/* * USB UHCI controller emulation * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG //#define DEBUG_PACKET #define UHCI_CMD_GRESET (1 << 2) #define UHCI_CMD_HCRESET (1 << 1) #define UHCI_CMD_RS (1 << 0) #define UHCI_STS_HCHALTED (1 << 5) #define UHCI_STS_HCPERR (1 << 4) #define UHCI_STS_HSERR (1 << 3) #define UHCI_STS_RD (1 << 2) #define UHCI_STS_USBERR (1 << 1) #define UHCI_STS_USBINT (1 << 0) #define TD_CTRL_SPD (1 << 29) #define TD_CTRL_ERROR_SHIFT 27 #define TD_CTRL_IOS (1 << 25) #define TD_CTRL_IOC (1 << 24) #define TD_CTRL_ACTIVE (1 << 23) #define TD_CTRL_STALL (1 << 22) #define TD_CTRL_BABBLE (1 << 20) #define TD_CTRL_NAK (1 << 19) #define TD_CTRL_TIMEOUT (1 << 18) #define UHCI_PORT_RESET (1 << 9) #define UHCI_PORT_LSDA (1 << 8) #define UHCI_PORT_ENC (1 << 3) #define UHCI_PORT_EN (1 << 2) #define UHCI_PORT_CSC (1 << 1) #define UHCI_PORT_CCS (1 << 0) #define FRAME_TIMER_FREQ 1000 #define FRAME_MAX_LOOPS 100 #define NB_PORTS 2 typedef struct UHCIPort { USBPort port; uint16_t ctrl; USBDevice *dev; /* connected device */ } UHCIPort; typedef struct UHCIState { PCIDevice dev; uint16_t cmd; /* cmd register */ uint16_t status; uint16_t intr; /* interrupt enable register */ uint16_t frnum; /* frame number */ uint32_t fl_base_addr; /* frame list base address */ uint8_t sof_timing; uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */ QEMUTimer *frame_timer; UHCIPort ports[NB_PORTS]; } UHCIState; typedef struct UHCI_TD { uint32_t link; uint32_t ctrl; /* see TD_CTRL_xxx */ uint32_t token; uint32_t buffer; } UHCI_TD; typedef struct UHCI_QH { uint32_t link; uint32_t el_link; } UHCI_QH; static void uhci_attach(USBPort *port1, USBDevice *dev); static void uhci_update_irq(UHCIState *s) { int level; if (((s->status2 & 1) && (s->intr & (1 << 2))) || ((s->status2 & 2) && (s->intr & (1 << 3))) || ((s->status & UHCI_STS_USBERR) && (s->intr & (1 << 0))) || ((s->status & UHCI_STS_RD) && (s->intr & (1 << 1))) || (s->status & UHCI_STS_HSERR) || (s->status & UHCI_STS_HCPERR)) { level = 1; } else { level = 0; } pci_set_irq(&s->dev, 0, level); } static void uhci_reset(UHCIState *s) { uint8_t *pci_conf; int i; UHCIPort *port; pci_conf = s->dev.config; pci_conf[0x6a] = 0x01; /* usb clock */ pci_conf[0x6b] = 0x00; s->cmd = 0; s->status = 0; s->status2 = 0; s->intr = 0; s->fl_base_addr = 0; s->sof_timing = 64; for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; port->ctrl = 0x0080; if (port->dev) uhci_attach(&port->port, port->dev); } } static void uhci_ioport_writeb(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; switch(addr) { case 0x0c: s->sof_timing = val; break; } } static uint32_t uhci_ioport_readb(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x0c: val = s->sof_timing; default: val = 0xff; break; } return val; } static void uhci_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; #ifdef DEBUG printf("uhci writew port=0x%04x val=0x%04x\n", addr, val); #endif switch(addr) { case 0x00: if ((val & UHCI_CMD_RS) && !