... RECEIVING_BIT0: if (clock == 0 && i2c->last_clock == 1) { i2c->state++; /* will end up in SENDING_ACK */ i2c->buffer <<= 1; } else if (data == 1 && i2c->last_data == 0 && clock == 1) i2c_enter_stop(i2c); break; case SENDING_ACK: if (clock == 0 && i2c->last_clock == 1) { i2c->state = RECEIVING_BIT7; if (data == 0) i2c->buffer = i2c_recv(i2c->bus); else i2c_nack(i2c->bus); } else if (data == 1 && i2c->last_data == 0 && clock == 1) i2c_enter_stop(i2c); break; } i2c->last_data = data; i2c->last_clock = clock; } static int i2c_get_data(i2c_interface *i2c) { if (!i2c) return 0; switch (i2c->state) { case RECEIVING_BIT7 ... RECEIVING_BIT0: return (i2c->buffer >> 7); case WAITING_FOR_ACK: default: return 0; } } static i2c_interface *mixer_i2c; #ifdef HAS_AUDIO /* Audio register offsets */ #define MP_AUDIO_PLAYBACK_MODE 0x00 #define MP_AUDIO_CLOCK_DIV 0x18 #define MP_AUDIO_IRQ_STATUS 0x20 #define MP_AUDIO_IRQ_ENABLE 0x24 #define MP_AUDIO_TX_START_LO 0x28 #define MP_AUDIO_TX_THRESHOLD 0x2C #define MP_AUDIO_TX_STATUS 0x38 #define MP_AUDIO_TX_START_HI 0x40 /* Status register and IRQ enable bits */ #define MP_AUDIO_TX_HALF (1 << 6) #define MP_AUDIO_TX_FULL (1 << 7) /* Playback mode bits */ #define MP_AUDIO_16BIT_SAMPLE (1 << 0) #define MP_AUDIO_PLAYBACK_EN (1 << 7) #define MP_AUDIO_CLOCK_24MHZ (1 << 9) #define MP_AUDIO_MONO (1 << 14) /* Wolfson 8750 I2C address */ #define MP_WM_ADDR 0x34 const char audio_name[] = "mv88w8618"; typedef struct musicpal_audio_state { uint32_t base; qemu_irq irq; uint32_t playback_mode; uint32_t status; uint32_t irq_enable; unsigned long phys_buf; void *target_buffer; unsigned int threshold; unsigned int play_pos; unsigned int last_free; uint32_t clock_div; i2c_slave *wm; } musicpal_audio_state; static void audio_callback(void *opaque, int free_out, int free_in) { musicpal_audio_state *s = opaque; int16_t *codec_buffer, *mem_buffer; int pos, block_size; if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) return; if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) free_out <<= 1; if (!(s->playback_mode & MP_AUDIO_MONO)) free_out <<= 1; block_size = s->threshold/2; if (free_out - s->last_free < block_size) return; mem_buffer = s->target_buffer + s->play_pos; if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) { if (s->playback_mode & MP_AUDIO_MONO) { codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1); for (pos = 0; pos < block_size; pos += 2) { *codec_buffer++ = *mem_buffer; *codec_buffer++ = *mem_buffer++; } } else memcpy(wm8750_dac_buffer(s->wm, block_size >> 2), (uint32_t *)mem_buffer, block_size); } else { if (s->playback_mode & MP_AUDIO_MONO) { codec_buffer = wm8750_dac_buffer(s->wm, block_size); for (pos = 0; pos < block_size; pos++) { *codec_buffer++ = cpu_to_le16(256 * *((int8_t *)mem_buffer)); *codec_buffer++ = cpu_to_le16(256 * *((int8_t *)mem_buffer)++); } } else { codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1); for (pos = 0; pos < block_size; pos += 2) { *codec_buffer++ = cpu_to_le16(256 * *((int8_t *)mem_buffer)++); *codec_buffer++ = cpu_to_le16(256 * *((int8_t *)mem_buffer)++); } } } wm8750_dac_commit(s->wm); s->last_free = free_out - block_size; if (s->play_pos == 0) { s->status |= MP_AUDIO_TX_HALF; s->play_pos = block_size; } else { s->status |= MP_AUDIO_TX_FULL; s->play_pos = 0; } if (s->status & s->irq_enable) qemu_irq_raise(s->irq); } static void musicpal_audio_clock_update(musicpal_audio_state *s) { int rate; if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ) rate = 24576000 / 64; /* 24.576MHz */ else rate = 11289600 / 64; /* 11.2896MHz */ rate /= ((s->clock_div >> 