/* * QEMU low level functions * * Copyright (c) 2003 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include "cpu.h" #if defined(__i386__) && !defined(CONFIG_SOFTMMU) && !defined(CONFIG_USER_ONLY) #include #include /* When not using soft mmu, libc independant functions are needed for the CPU core because it needs to use alternates stacks and libc/thread incompatibles settings */ #include #define QEMU_SYSCALL0(name) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name)); \ return __res; \ } #define QEMU_SYSCALL1(name,arg1) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1))); \ return __res; \ } #define QEMU_SYSCALL2(name,arg1,arg2) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2))); \ return __res; \ } #define QEMU_SYSCALL3(name,arg1,arg2,arg3) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ "d" ((long)(arg3))); \ return __res; \ } #define QEMU_SYSCALL4(name,arg1,arg2,arg3,arg4) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ "d" ((long)(arg3)),"S" ((long)(arg4))); \ return __res; \ } #define QEMU_SYSCALL5(name,arg1,arg2,arg3,arg4,arg5) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5))); \ return __res; \ } #define QEMU_SYSCALL6(name,arg1,arg2,arg3,arg4,arg5,arg6) \ { \ long __res; \ __asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \ : "=a" (__res) \ : "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \ "0" ((long)(arg6))); \ return __res; \ } int qemu_write(int fd, const void *buf, size_t n) { QEMU_SYSCALL3(write, fd, buf, n); } /****************************************************************/ /* shmat replacement */ int qemu_ipc(int call, unsigned long first, unsigned long second, unsigned long third, void *ptr, unsigned long fifth) { QEMU_SYSCALL6(ipc, call, first, second, third, ptr, fifth); } #define SHMAT 21 /* we must define shmat so that a specific address will be used when mapping the X11 ximage */ void *shmat(int shmid, const void *shmaddr, int shmflg) { void *ptr; int ret; /* we give an address in the right memory area */ if (!shmaddr) shmaddr = get_mmap_addr(8192 * 1024); ret = qemu_ipc(SHMAT, shmid, shmflg, (unsigned long)&ptr, (void *)shmaddr, 0); if (ret < 0) return NULL; return ptr; } /****************************************************************/ /* sigaction bypassing the threads */ static int kernel_sigaction(int signum, const struct qemu_sigaction *act, struct qemu_sigaction *oldact, int sigsetsize) { QEMU_SYSCALL4(rt_sigaction, signum, act, oldact, sigsetsize); } int qemu_sigaction(int signum, const struct qemu_sigaction *act, struct qemu_sigaction *oldact) { return kernel_sigaction(signum, act, oldact, 8); } /****************************************************************/ /* memory allocation */ //#define DEBUG_MALLOC #define MALLOC_BASE 0xab000000 #define PHYS_RAM_BASE 0xac000000 #define MALLOC_ALIGN 16 #define BLOCK_HEADER_SIZE 16 typedef struct MemoryBlock { struct MemoryBlock *next; unsigned long size; /* size of block, including header */ } MemoryBlock; static MemoryBlock *first_free_block; static unsigned long malloc_addr = MALLOC_BASE; static void *malloc_get_space(size_t size) { void *ptr; size = TARGET_PAGE_ALIGN(size); ptr = mmap((void *)malloc_addr, size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_FIXED | MAP_ANON, -1, 0); if (ptr == MAP_FAILED) return NULL; malloc_addr += size; return ptr; } void *qemu_malloc(size_t size) { MemoryBlock *mb, *mb1, **pmb; void *ptr; size_t size1, area_size; if (size == 0) return NULL; size = (size + BLOCK_HEADER_SIZE + MALLOC_ALIGN - 1) & ~(MALLOC_ALIGN - 1); pmb = &first_free_block; for(;;) { mb = *pmb; if (mb == NULL) break; if (size <= mb->size) goto found; pmb = &mb->next; } /* no big enough blocks found: get new space */ area_size = TARGET_PAGE_ALIGN(size); mb = malloc_get_space(area_size); if (!mb) return NULL; size1 = area_size - size; if (size1 > 0) { /* create a new free block */ mb1 = (MemoryBlock *)((uint8_t *)mb + size); mb1->next = NULL; mb1->size = size1; *pmb = mb1; } goto the_end; found: /* a free block was found: use it */ size1 = mb->size - size; if (size1 > 0) { /* create a new free block */ mb1 = (MemoryBlock *)((uint8_t *)mb + size); mb1->next = mb->next; mb1->size = size1; *pmb = mb1; } else { /* suppress the first block */ *pmb = mb->next; } the_end: mb->size = size; mb->next = NULL; ptr = ((uint8_t *)mb + BLOCK_HEADER_SIZE); #ifdef DEBUG_MALLOC qemu_printf("malloc: size=0x%x ptr=0x%lx\n", size, (unsigned long)ptr); #endif return ptr; } void qemu_free(void *ptr) { MemoryBlock *mb; if (!ptr) return; mb = (MemoryBlock *)((uint8_t *)ptr - BLOCK_HEADER_SIZE); mb->next = first_free_block; first_free_block = mb; } /****************************************************************/ /* virtual memory allocation */ unsigned long mmap_addr = PHYS_RAM_BASE; void *get_mmap_addr(unsigned long size) { unsigned long addr; addr = mmap_addr; mmap_addr += ((size + 4095) & ~4095) + 4096; return (void *)addr; } #else #ifdef _WIN32 #include #elif defined(_BSD) #include #else #include #endif int qemu_write(int fd, const void *buf, size_t n) { int ret; ret = write(fd, buf, n); if (ret < 0) return -errno; else return ret; } void *get_mmap_addr(unsigned long size) { return NULL; } void qemu_free(void *ptr) { free(ptr); } void *qemu_malloc(size_t size) { return malloc(size); } #if defined(_WIN32) void *qemu_vmalloc(size_t size) { /* FIXME: this is not exactly optimal solution since VirtualAlloc has 64Kb granularity, but at least it guarantees us that the memory is page aligned. */ return VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE); } void qemu_vfree(void *ptr) { VirtualFree(ptr, 0, MEM_RELEASE); } #elif defined(USE_KQEMU) #include #include void *qemu_vmalloc(size_t size) { static int phys_ram_fd = -1; static int phys_ram_size = 0; const char *tmpdir; char phys_ram_file[1024]; void *ptr; if (phys_ram_fd < 0) { tmpdir = getenv("QEMU_TMPDIR"); if (!tmpdir) tmpdir = "/dev/shm"; snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/qemuXXXXXX", tmpdir); if (mkstemp(phys_ram_file) < 0) { fprintf(stderr, "warning: could not create temporary file in '%s'.\n" "Use QEMU_TMPDIR to select a directory in a tmpfs filesystem.\n" "Using '/tmp' as fallback.\n", tmpdir); snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/qemuXXXXXX", "/tmp"); if (mkstemp(phys_ram_file) < 0) { fprintf(stderr, "Could not create temporary memory file '%s'\n", phys_ram_file); exit(1); } } phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600); if (phys_ram_fd < 0) { fprintf(stderr, "Could not open temporary memory file '%s'\n", phys_ram_file); exit(1); } unlink(phys_ram_file); } size = (size + 4095) & ~4095; ftruncate(phys_ram_fd, phys_ram_size + size); ptr = mmap(NULL, size, PROT_WRITE | PROT_READ, MAP_SHARED, phys_ram_fd, phys_ram_size); if (ptr == MAP_FAILED) { fprintf(stderr, "Could not map physical memory\n"); exit(1); } phys_ram_size += size; return ptr; } void qemu_vfree(void *ptr) { /* may be useful some day, but currently we do not need to free */ } #else /* alloc shared memory pages */ void *qemu_vmalloc(size_t size) { #ifdef _BSD return valloc(size); #else return memalign(4096, size); #endif } void qemu_vfree(void *ptr) { free(ptr); } #endif #endif void *qemu_mallocz(size_t size) { void *ptr; ptr = qemu_malloc(size); if (!ptr) return NULL; memset(ptr, 0, size); return ptr; } char *qemu_strdup(const char *str) { char *ptr; ptr = qemu_malloc(strlen(str) + 1); if (!ptr) return NULL; strcpy(ptr, str); return ptr; } /****************************************************************/ /* printf support */ static inline int qemu_isdigit(int c) { return c >= '0' && c <= '9'; } #define OUTCHAR(c) (buflen > 0? (--buflen, *buf++ = (c)): 0) /* from BSD ppp sources */ int qemu_vsnprintf(char *buf, int buflen, const char *fmt, va_list args) { int c, i, n; int width, prec, fillch; int base, len, neg; unsigned long val = 0; const char *f; char *str, *buf0; char num[32]; static const char hexchars[] = "0123456789abcdef"; buf0 = buf; --buflen; while (buflen > 0) { for (f = fmt; *f != '%' && *f != 0; ++f) ; if (f > fmt) { len = f - fmt; if (len > buflen) len = buflen; memcpy(buf, fmt, len); buf += len; buflen -= len; fmt = f; } if (*fmt == 0) break; c = *++fmt; width = prec = 0; fillch = ' '; if (c == '0') { fillch = '0'; c = *++fmt; } if (c == '*') { width = va_arg(args, int); c = *++fmt; } else { while (qemu_isdigit(c)) { width = width * 10 + c - '0'; c = *++fmt; } } if (c == '.') { c = *++fmt; if (c == '*') { prec = va_arg(args, int); c = *++fmt; } else { while (qemu_isdigit(c)) { prec = prec * 10 + c - '0'; c = *++fmt; } } } /* modifiers */ switch(c) { case 'l': c = *++fmt; break; default: break; } str = 0; base = 0; neg = 0; ++fmt; switch (c) { case 'd': i = va_arg(args, int); if (i < 0) { neg = 1; val = -i; } else val = i; base = 10; break; case 'o': val = va_arg(args, unsigned int); base = 8; break; case 'x': case 'X': val = va_arg(args, unsigned int); base = 16; break; case 'p': val = (unsigned long) va_arg(args, void *); base = 16; neg = 2; break; case 's': str = va_arg(args, char *); break; case 'c': num[0] = va_arg(args, int); num[1] = 0; str = num; break; default: *buf++ = '%'; if (c != '%') --fmt; /* so %z outputs %z etc. */ --buflen; continue; } if (base != 0) { str = num + sizeof(num); *--str = 0; while (str > num + neg) { *--str = hexchars[val % base]; val = val / base; if (--prec <= 0 && val == 0) break; } switch (neg) { case 1: *--str = '-'; break; case 2: *--str = 'x'; *--str = '0'; break; } len = num + sizeof(num) - 1 - str; } else { len = strlen(str); if (prec > 0 && len > prec) len = prec; } if (width > 0) { if (width > buflen) width = buflen; if ((n = width - len) > 0) { buflen -= n; for (; n > 0; --n) *buf++ = fillch; } } if (len > buflen) len = buflen; memcpy(buf, str, len); buf += len; buflen -= len; } *buf = 0; return buf - buf0; } void qemu_vprintf(const char *fmt, va_list ap) { char buf[1024]; int len; len = qemu_vsnprintf(buf, sizeof(buf), fmt, ap); qemu_write(1, buf, len); } void qemu_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); qemu_vprintf(fmt, ap); va_end(ap); }