(s->cmd & UHCI_CMD_RS)) { /* start frame processing */ qemu_mod_timer(s->frame_timer, qemu_get_clock(vm_clock)); } if (val & UHCI_CMD_GRESET) { UHCIPort *port; USBDevice *dev; int i; /* send reset on the USB bus */ for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; dev = port->dev; if (dev) { dev->handle_packet(dev, USB_MSG_RESET, 0, 0, NULL, 0); } } uhci_reset(s); return; } if (val & UHCI_CMD_GRESET) { uhci_reset(s); return; } s->cmd = val; break; case 0x02: s->status &= ~val; /* XXX: the chip spec is not coherent, so we add a hidden register to distinguish between IOC and SPD */ if (val & UHCI_STS_USBINT) s->status2 = 0; uhci_update_irq(s); break; case 0x04: s->intr = val; uhci_update_irq(s); break; case 0x06: if (s->status & UHCI_STS_HCHALTED) s->frnum = val & 0x7ff; break; case 0x10 ... 0x1f: { UHCIPort *port; USBDevice *dev; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) return; port = &s->ports[n]; dev = port->dev; if (dev) { /* port reset */ if ( (val & UHCI_PORT_RESET) && !(port->ctrl & UHCI_PORT_RESET) ) { dev->handle_packet(dev, USB_MSG_RESET, 0, 0, NULL, 0); } } port->ctrl = (port->ctrl & 0x01fb) | (val & ~0x01fb); /* some bits are reset when a '1' is written to them */ port->ctrl &= ~(val & 0x000a); } break; } } static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x00: val = s->cmd; break; case 0x02: val = s->status; break; case 0x04: val = s->intr; break; case 0x06: val = s->frnum; break; case 0x10 ... 0x1f: { UHCIPort *port; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) goto read_default; port = &s->ports[n]; val = port->ctrl; } break; default: read_default: val = 0xff7f; /* disabled port */ break; } #ifdef DEBUG printf("uhci readw port=0x%04x val=0x%04x\n", addr, val); #endif return val; } static void uhci_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; #ifdef DEBUG printf("uhci writel port=0x%04x val=0x%08x\n", addr, val); #endif switch(addr) { case 0x08: s->fl_base_addr = val & ~0xfff; break; } } static uint32_t uhci_ioport_readl(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x08: val = s->fl_base_addr; break; default: val = 0xffffffff; break; } return val; } static void uhci_attach(USBPort *port1, USBDevice *dev) { UHCIState *s = port1->opaque; UHCIPort *port = &s->ports[port1->index]; if (dev) { if (port->dev) { usb_attach(port1, NULL); } /* set connect status */ if (!(port->ctrl & UHCI_PORT_CCS)) { port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC; } /* update speed */ if (dev->speed == USB_SPEED_LOW) port->ctrl |= UHCI_PORT_LSDA; else port->ctrl &= ~UHCI_PORT_LSDA; port->dev = dev; /* send the attach message */ dev->handle_packet(dev, USB_MSG_ATTACH, 0, 0, NULL, 0); } else { /* set connect status */ if (!(port->ctrl & UHCI_PORT_CCS)) { port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC; } /* disable port */ if (port->ctrl & UHCI_PORT_EN) { port->ctrl &= ~UHCI_PORT_EN; port->ctrl |= UHCI_PORT_ENC; } dev = port->dev; if (dev) { /* send the detach message */ dev->handle_packet(dev, USB_MSG_DETACH, 0, 0, NULL, 0); } port->dev = NULL; } } static int uhci_broadcast_packet(UHCIState *s, uint8_t pid, uint8_t devaddr, uint8_t devep, uint8_t *data, int len) { UHCIPort *port; USBDevice *dev; int i, ret; #ifdef DEBUG_PACKET { const char *pidstr; switch(pid) { case USB_TOKEN_SETUP: pidstr = "SETUP"; break; case USB_TOKEN_IN: pidstr = "IN"; break; case USB_TOKEN_OUT: pidstr = "OUT"; break; default: pidstr = "?"; break; } printf("frame %d: pid=%s addr=0x%02x ep=%d len=%d\n", s->frnum, pidstr, devaddr, devep, len); if (pid != USB_TOKEN_IN) { printf(" data_out="); for(i = 0; i < len; i++) { printf(" %02x", data[i]); } printf("\n"); } } #endif for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; dev = port->dev; if (dev && (port->ctrl & UHCI_PORT_EN)) { ret = dev->handle_packet(dev, pid, devaddr, devep, data, len); if (ret != USB_RET_NODEV) { #ifdef DEBUG_PACKET { printf(" ret=%d ", ret); if (pid == USB_TOKEN_IN && ret > 0) { printf("data_in="); for(i = 0; i < ret; i++) { printf(" %02x", data[i]); } } printf("\n"); } #endif return ret; } } } return USB_RET_NODEV; } /* return -1 if fatal error (frame must be stopped) 0 if TD successful 1 if TD unsuccessful or inactive */ static int uhci_handle_td(UHCIState *s, UHCI_TD *td, int *int_mask) { uint8_t pid; uint8_t buf[1280]; int len, max_len, err, ret; if (td->ctrl & TD_CTRL_IOC) { *int_mask |= 0x01; } if (!(td->ctrl & TD_CTRL_ACTIVE)) return 1; /* TD is active */ max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; switch(pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: cpu_physical_memory_read(td->buffer, buf, max_len); ret = uhci_broadcast_packet(s, pid, (td->token >> 8) & 0x7f, (td->token >> 15) & 0xf, buf, max_len); len = max_len; break; case USB_TOKEN_IN: ret = uhci_broadcast_packet(s, pid, (td->token >> 8) & 0x7f, (td->token >> 15) & 0xf, buf, max_len); if (ret >= 0) { len = ret; if (len > max_len) { len = max_len; ret = USB_RET_BABBLE; } if (len > 0) { /* write the data back */ cpu_physical_memory_write(td->buffer, buf, len); } } else { len = 0; } break; default: /* invalid pid : frame interrupted */ s->status |= UHCI_STS_HCPERR; uhci_update_irq(s); return -1; } if (td->ctrl & TD_CTRL_IOS) td->ctrl &= ~TD_CTRL_ACTIVE; if (ret >= 0) { td->ctrl = (td->ctrl & ~0x7ff) | ((len - 1) & 0x7ff); td->ctrl &= ~TD_CTRL_ACTIVE; if (pid == USB_TOKEN_IN && (td->ctrl & TD_CTRL_SPD) && len < max_len) { *int_mask |= 0x02; /* short packet: do not update QH */ return 1; } else { /* success */ return 0; } } else { switch(ret) { default: case USB_RET_NODEV: do_timeout: td->ctrl |= TD_CTRL_TIMEOUT; err = (td->ctrl >> TD_CTRL_ERROR_SHIFT) & 3; if (err != 0) { err--; if (err == 0) { td->ctrl &= ~TD_CTRL_ACTIVE; s->status |= UHCI_STS_USBERR; uhci_update_irq(s); } } td->ctrl = (td->ctrl & ~(3 << TD_CTRL_ERROR_SHIFT)) | (err << TD_CTRL_ERROR_SHIFT); return 1; case USB_RET_NAK: td->ctrl |= TD_CTRL_NAK; if (pid == USB_TOKEN_SETUP) goto do_timeout; return 1; case USB_RET_STALL: td->ctrl |= TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; return 1; case USB_RET_BABBLE: td->ctrl |= TD_CTRL_BABBLE | TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; /* frame interrupted */ return -1; } } } static void uhci_frame_timer(void *opaque) { UHCIState *s = opaque; int64_t expire_time; uint32_t frame_addr, link, old_td_ctrl, val; int int_mask, cnt, ret; UHCI_TD td; UHCI_QH qh; if (!