8) & 0xff) + 1; wm8750_set_bclk_in(s->wm, rate); } static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset) { musicpal_audio_state *s = opaque; offset -= s->base; switch (offset) { case MP_AUDIO_PLAYBACK_MODE: return s->playback_mode; case MP_AUDIO_CLOCK_DIV: return s->clock_div; case MP_AUDIO_IRQ_STATUS: return s->status; case MP_AUDIO_IRQ_ENABLE: return s->irq_enable; case MP_AUDIO_TX_STATUS: return s->play_pos >> 2; default: return 0; } } static void musicpal_audio_write(void *opaque, target_phys_addr_t offset, uint32_t value) { musicpal_audio_state *s = opaque; offset -= s->base; switch (offset) { case MP_AUDIO_PLAYBACK_MODE: if (value & MP_AUDIO_PLAYBACK_EN && !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) { s->status = 0; s->last_free = 0; s->play_pos = 0; } s->playback_mode = value; musicpal_audio_clock_update(s); break; case MP_AUDIO_CLOCK_DIV: s->clock_div = value; s->last_free = 0; s->play_pos = 0; musicpal_audio_clock_update(s); break; case MP_AUDIO_IRQ_STATUS: s->status &= ~value; break; case MP_AUDIO_IRQ_ENABLE: s->irq_enable = value; if (s->status & s->irq_enable) qemu_irq_raise(s->irq); break; case MP_AUDIO_TX_START_LO: s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF); s->target_buffer = target2host_addr(s->phys_buf); s->play_pos = 0; s->last_free = 0; break; case MP_AUDIO_TX_THRESHOLD: s->threshold = (value + 1) * 4; break; case MP_AUDIO_TX_START_HI: s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16); s->target_buffer = target2host_addr(s->phys_buf); s->play_pos = 0; s->last_free = 0; break; } } static void musicpal_audio_reset(void *opaque) { musicpal_audio_state *s = opaque; s->playback_mode = 0; s->status = 0; s->irq_enable = 0; } static CPUReadMemoryFunc *musicpal_audio_readfn[] = { musicpal_audio_read, musicpal_audio_read, musicpal_audio_read }; static CPUWriteMemoryFunc *musicpal_audio_writefn[] = { musicpal_audio_write, musicpal_audio_write, musicpal_audio_write }; static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq) { AudioState *audio; musicpal_audio_state *s; i2c_interface *i2c; int iomemtype; audio = AUD_init(); if (!audio) { AUD_log(audio_name, "No audio state\n"); return NULL; } s = qemu_mallocz(sizeof(musicpal_audio_state)); if (!s) return NULL; s->base = base; s->irq = irq; i2c = qemu_mallocz(sizeof(i2c_interface)); if (!i2c) return NULL; i2c->bus = i2c_init_bus(); i2c->current_addr = -1; s->wm = wm8750_init(i2c->bus, audio); if (!s->wm) return NULL; i2c_set_slave_address(s->wm, MP_WM_ADDR); wm8750_data_req_set(s->wm, audio_callback, s); iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn, musicpal_audio_writefn, s); cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype); qemu_register_reset(musicpal_audio_reset, s); return i2c; } #else /* !HAS_AUDIO */ static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq) { return NULL; } #endif /* !HAS_AUDIO */ /* Ethernet register offsets */ #define MP_ETH_SMIR 0x010 #define MP_ETH_PCXR 0x408 #define MP_ETH_SDCMR 0x448 #define MP_ETH_ICR 0x450 #define MP_ETH_IMR 0x458 #define MP_ETH_FRDP0 0x480 #define MP_ETH_FRDP1 0x484 #define MP_ETH_FRDP2 0x488 #define MP_ETH_FRDP3 0x48C #define MP_ETH_CRDP0 0x4A0 #define MP_ETH_CRDP1 0x4A4 #define MP_ETH_CRDP2 0x4A8 #define MP_ETH_CRDP3 0x4AC #define MP_ETH_CTDP0 0x4E0 #define MP_ETH_CTDP1 0x4E4 #define MP_ETH_CTDP2 0x4E8 #define MP_ETH_CTDP3 0x4EC /* MII PHY access */ #define MP_ETH_SMIR_DATA 0x0000FFFF #define MP_ETH_SMIR_ADDR 0x03FF0000 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */ #define MP_ETH_SMIR_RDVALID (1 << 27) /* PHY registers */ #define MP_ETH_PHY1_BMSR 0x00210000 #define MP_ETH_PHY1_PHYSID1 0x00410000 #define MP_ETH_PHY1_PHYSID2 0x00610000 #define MP_PHY_BMSR_LINK 0x0004 #define MP_PHY_BMSR_AUTONEG 0x0008 #define MP_PHY_88E3015 0x01410E20 /* TX descriptor status */ #define MP_ETH_TX_OWN (1 << 31) /* RX descriptor status */ #define MP_ETH_RX_OWN (1 << 31) /* Interrupt cause/mask bits */ #define MP_ETH_IRQ_RX_BIT 0 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT) #define MP_ETH_IRQ_TXHI_BIT 2 #define MP_ETH_IRQ_TXLO_BIT 3 /* Port config bits */ #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */ /* SDMA command bits */ #define MP_ETH_CMD_TXHI (1 << 23) #define MP_ETH_CMD_TXLO (1 << 22) typedef struct mv88w8618_tx_desc { uint32_t cmdstat; uint16_t res; uint16_t bytes; uint32_t buffer; uint32_t next; } mv88w8618_tx_desc; typedef struct mv88w8618_rx_desc { uint32_t cmdstat; uint16_t bytes; uint16_t buffer_size; uint32_t buffer; uint32_t next; } mv88w8618_rx_desc; typedef struct mv88w8618_eth_state { uint32_t base; qemu_irq irq; uint32_t smir; uint32_t icr; uint32_t imr; int vlan_header; mv88w8618_tx_desc *tx_queue[2]; mv88w8618_rx_desc *rx_queue[4]; mv88w8618_rx_desc *frx_queue[4]; mv88w8618_rx_desc *cur_rx[4]; VLANClientState *vc; } mv88w8618_eth_state; static int eth_can_receive(void *opaque) { return 1; } static void eth_receive(void *opaque, const uint8_t *buf, int size) { mv88w8618_eth_state *s = opaque; mv88w8618_rx_desc *desc; int i; for (i = 0; i < 4; i++) { desc = s->cur_rx[i]; if (!desc) continue; do { if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN && le16_to_cpu(desc->buffer_size) >= size) { memcpy(target2host_addr(le32_to_cpu(desc->buffer) + s->vlan_header), buf, size); desc->bytes = cpu_to_le16(size + s->vlan_header); desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN); s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next)); s->icr |= MP_ETH_IRQ_RX; if (s->icr & s->imr) qemu_irq_raise(s->irq); return; } desc = target2host_addr(le32_to_cpu(desc->next)); } while (desc != s->rx_queue[i]); } } static void eth_send(mv88w8618_eth_state *s, int queue_index) { mv88w8618_tx_desc *desc = s->tx_queue[queue_index]; do { if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) { qemu_send_packet(s->vc, target2host_addr(le32_to_cpu(desc->buffer)), le16_to_cpu(desc->bytes)); desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN); s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index); } desc = target2host_addr(le32_to_cpu(desc->next)); } while (desc != s->tx_queue[queue_index]); } static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset) { mv88w8618_eth_state *s = opaque; offset -= s->base; switch (offset) { case MP_ETH_SMIR: if (s->smir & MP_ETH_SMIR_OPCODE) { switch (s->smir & MP_ETH_SMIR_ADDR) { case MP_ETH_PHY1_BMSR: return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG | MP_ETH_SMIR_RDVALID; case MP_ETH_PHY1_PHYSID1: return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID; case MP_ETH_PHY1_PHYSID2: return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID; default: return MP_ETH_SMIR_RDVALID; } } return 0; case MP_ETH_ICR: return s->icr; case MP_ETH_IMR: return s->imr; case MP_ETH_FRDP0 ... MP_ETH_FRDP3: return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]); case MP_ETH_CRDP0 ... MP_ETH_CRDP3: return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]); case MP_ETH_CTDP0 ... MP_ETH_CTDP3: return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]); default: return 0; } } static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset, uint32_t value) { mv88w8618_eth_state *s = opaque; offset -= s->base; switch (offset) { case