(s->cmd & UHCI_CMD_RS)) { qemu_del_timer(s->frame_timer); return; } frame_addr = s->fl_base_addr + ((s->frnum & 0x3ff) << 2); cpu_physical_memory_read(frame_addr, (uint8_t *)&link, 4); le32_to_cpus(&link); int_mask = 0; cnt = FRAME_MAX_LOOPS; while ((link & 1) == 0) { if (--cnt == 0) break; /* valid frame */ if (link & 2) { /* QH */ cpu_physical_memory_read(link & ~0xf, (uint8_t *)&qh, sizeof(qh)); le32_to_cpus(&qh.link); le32_to_cpus(&qh.el_link); depth_first: if (qh.el_link & 1) { /* no element : go to next entry */ link = qh.link; } else if (qh.el_link & 2) { /* QH */ link = qh.el_link; } else { /* TD */ if (--cnt == 0) break; cpu_physical_memory_read(qh.el_link & ~0xf, (uint8_t *)&td, sizeof(td)); le32_to_cpus(&td.link); le32_to_cpus(&td.ctrl); le32_to_cpus(&td.token); le32_to_cpus(&td.buffer); old_td_ctrl = td.ctrl; ret = uhci_handle_td(s, &td, &int_mask); /* update the status bits of the TD */ if (old_td_ctrl != td.ctrl) { val = cpu_to_le32(td.ctrl); cpu_physical_memory_write((qh.el_link & ~0xf) + 4, (const uint8_t *)&val, sizeof(val)); } if (ret < 0) break; /* interrupted frame */ if (ret == 0) { /* update qh element link */ qh.el_link = td.link; val = cpu_to_le32(qh.el_link); cpu_physical_memory_write((link & ~0xf) + 4, (const uint8_t *)&val, sizeof(val)); if (qh.el_link & 4) { /* depth first */ goto depth_first; } } /* go to next entry */ link = qh.link; } } else { /* TD */ cpu_physical_memory_read(link & ~0xf, (uint8_t *)&td, sizeof(td)); le32_to_cpus(&td.link); le32_to_cpus(&td.ctrl); le32_to_cpus(&td.token); le32_to_cpus(&td.buffer); old_td_ctrl = td.ctrl; ret = uhci_handle_td(s, &td, &int_mask); /* update the status bits of the TD */ if (old_td_ctrl != td.ctrl) { val = cpu_to_le32(td.ctrl); cpu_physical_memory_write((link & ~0xf) + 4, (const uint8_t *)&val, sizeof(val)); } if (ret < 0) break; /* interrupted frame */ link = td.link; } } s->frnum = (s->frnum + 1) & 0x7ff; if (int_mask) { s->status2 |= int_mask; s->status |= UHCI_STS_USBINT; uhci_update_irq(s); } /* prepare the timer for the next frame */ expire_time = qemu_get_clock(vm_clock) + (ticks_per_sec / FRAME_TIMER_FREQ); qemu_mod_timer(s->frame_timer, expire_time); } static void uhci_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { UHCIState *s = (UHCIState *)pci_dev; register_ioport_write(addr, 32, 2, uhci_ioport_writew, s); register_ioport_read(addr, 32, 2, uhci_ioport_readw, s); register_ioport_write(addr, 32, 4, uhci_ioport_writel, s); register_ioport_read(addr, 32, 4, uhci_ioport_readl, s); register_ioport_write(addr, 32, 1, uhci_ioport_writeb, s); register_ioport_read(addr, 32, 1, uhci_ioport_readb, s); } void usb_uhci_init(PCIBus *bus, USBPort **usb_ports) { UHCIState *s; uint8_t *pci_conf; UHCIPort *port; int i; s = (UHCIState *)pci_register_device(bus, "USB-UHCI", sizeof(UHCIState), -1, NULL, NULL); pci_conf = s->dev.config; pci_conf[0x00] = 0x86; pci_conf[0x01] = 0x80; pci_conf[0x02] = 0x20; pci_conf[0x03] = 0x70; pci_conf[0x08] = 0x01; // revision number pci_conf[0x09] = 0x00; pci_conf[0x0a] = 0x03; pci_conf[0x0b] = 0x0c; pci_conf[0x0e] = 0x00; // header_type pci_conf[0x3d] = 1; // interrupt pin 0 for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; port->port.opaque = s; port->port.index = i; port->port.attach = uhci_attach; usb_ports[i] = &port->port; } s->frame_timer = qemu_new_timer(vm_clock, uhci_frame_timer, s); uhci_reset(s); pci_register_io_region(&s->dev, 0, 0x20, PCI_ADDRESS_SPACE_IO, uhci_map); }