MP_ETH_SMIR: s->smir = value; break; case MP_ETH_PCXR: s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2; break; case MP_ETH_SDCMR: if (value & MP_ETH_CMD_TXHI) eth_send(s, 1); if (value & MP_ETH_CMD_TXLO) eth_send(s, 0); if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr) qemu_irq_raise(s->irq); break; case MP_ETH_ICR: s->icr &= value; break; case MP_ETH_IMR: s->imr = value; if (s->icr & s->imr) qemu_irq_raise(s->irq); break; case MP_ETH_FRDP0 ... MP_ETH_FRDP3: s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value); break; case MP_ETH_CRDP0 ... MP_ETH_CRDP3: s->rx_queue[(offset - MP_ETH_CRDP0)/4] = s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value); break; case MP_ETH_CTDP0 ... MP_ETH_CTDP3: s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value); break; } } static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = { mv88w8618_eth_read, mv88w8618_eth_read, mv88w8618_eth_read }; static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = { mv88w8618_eth_write, mv88w8618_eth_write, mv88w8618_eth_write }; static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq) { mv88w8618_eth_state *s; int iomemtype; s = qemu_mallocz(sizeof(mv88w8618_eth_state)); if (!s) return; s->base = base; s->irq = irq; s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s); iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn, mv88w8618_eth_writefn, s); cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype); } /* LCD register offsets */ #define MP_LCD_IRQCTRL 0x180 #define MP_LCD_IRQSTAT 0x184 #define MP_LCD_SPICTRL 0x1ac #define MP_LCD_INST 0x1bc #define MP_LCD_DATA 0x1c0 /* Mode magics */ #define MP_LCD_SPI_DATA 0x00100011 #define MP_LCD_SPI_CMD 0x00104011 #define MP_LCD_SPI_INVALID 0x00000000 /* Commmands */ #define MP_LCD_INST_SETPAGE0 0xB0 /* ... */ #define MP_LCD_INST_SETPAGE7 0xB7 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */ typedef struct musicpal_lcd_state { uint32_t base; uint32_t mode; uint32_t irqctrl; int page; int page_off; DisplayState *ds; uint8_t video_ram[128*64/8]; } musicpal_lcd_state; static uint32_t lcd_brightness; static uint8_t scale_lcd_color(uint8_t col) { int tmp = col; switch (lcd_brightness) { case 0x00000007: /* 0 */ return 0; case 0x00020000: /* 1 */ return (tmp * 1) / 7; case 0x00020001: /* 2 */ return (tmp * 2) / 7; case 0x00040000: /* 3 */ return (tmp * 3) / 7; case 0x00010006: /* 4 */ return (tmp * 4) / 7; case 0x00020005: /* 5 */ return (tmp * 5) / 7; case 0x00040003: /* 6 */ return (tmp * 6) / 7; case 0x00030004: /* 7 */ default: return col; } } #define SET_LCD_PIXEL(depth, type) \ static inline void glue(set_lcd_pixel, depth) \ (musicpal_lcd_state *s, int x, int y, type col) \ { \ int dx, dy; \ type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \ \ for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \ for (dx = 0; dx < 3; dx++, pixel++) \ *pixel = col; \ } SET_LCD_PIXEL(8, uint8_t) SET_LCD_PIXEL(16, uint16_t) SET_LCD_PIXEL(32, uint32_t) #include "pixel_ops.h" static void lcd_refresh(void *opaque) { musicpal_lcd_state *s = opaque; int x, y, col; switch (s->ds->depth) { case 0: return; #define LCD_REFRESH(depth, func) \ case depth: \ col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \ scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \ scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \ for (x = 0; x < 128; x++) \ for (y = 0; y < 64; y++) \ if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \ glue(set_lcd_pixel, depth)(s, x, y, col); \ else \ glue(set_lcd_pixel, depth)(s, x, y, 0); \ break; LCD_REFRESH(8, rgb_to_pixel8) LCD_REFRESH(16, rgb_to_pixel16) LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32)) default: cpu_abort(cpu_single_env, "unsupported colour depth %i\n", s->ds->depth); } dpy_update(s->ds, 0, 0, 128*3, 64*3); } static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset) { musicpal_lcd_state *s = opaque; offset -= s->base; switch (offset) { case MP_LCD_IRQCTRL: return s->irqctrl; default: return 0; } } static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset, uint32_t value) { musicpal_lcd_state *s = opaque; offset -= s->base; switch (offset) { case MP_LCD_IRQCTRL: s->irqctrl = value; break; case MP_LCD_SPICTRL: if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD) s->mode = value; else s->mode = MP_LCD_SPI_INVALID; break; case MP_LCD_INST: if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) { s->page = value - MP_LCD_INST_SETPAGE0; s->page_off = 0; } break; case MP_LCD_DATA: if (s->mode == MP_LCD_SPI_CMD) { if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) { s->page = value - MP_LCD_INST_SETPAGE0; s->page_off = 0; } } else if (s->mode == MP_LCD_SPI_DATA) { s->video_ram[s->page*128 + s->page_off] = value; s->page_off = (s->page_off + 1) & 127; } break; } } static CPUReadMemoryFunc *musicpal_lcd_readfn[] = { musicpal_lcd_read, musicpal_lcd_read, musicpal_lcd_read }; static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = { musicpal_lcd_write, musicpal_lcd_write, musicpal_lcd_write }; static void musicpal_lcd_init(DisplayState *ds, uint32_t base) { musicpal_lcd_state *s; int iomemtype; s = qemu_mallocz(sizeof(musicpal_lcd_state)); if (!s) return; s->base = base; s->ds = ds; iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn, musicpal_lcd_writefn, s); cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype); graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s); dpy_resize(ds, 128*3, 64*3); } /* PIC register offsets */ #define MP_PIC_STATUS 0x00 #define MP_PIC_ENABLE_SET 0x08 #define MP_PIC_ENABLE_CLR 0x0C typedef struct mv88w8618_pic_state { uint32_t base; uint32_t level; uint32_t enabled; qemu_irq parent_irq; } mv88w8618_pic_state; static void mv88w8618_pic_update(mv88w8618_pic_state *s) { qemu_set_irq(s->parent_irq, (s->level & s->enabled)); } static void mv88w8618_pic_set_irq(void *opaque, int irq, int level) { mv88w8618_pic_state *s = opaque; if (level) s->level |= 1 << irq; else s->level &= ~(1 << irq); mv88w8618_pic_update(s); } static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset) { mv88w8618_pic_state *s = opaque; offset -= s->base; switch (offset) { case MP_PIC_STATUS: return s->level & s->enabled; default: return 0; } } static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset, uint32_t value) { mv88w8618_pic_state *s = opaque; offset -= s->base; switch (offset) { case MP_PIC_ENABLE_SET: s->enabled |= value; break; case MP_PIC_ENABLE_CLR: s->enabled &= ~value; s->level &= ~value; break; } mv88w8618_pic_update(s); } static void mv88w8618_pic_reset(void *opaque) { mv88w8618_pic_state *s = opaque; s->level = 0; s->enabled = 0; } static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = { mv88w8618_pic_read, mv88w8618_pic_read, mv88w8618_pic_read }; static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = { mv88w8618_pic_write, mv88w8618_pic_write, mv88w8618_pic_write }; static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq) { mv88w8618_pic_state *s; int iomemtype; qemu_irq *qi; s = qemu_mallocz(sizeof(mv88w8618_pic_state)); if (!s) return NULL; qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32); s->base = base; s->parent_irq = parent_irq; iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn, mv88w8618_pic_writefn, s); cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype); qemu_register_reset(mv88w8618_pic_reset, s); return qi; } /* PIT register offsets */ #define MP_PIT_TIMER1_LENGTH 0x00 /* ... */ #define MP_PIT_TIMER4_LENGTH 0x0C #define MP_PIT_CONTROL 0x10 #define MP_PIT_TIMER1_VALUE 0x14 /* ... */ #define MP_PIT_TIMER4_VALUE 0x20 #define MP_BOARD_RESET 0x34 /* Magic board reset value (probably some watchdog behind it) */ #define MP_BOARD_RESET_MAGIC 0x10000 typedef struct mv88w8618_timer_state { ptimer_state *timer; uint32_t limit; int freq; qemu_irq irq; } mv88w8618_timer_state; typedef struct mv88w8618_pit_state { void *timer[4]; uint32_t control; uint32_t base; } mv88w8618_pit_state; static void mv88w8618_timer_tick(void *opaque) { mv88w8618_timer_state *s = opaque; qemu_irq_raise(s->irq); } static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq) { mv88w8618_timer_state *s; QEMUBH *bh; s = qemu_mallocz(sizeof(mv88w8618_timer_state)); s->irq = irq; s->freq = freq; bh = qemu_bh_new(mv88w8618_timer_tick, s); s->timer = ptimer_init(bh); return s; } static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset) { mv88w8618_pit_state *s = opaque; mv88w8618_timer_state *t; offset -= s->base; switch (offset) { case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE: t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2]; return ptimer_get_count(t->timer); default: return 0; } } static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset, uint32_t value) { mv88w8618_pit_state *s = opaque; mv88w8618_timer_state *t; int i; offset -= s->base; switch (offset) { case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH: t = s->timer[offset >> 2]; t->limit = value; ptimer_set_limit(t->timer, t->limit, 1); break; case MP_PIT_CONTROL: for (i = 0; i < 4; i++) { if (value & 0xf) { t = s->timer[i]; ptimer_set_limit(t->timer, t->limit, 0); ptimer_set_freq(t->timer, t->freq); ptimer_run(t->timer, 0); } value >>= 4; } break; case MP_BOARD_RESET: if (value == MP_BOARD_RESET_MAGIC) qemu_system_reset_request(); break; } } static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = { mv88w8618_pit_read, mv88w8618_pit_read, mv88w8618_pit_read }; static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = { mv88w8618_pit_write, mv88w8618_pit_write, mv88w8618_pit_write }; static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq) { int iomemtype; mv88w8618_pit_state *s; s = qemu_mallocz(sizeof(mv88w8618_pit_state)); if (!s) return; s->base = base; /* Letting them all run at 1 MHz is likely just a pragmatic * simplification. */ s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]); s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]); s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]); s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]); iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn, mv88w8618_pit_writefn, s); cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype); } /* Flash config register offsets */ #define MP_FLASHCFG_CFGR0 0x04 typedef struct mv88w8618_flashcfg_state { uint32_t base; uint32_t cfgr0; } mv88w8618_flashcfg_state; static uint32_t mv88w8618_flashcfg_read(void *opaque, target_phys_addr_t offset) { mv88w8618_flashcfg_state *s = opaque; offset -= s->base; switch (offset) { case MP_FLASHCFG_CFGR0: return s->cfgr0; default: return 0; } } static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset, uint32_t value) { mv88w8618_flashcfg_state *s = opaque; offset -= s->base; switch (offset) { case MP_FLASHCFG_CFGR0: s->cfgr0 = value; break; } } static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = { mv88w8618_flashcfg_read, mv88w8618_flashcfg_read, mv88w8618_flashcfg_read }; static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = { mv88w8618_flashcfg_write, mv88w8618_flashcfg_write, mv88w8618_flashcfg_write }; static void mv88w8618_flashcfg_init(uint32_t base) { int iomemtype; mv88w8618_flashcfg_state *s; s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state)); if (!s) return; s->base = base; s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */ iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn, mv88w8618_flashcfg_writefn, s); cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype); } /* Various registers in the 0x80000000 domain */ #define MP_BOARD_REVISION 0x2018 #define MP_WLAN_MAGIC1 0xc11c #define MP_WLAN_MAGIC2 0xc124 #define MP_GPIO_OE_LO 0xd008 #define MP_GPIO_OUT_LO 0xd00c #define MP_GPIO_IN_LO 0xd010 #define MP_GPIO_ISR_LO 0xd020 #define MP_GPIO_OE_HI 0xd508 #define MP_GPIO_OUT_HI 0xd50c #define MP_GPIO_IN_HI 0xd510 #define MP_GPIO_ISR_HI 0xd520 /* GPIO bits & masks */ #define MP_GPIO_WHEEL_VOL (1 << 8) #define MP_GPIO_WHEEL_VOL_INV (1 << 9) #define MP_GPIO_WHEEL_NAV (1 << 10) #define MP_GPIO_WHEEL_NAV_INV (1 << 11) #define MP_GPIO_LCD_BRIGHTNESS 0x00070000 #define MP_GPIO_BTN_FAVORITS (1 << 19) #define MP_GPIO_BTN_MENU (1 << 20) #define MP_GPIO_BTN_VOLUME (1 << 21) #define MP_GPIO_BTN_NAVIGATION (1 << 22) #define MP_GPIO_I2C_DATA_BIT 29 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT) #define MP_GPIO_I2C_CLOCK_BIT 30 /* LCD brightness bits in GPIO_OE_HI */ #define MP_OE_LCD_BRIGHTNESS 0x0007 static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset) { offset -= 0x80000000; switch (offset) { case MP_BOARD_REVISION: return 0x0031; case MP_GPIO_OE_HI: /* used for LCD brightness control */ return lcd_brightness & MP_OE_LCD_BRIGHTNESS; case MP_GPIO_OUT_LO: return gpio_out_state & 0xFFFF; case MP_GPIO_OUT_HI: return gpio_out_state >> 16; case MP_GPIO_IN_LO: return gpio_in_state & 0xFFFF; case MP_GPIO_IN_HI: /* Update received I2C data */ gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) | (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT); return gpio_in_state >> 16; /* This is a simplification of reality */ case MP_GPIO_ISR_LO: return ~gpio_in_state & 0xFFFF; case MP_GPIO_ISR_HI: return ~gpio_in_state >> 16; /* Workaround to allow loading the binary-only wlandrv.ko crap * from the original Freecom firmware. */ case MP_WLAN_MAGIC1: return ~3; case MP_WLAN_MAGIC2: return -1; default: return 0; } } static void musicpal_write(void *opaque, target_phys_addr_t offset, uint32_t value) { offset -= 0x80000000; switch (offset) { case MP_GPIO_OE_HI: /* used for LCD brightness control */ lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) | (value & MP_OE_LCD_BRIGHTNESS); break; case MP_GPIO_OUT_LO: gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF); break; case MP_GPIO_OUT_HI: gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16); lcd_brightness = (lcd_brightness & 0xFFFF) | (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS); i2c_state_update(mixer_i2c, (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1, (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1); break; } } /* Keyboard codes & masks */ #define KEY_PRESSED 0x80 #define KEY_CODE 0x7f #define KEYCODE_TAB 0x0f #define KEYCODE_ENTER 0x1c #define KEYCODE_F 0x21 #define KEYCODE_M 0x32 #define KEYCODE_EXTENDED 0xe0 #define KEYCODE_UP 0x48 #define KEYCODE_DOWN 0x50 #define KEYCODE_LEFT 0x4b #define KEYCODE_RIGHT 0x4d static void musicpal_key_event(void *opaque, int keycode) { qemu_irq irq = opaque; uint32_t event = 0; static int kbd_extended; if (keycode == KEYCODE_EXTENDED) { kbd_extended = 1; return; } if (kbd_extended) switch (keycode & KEY_CODE) { case KEYCODE_UP: event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV; break; case KEYCODE_DOWN: event = MP_GPIO_WHEEL_NAV; break; case KEYCODE_LEFT: event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV; break; case KEYCODE_RIGHT: event = MP_GPIO_WHEEL_VOL; break; } else switch (keycode & KEY_CODE) { case KEYCODE_F: event = MP_GPIO_BTN_FAVORITS; break; case KEYCODE_TAB: event = MP_GPIO_BTN_VOLUME; break; case KEYCODE_ENTER: event = MP_GPIO_BTN_NAVIGATION; break; case KEYCODE_M: event = MP_GPIO_BTN_MENU; break; } if (keycode & KEY_PRESSED) gpio_in_state |= event; else if (gpio_in_state & event) { gpio_in_state &= ~event; qemu_irq_raise(irq); } kbd_extended = 0; } static CPUReadMemoryFunc *musicpal_readfn[] = { musicpal_read, musicpal_read, musicpal_read, }; static CPUWriteMemoryFunc *musicpal_writefn[] = { musicpal_write, musicpal_write, musicpal_write, }; static struct arm_boot_info musicpal_binfo = { .loader_start = 0x0, .board_id = 0x20e, }; static void musicpal_init(ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env; qemu_irq *pic; int index; int iomemtype; unsigned long flash_size; if (!cpu_model) cpu_model = "arm926"; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } pic = arm_pic_init_cpu(env); /* For now we use a fixed - the original - RAM size */ cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE, qemu_ram_alloc(MP_RAM_DEFAULT_SIZE)); sram_off = qemu_ram_alloc(MP_SRAM_SIZE); cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off); /* Catch various stuff not handled by separate subsystems */ iomemtype = cpu_register_io_memory(0, musicpal_readfn, musicpal_writefn, env); cpu_register_physical_memory(0x80000000, 0x10000, iomemtype); pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]); mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ); if (serial_hds[0]) serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000, serial_hds[0], 1); if (serial_hds[1]) serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000, serial_hds[1], 1); /* Register flash */ index = drive_get_index(IF_PFLASH, 0, 0); if (index != -1) { flash_size = bdrv_getlength(drives_table[index].bdrv); if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 && flash_size != 32*1024*1024) { fprintf(stderr, "Invalid flash image size\n"); exit(1); } /* * The original U-Boot accesses the flash at 0xFE000000 instead of * 0xFF800000 (if there is 8 MB flash). So remap flash access if the * image is smaller than 32 MB. */ pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size), drives_table[index].bdrv, 0x10000, (flash_size + 0xffff) >> 16, MP_FLASH_SIZE_MAX / flash_size, 2, 0x00BF, 0x236D, 0x0000, 0x0000, 0x5555, 0x2AAA); } mv88w8618_flashcfg_init(MP_FLASHCFG_BASE); musicpal_lcd_init(ds, MP_LCD_BASE); qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]); /* * Wait a bit to catch menu button during U-Boot start-up * (to trigger emergency update). */ sleep(1); mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]); mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]); musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE; musicpal_binfo.kernel_filename = kernel_filename; musicpal_binfo.kernel_cmdline = kernel_cmdline; musicpal_binfo.initrd_filename = initrd_filename; arm_load_kernel(env, &musicpal_binfo); } QEMUMachine musicpal_machine = { "musicpal", "Marvell 88w8618 / MusicPal (ARM926EJ-S)", musicpal_init, MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED };