/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pc.h" #include "fdc.h" #include "pci.h" #include "block.h" #include "sysemu.h" #include "audio/audio.h" #include "net.h" #include "smbus.h" #include "boards.h" #include "monitor.h" #include "fw_cfg.h" #include "hpet_emul.h" #include "watchdog.h" #include "smbios.h" /* output Bochs bios info messages */ //#define DEBUG_BIOS /* Show multiboot debug output */ //#define DEBUG_MULTIBOOT #define BIOS_FILENAME "bios.bin" #define VGABIOS_FILENAME "vgabios.bin" #define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin" #define PC_MAX_BIOS_SIZE (4 * 1024 * 1024) /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ #define ACPI_DATA_SIZE 0x10000 #define BIOS_CFG_IOPORT 0x510 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) #define MAX_IDE_BUS 2 static fdctrl_t *floppy_controller; static RTCState *rtc_state; static PITState *pit; static PCIDevice *i440fx_state; typedef struct rom_reset_data { uint8_t *data; target_phys_addr_t addr; unsigned size; } RomResetData; static void option_rom_reset(void *_rrd) { RomResetData *rrd = _rrd; cpu_physical_memory_write_rom(rrd->addr, rrd->data, rrd->size); } static void option_rom_setup_reset(target_phys_addr_t addr, unsigned size) { RomResetData *rrd = qemu_malloc(sizeof *rrd); rrd->data = qemu_malloc(size); cpu_physical_memory_read(addr, rrd->data, size); rrd->addr = addr; rrd->size = size; qemu_register_reset(option_rom_reset, rrd); } typedef struct isa_irq_state { qemu_irq *i8259; qemu_irq *ioapic; } IsaIrqState; static void isa_irq_handler(void *opaque, int n, int level) { IsaIrqState *isa = (IsaIrqState *)opaque; if (n < 16) { qemu_set_irq(isa->i8259[n], level); } qemu_set_irq(isa->ioapic[n], level); }; static void ioport80_write(void *opaque, uint32_t addr, uint32_t data) { } /* MSDOS compatibility mode FPU exception support */ static qemu_irq ferr_irq; /* XXX: add IGNNE support */ void cpu_set_ferr(CPUX86State *s) { qemu_irq_raise(ferr_irq); } static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data) { qemu_irq_lower(ferr_irq); } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_ticks(); } /* SMM support */ void cpu_smm_update(CPUState *env) { if (i440fx_state && env == first_cpu) i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1); } /* IRQ handling */ int cpu_get_pic_interrupt(CPUState *env) { int intno; intno = apic_get_interrupt(env); if (intno >= 0) { /* set irq request if a PIC irq is still pending */ /* XXX: improve that */ pic_update_irq(isa_pic); return intno; } /* read the irq from the PIC */ if (!apic_accept_pic_intr(env)) return -1; intno = pic_read_irq(isa_pic); return intno; } static void pic_irq_request(void *opaque, int irq, int level) { CPUState *env = first_cpu; if (env->apic_state) { while (env) { if (apic_accept_pic_intr(env)) apic_deliver_pic_intr(env, level); env = env->next_cpu; } } else { if (level) cpu_interrupt(env, CPU_INTERRUPT_HARD); else cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 static int cmos_get_fd_drive_type(int fd0) { int val; switch (fd0) { case 0: /* 1.44 Mb 3"5 drive */ val = 4; break; case 1: /* 2.88 Mb 3"5 drive */ val = 5; break; case 2: /* 1.2 Mb 5"5 drive */ val = 2; break; default: val = 0; break; } return val; } static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd) { RTCState *s = rtc_state; int cylinders, heads, sectors; bdrv_get_geometry_hint(hd, &cylinders, &heads, §ors); rtc_set_memory(s, type_ofs, 47); rtc_set_memory(s, info_ofs, cylinders); rtc_set_memory(s, info_ofs + 1, cylinders >> 8); rtc_set_memory(s, info_ofs + 2, heads); rtc_set_memory(s, info_ofs + 3, 0xff); rtc_set_memory(s, info_ofs + 4, 0xff); rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); rtc_set_memory(s, info_ofs + 6, cylinders); rtc_set_memory(s, info_ofs + 7, cylinders >> 8); rtc_set_memory(s, info_ofs + 8, sectors); } /* convert boot_device letter to something recognizable by the bios */ static int boot_device2nibble(char boot_device) { switch(boot_device) { case 'a': case 'b': return 0x01; /* floppy boot */ case 'c': return 0x02; /* hard drive boot */ case 'd': return 0x03; /* CD-ROM boot */ case 'n': return 0x04; /* Network boot */ } return 0; } /* copy/pasted from cmos_init, should be made a general function and used there as well */ static int pc_boot_set(void *opaque, const char *boot_device) { Monitor *mon = cur_mon; #define PC_MAX_BOOT_DEVICES 3 RTCState *s = (RTCState *)opaque; int nbds, bds[3] = { 0, }; int i; nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { monitor_printf(mon, "Too many boot devices for PC\n"); return(1); } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { monitor_printf(mon, "Invalid boot device for PC: '%c'\n", boot_device[i]); return(1); } } rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); rtc_set_memory(s, 0x38, (bds[2] << 4)); return(0); } /* hd_table must contain 4 block drivers */ static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, const char *boot_device, BlockDriverState **hd_table) { RTCState *s = rtc_state; int nbds, bds[3] = { 0, }; int val; int fd0, fd1, nb; int i; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ val = 640; /* base memory in K */ rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); val = (ram_size / 1024) - 1024; if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); if (above_4g_mem_size) { rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16); rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24); rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32); } if (ram_size > (16 * 1024 * 1024)) val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536); else val = 0; if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); /* set the number of CPU */ rtc_set_memory(s, 0x5f, smp_cpus - 1); /* set boot devices, and disable floppy signature check if requested */ #define PC_MAX_BOOT_DEVICES 3 nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { fprintf(stderr, "Too many boot devices for PC\n"); exit(1); } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { fprintf(stderr, "Invalid boot device for PC: '%c'\n", boot_device[i]); exit(1); } } rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); /* floppy type */ fd0 = fdctrl_get_drive_type(floppy_controller, 0); fd1 = fdctrl_get_drive_type(floppy_controller, 1); val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1); rtc_set_memory(s, 0x10, val); val = 0; nb = 0; if (fd0 < 3) nb++; if (fd1 < 3) nb++; switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives */ rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0)); if (hd_table[0]) cmos_init_hd(0x19, 0x1b, hd_table[0]); if (hd_table[1]) cmos_init_hd(0x1a, 0x24, hd_table[1]); val = 0; for (i = 0; i < 4; i++) { if (hd_table[i]) { int cylinders, heads, sectors, translation; /* NOTE: bdrv_get_geometry_hint() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ translation = bdrv_get_translation_hint(hd_table[i]); if (translation == BIOS_ATA_TRANSLATION_AUTO) { bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, §ors); if (cylinders <= 1024 && heads <= 16 && sectors <= 63) { /* No translation. */ translation = 0; } else { /* LBA translation. */ translation = 1; } } else { translation--; } val |= translation << (i * 2); } } rtc_set_memory(s, 0x39, val); } void ioport_set_a20(int enable) { /* XXX: send to all CPUs ? */ cpu_x86_set_a20(first_cpu, enable); } int ioport_get_a20(void) { return ((first_cpu->a20_mask >> 20) & 1); } static void ioport92_write(void *opaque, uint32_t addr, uint32_t val) { ioport_set_a20((val >> 1) & 1); /* XXX: bit 0 is fast reset */ } static uint32_t ioport92_read(void *opaque, uint32_t addr) { return ioport_get_a20() << 1; } /***********************************************************/ /* Bochs BIOS debug ports */ static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val) { static const char shutdown_str[8] = "Shutdown"; static int shutdown_index = 0; switch(addr) { /* Bochs BIOS messages */ case 0x400: case 0x401: fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val); exit(1); case 0x402: case 0x403: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; case 0x8900: /* same as Bochs power off */ if (val == shutdown_str[shutdown_index]) { shutdown_index++; if (shutdown_index == 8) { shutdown_index = 0; qemu_system_shutdown_request(); } } else { shutdown_index = 0; } break; /* LGPL'ed VGA BIOS messages */ case 0x501: case 0x502: fprintf(stderr, "VGA BIOS panic, line %d\n", val); exit(1); case 0x500: case 0x503: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; } } extern uint64_t node_cpumask[MAX_NODES]; static void *bochs_bios_init(void) { void *fw_cfg; uint8_t *smbios_table; size_t smbios_len; uint64_t *numa_fw_cfg; int i, j; register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL); fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables, acpi_tables_len); fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1); smbios_table = smbios_get_table(&smbios_len); if (smbios_table) fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, smbios_table, smbios_len); /* allocate memory for the NUMA channel: one (64bit) word for the number * of nodes, one word for each VCPU->node and one word for each node to * hold the amount of memory. */ numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8); numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); for (i = 0; i < smp_cpus; i++) { for (j = 0; j < nb_numa_nodes; j++) { if (node_cpumask[j] & (1 << i)) { numa_fw_cfg[i + 1] = cpu_to_le64(j); break; } } } for (i = 0; i < nb_numa_nodes; i++) { numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]); } fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg, (1 + smp_cpus + nb_numa_nodes) * 8); return fw_cfg; } /* Generate an initial boot sector which sets state and jump to a specified vector */ static void generate_bootsect(target_phys_addr_t option_rom, uint32_t gpr[8], uint16_t segs[6], uint16_t ip) { uint8_t rom[512], *p, *reloc; uint8_t sum; int i; memset(rom, 0, sizeof(rom)); p = rom; /* Make sure we have an option rom signature */ *p++ = 0x55; *p++ = 0xaa; /* ROM size in sectors*/ *p++ = 1; /* Hook int19 */ *p++ = 0x50; /* push ax */ *p++ = 0x1e; /* push ds */ *p++ = 0x31; *p++ = 0xc0; /* xor ax, ax */ *p++ = 0x8e; *p++ = 0xd8; /* mov ax, ds */ *p++ = 0xc7; *p++ = 0x06; /* movvw _start,0x64 */ *p++ = 0x64; *p++ = 0x00; reloc = p; *p++ = 0x00; *p++ = 0x00; *p++ = 0x8c; *p++ = 0x0e; /* mov cs,0x66 */ *p++ = 0x66; *p++ = 0x00; *p++ = 0x1f; /* pop ds */ *p++ = 0x58; /* pop ax */ *p++ = 0xcb; /* lret */ /* Actual code */ *reloc = (p - rom); *p++ = 0xfa; /* CLI */ *p++ = 0xfc; /* CLD */ for (i = 0; i < 6; i++) { if (i == 1) /* Skip CS */ continue; *p++ = 0xb8; /* MOV AX,imm16 */ *p++ = segs[i]; *p++ = segs[i] >> 8; *p++ = 0x8e; /* MOV ,AX */ *p++ = 0xc0 + (i << 3); } for (i = 0; i < 8; i++) { *p++ = 0x66; /* 32-bit operand size */ *p++ = 0xb8 + i; /* MOV ,imm32 */ *p++ = gpr[i]; *p++ = gpr[i] >> 8; *p++ = gpr[i] >> 16; *p++ = gpr[i] >> 24; } *p++ = 0xea; /* JMP FAR */ *p++ = ip; /* IP */ *p++ = ip >> 8; *p++ = segs[1]; /* CS */ *p++ = segs[1] >> 8; /* sign rom */ sum = 0; for (i = 0; i < (sizeof(rom) - 1); i++) sum += rom[i]; rom[sizeof(rom) - 1] = -sum; cpu_physical_memory_write_rom(option_rom, rom, sizeof(rom)); option_rom_setup_reset(option_rom, sizeof (rom)); } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } #define MULTIBOOT_STRUCT_ADDR 0x9000 #if MULTIBOOT_STRUCT_ADDR > 0xf0000 #error multiboot struct needs to fit in 16 bit real mode #endif static int load_multiboot(void *fw_cfg, FILE *f, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline, uint8_t *header) { int i, t, is_multiboot = 0; uint32_t flags = 0; uint32_t mh_entry_addr; uint32_t mh_load_addr; uint32_t mb_kernel_size; uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR; uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500; uint32_t mb_cmdline = mb_bootinfo + 0x200; uint32_t mb_mod_end; /* Ok, let's see if it is a multiboot image. The header is 12x32bit long, so the latest entry may be 8192 - 48. */ for (i = 0; i < (8192 - 48); i += 4) { if (ldl_p(header+i) == 0x1BADB002) { uint32_t checksum = ldl_p(header+i+8); flags = ldl_p(header+i+4); checksum += flags; checksum += (uint32_t)0x1BADB002; if (!checksum) { is_multiboot = 1; break; } } } if (!is_multiboot) return 0; /* no multiboot */ #ifdef DEBUG_MULTIBOOT fprintf(stderr, "qemu: I believe we found a multiboot image!\n"); #endif if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */ fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n"); } if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */ uint64_t elf_entry; int kernel_size; fclose(f); kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL); if (kernel_size < 0) { fprintf(stderr, "Error while loading elf kernel\n"); exit(1); } mh_load_addr = mh_entry_addr = elf_entry; mb_kernel_size = kernel_size; #ifdef DEBUG_MULTIBOOT fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n", mb_kernel_size, (size_t)mh_entry_addr); #endif } else { /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */ uint32_t mh_header_addr = ldl_p(header+i+12); mh_load_addr = ldl_p(header+i+16); #ifdef DEBUG_MULTIBOOT uint32_t mh_load_end_addr = ldl_p(header+i+20); uint32_t mh_bss_end_addr = ldl_p(header+i+24); #endif uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr); mh_entry_addr = ldl_p(header+i+28); mb_kernel_size = get_file_size(f) - mb_kernel_text_offset; /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE. uint32_t mh_mode_type = ldl_p(header+i+32); uint32_t mh_width = ldl_p(header+i+36); uint32_t mh_height = ldl_p(header+i+40); uint32_t mh_depth = ldl_p(header+i+44); */ #ifdef DEBUG_MULTIBOOT fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr); fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr); fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr); fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr); #endif fseek(f, mb_kernel_text_offset, SEEK_SET); #ifdef DEBUG_MULTIBOOT fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n", mb_kernel_size, mh_load_addr); #endif if (!fread_targphys_ok(mh_load_addr, mb_kernel_size, f)) { fprintf(stderr, "qemu: read error on multiboot kernel '%s' (%#x)\n", kernel_filename, mb_kernel_size); exit(1); } fclose(f); } /* blob size is only the kernel for now */ mb_mod_end = mh_load_addr + mb_kernel_size; /* load modules */ stl_phys(mb_bootinfo + 20, 0x0); /* mods_count */ if (initrd_filename) { uint32_t mb_mod_info = mb_bootinfo + 0x100; uint32_t mb_mod_cmdline = mb_bootinfo + 0x300; uint32_t mb_mod_start = mh_load_addr; uint32_t mb_mod_length = mb_kernel_size; char *next_initrd; char *next_space; int mb_mod_count = 0; do { next_initrd = strchr(initrd_filename, ','); if (next_initrd) *next_initrd = '\0'; /* if a space comes after the module filename, treat everything after that as parameters */ cpu_physical_memory_write(mb_mod_cmdline, (uint8_t*)initrd_filename, strlen(initrd_filename) + 1); stl_phys(mb_mod_info + 8, mb_mod_cmdline); /* string */ mb_mod_cmdline += strlen(initrd_filename) + 1; if ((next_space = strchr(initrd_filename, ' '))) *next_space = '\0'; #ifdef DEBUG_MULTIBOOT printf("multiboot loading module: %s\n", initrd_filename); #endif f = fopen(initrd_filename, "rb"); if (f) { mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1)) & (TARGET_PAGE_MASK); mb_mod_length = get_file_size(f); mb_mod_end = mb_mod_start + mb_mod_length; if (!fread_targphys_ok(mb_mod_start, mb_mod_length, f)) { fprintf(stderr, "qemu: read error on multiboot module '%s' (%#x)\n", initrd_filename, mb_mod_length); exit(1); } mb_mod_count++; stl_phys(mb_mod_info + 0, mb_mod_start); stl_phys(mb_mod_info + 4, mb_mod_start + mb_mod_length); #ifdef DEBUG_MULTIBOOT printf("mod_start: %#x\nmod_end: %#x\n", mb_mod_start, mb_mod_start + mb_mod_length); #endif stl_phys(mb_mod_info + 12, 0x0); /* reserved */ } initrd_filename = next_initrd+1; mb_mod_info += 16; } while (next_initrd); stl_phys(mb_bootinfo + 20, mb_mod_count); /* mods_count */ stl_phys(mb_bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */ } /* Make sure we're getting kernel + modules back after reset */ option_rom_setup_reset(mh_load_addr, mb_mod_end - mh_load_addr); /* Commandline support */ stl_phys(mb_bootinfo + 16, mb_cmdline); t = strlen(kernel_filename); cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_filename, t); mb_cmdline += t; stb_phys(mb_cmdline++, ' '); t = strlen(kernel_cmdline) + 1; cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_cmdline, t); /* the kernel is where we want it to be now */ #define MULTIBOOT_FLAGS_MEMORY (1 << 0) #define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1) #define MULTIBOOT_FLAGS_CMDLINE (1 << 2) #define MULTIBOOT_FLAGS_MODULES (1 << 3) #define MULTIBOOT_FLAGS_MMAP (1 << 6) stl_phys(mb_bootinfo, MULTIBOOT_FLAGS_MEMORY | MULTIBOOT_FLAGS_BOOT_DEVICE | MULTIBOOT_FLAGS_CMDLINE | MULTIBOOT_FLAGS_MODULES | MULTIBOOT_FLAGS_MMAP); stl_phys(mb_bootinfo + 4, 640); /* mem_lower */ stl_phys(mb_bootinfo + 8, ram_size / 1024); /* mem_upper */ stl_phys(mb_bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */ stl_phys(mb_bootinfo + 48, mmap_addr); /* mmap_addr */ #ifdef DEBUG_MULTIBOOT fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr); #endif /* Pass variables to option rom */ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_entry_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, mmap_addr); /* Make sure we're getting the config space back after reset */ option_rom_setup_reset(mb_bootinfo, 0x500); option_rom[nb_option_roms] = "multiboot.bin"; nb_option_roms++; return 1; /* yes, we are multiboot */ } static void load_linux(void *fw_cfg, target_phys_addr_t option_rom, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline, target_phys_addr_t max_ram_size) { uint16_t protocol; uint32_t gpr[8]; uint16_t seg[6]; uint16_t real_seg; int setup_size, kernel_size, initrd_size = 0, cmdline_size; uint32_t initrd_max; uint8_t header[8192]; target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f, *fi; char *vmode; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* kernel protocol version */ #if 0 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); #endif if (ldl_p(header+0x202) == 0x53726448) protocol = lduw_p(header+0x206); else { /* This looks like a multiboot kernel. If it is, let's stop treating it like a Linux kernel. */ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, header)) return; protocol = 0; } if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; } #if 0 fprintf(stderr, "qemu: real_addr = 0x" TARGET_FMT_plx "\n" "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", real_addr, cmdline_addr, prot_addr); #endif /* highest address for loading the initrd */ if (protocol >= 0x203) initrd_max = ldl_p(header+0x22c); else initrd_max = 0x37ffffff; if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) initrd_max = max_ram_size-ACPI_DATA_SIZE-1; /* kernel command line */ pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); } /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { video_mode = strtol(vmode, NULL, 0); } stw_p(header+0x1fa, video_mode); } /* loader type */ /* High nybble = B reserved for Qemu; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) header[0x210] = 0xB0; /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); } /* load initrd */ if (initrd_filename) { if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } fi = fopen(initrd_filename, "rb"); if (!fi) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } initrd_size = get_file_size(fi); initrd_addr = (initrd_max-initrd_size) & ~4095; if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) { fprintf(stderr, "qemu: read error on initial ram disk '%s'\n", initrd_filename); exit(1); } fclose(fi); stl_p(header+0x218, initrd_addr); stl_p(header+0x21c, initrd_size); } /* store the finalized header and load the rest of the kernel */ cpu_physical_memory_write(real_addr, header, ARRAY_SIZE(header)); setup_size = header[0x1f1]; if (setup_size == 0) setup_size = 4; setup_size = (setup_size+1)*512; /* Size of protected-mode code */ kernel_size -= (setup_size > ARRAY_SIZE(header)) ? setup_size : ARRAY_SIZE(header); /* In case we have read too much already, copy that over */ if (setup_size < ARRAY_SIZE(header)) { cpu_physical_memory_write(prot_addr, header + setup_size, ARRAY_SIZE(header) - setup_size); prot_addr += (ARRAY_SIZE(header) - setup_size); setup_size = ARRAY_SIZE(header); } if (!fread_targphys_ok(real_addr + ARRAY_SIZE(header), setup_size - ARRAY_SIZE(header), f) || !fread_targphys_ok(prot_addr, kernel_size, f)) { fprintf(stderr, "qemu: read error on kernel '%s'\n", kernel_filename); exit(1); } fclose(f); /* generate bootsector to set up the initial register state */ real_seg = real_addr >> 4; seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg; seg[1] = real_seg+0x20; /* CS */ memset(gpr, 0, sizeof gpr); gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */ option_rom_setup_reset(real_addr, setup_size); option_rom_setup_reset(prot_addr, kernel_size); option_rom_setup_reset(cmdline_addr, cmdline_size); if (initrd_filename) option_rom_setup_reset(initrd_addr, initrd_size); generate_bootsect(option_rom, gpr, seg, 0); } static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 14, 15 }; #define NE2000_NB_MAX 6 static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 }; static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; #ifdef HAS_AUDIO static void audio_init (PCIBus *pci_bus, qemu_irq *pic) { struct soundhw *c; for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { c->init.init_isa(pic); } else { if (pci_bus) { c->init.init_pci(pci_bus); } } } } } #endif static void pc_init_ne2k_isa(NICInfo *nd) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(ne2000_io[nb_ne2k], isa_reserve_irq(ne2000_irq[nb_ne2k]), nd); nb_ne2k++; } static int load_option_rom(const char *oprom, target_phys_addr_t start, target_phys_addr_t end) { int size; char *filename; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, oprom); if (filename) { size = get_image_size(filename); if (size > 0 && start + size > end) { fprintf(stderr, "Not enough space to load option rom '%s'\n", oprom); exit(1); } size = load_image_targphys(filename, start, end - start); qemu_free(filename); } else { size = -1; } if (size < 0) { fprintf(stderr, "Could not load option rom '%s'\n", oprom); exit(1); } /* Round up optiom rom size to the next 2k boundary */ size = (size + 2047) & ~2047; option_rom_setup_reset(start, size); return size; } int cpu_is_bsp(CPUState *env) { return env->cpuid_apic_id == 0; } static CPUState *pc_new_cpu(const char *cpu_model) { CPUState *env; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find x86 CPU definition\n"); exit(1); } if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) { env->cpuid_apic_id = env->cpu_index; /* APIC reset callback resets cpu */ apic_init(env); } else { qemu_register_reset((QEMUResetHandler*)cpu_reset, env); } return env; } /* PC hardware initialisation */ static void pc_init1(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model, int pci_enabled) { char *filename; int ret, linux_boot, i; ram_addr_t ram_addr, bios_offset, option_rom_offset; ram_addr_t below_4g_mem_size, above_4g_mem_size = 0; int bios_size, isa_bios_size, oprom_area_size; PCIBus *pci_bus; PCIDevice *pci_dev; ISADevice *isa_dev; int piix3_devfn = -1; CPUState *env; qemu_irq *cpu_irq; qemu_irq *isa_irq; qemu_irq *i8259; IsaIrqState *isa_irq_state; DriveInfo *dinfo; BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BlockDriverState *fd[MAX_FD]; int using_vga = cirrus_vga_enabled || std_vga_enabled || vmsvga_enabled; void *fw_cfg; if (ram_size >= 0xe0000000 ) { above_4g_mem_size = ram_size - 0xe0000000; below_4g_mem_size = 0xe0000000; } else { below_4g_mem_size = ram_size; } linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) { #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif } for (i = 0; i < smp_cpus; i++) { env = pc_new_cpu(cpu_model); } vmport_init(); /* allocate RAM */ ram_addr = qemu_ram_alloc(0xa0000); cpu_register_physical_memory(0, 0xa0000, ram_addr); /* Allocate, even though we won't register, so we don't break the * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000), * and some bios areas, which will be registered later */ ram_addr = qemu_ram_alloc(0x100000 - 0xa0000); ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000); cpu_register_physical_memory(0x100000, below_4g_mem_size - 0x100000, ram_addr); /* above 4giga memory allocation */ if (above_4g_mem_size > 0) { #if TARGET_PHYS_ADDR_BITS == 32 hw_error("To much RAM for 32-bit physical address"); #else ram_addr = qemu_ram_alloc(above_4g_mem_size); cpu_register_physical_memory(0x100000000ULL, above_4g_mem_size, ram_addr); #endif } /* BIOS load */ if (bios_name == NULL) bios_name = BIOS_FILENAME; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = get_image_size(filename); } else { bios_size = -1; } if (bios_size <= 0 || (bios_size % 65536) != 0) { goto bios_error; } bios_offset = qemu_ram_alloc(bios_size); ret = load_image(filename, qemu_get_ram_ptr(bios_offset)); if (ret != bios_size) { bios_error: fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); exit(1); } if (filename) { qemu_free(filename); } /* map the last 128KB of the BIOS in ISA space */ isa_bios_size = bios_size; if (isa_bios_size > (128 * 1024)) isa_bios_size = 128 * 1024; cpu_register_physical_memory(0x100000 - isa_bios_size, isa_bios_size, (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM); option_rom_offset = qemu_ram_alloc(0x20000); oprom_area_size = 0; cpu_register_physical_memory(0xc0000, 0x20000, option_rom_offset); if (using_vga) { const char *vgabios_filename; /* VGA BIOS load */ if (cirrus_vga_enabled) { vgabios_filename = VGABIOS_CIRRUS_FILENAME; } else { vgabios_filename = VGABIOS_FILENAME; } oprom_area_size = load_option_rom(vgabios_filename, 0xc0000, 0xe0000); } /* Although video roms can grow larger than 0x8000, the area between * 0xc0000 - 0xc8000 is reserved for them. It means we won't be looking * for any other kind of option rom inside this area */ if (oprom_area_size < 0x8000) oprom_area_size = 0x8000; /* map all the bios at the top of memory */ cpu_register_physical_memory((uint32_t)(-bios_size), bios_size, bios_offset | IO_MEM_ROM); fw_cfg = bochs_bios_init(); if (linux_boot) { load_linux(fw_cfg, 0xc0000 + oprom_area_size, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); oprom_area_size += 2048; } for (i = 0; i < nb_option_roms; i++) { oprom_area_size += load_option_rom(option_rom[i], 0xc0000 + oprom_area_size, 0xe0000); } for (i = 0; i < nb_nics; i++) { char nic_oprom[1024]; const char *model = nd_table[i].model; if (!nd_table[i].bootable) continue; if (model == NULL) model = "e1000"; snprintf(nic_oprom, sizeof(nic_oprom), "pxe-%s.bin", model); oprom_area_size += load_option_rom(nic_oprom, 0xc0000 + oprom_area_size, 0xe0000); } cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1); i8259 = i8259_init(cpu_irq[0]); isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state)); isa_irq_state->i8259 = i8259; isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24); if (pci_enabled) { pci_bus = i440fx_init(&i440fx_state, isa_irq); piix3_devfn = piix3_init(pci_bus, -1); } else { pci_bus = NULL; isa_bus_new(NULL); } isa_bus_irqs(isa_irq); ferr_irq = isa_reserve_irq(13); /* init basic PC hardware */ register_ioport_write(0x80, 1, 1, ioport80_write, NULL); register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL); if (cirrus_vga_enabled) { if (pci_enabled) { pci_cirrus_vga_init(pci_bus); } else { isa_cirrus_vga_init(); } } else if (vmsvga_enabled) { if (pci_enabled) pci_vmsvga_init(pci_bus); else fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__); } else if (std_vga_enabled) { if (pci_enabled) { pci_vga_init(pci_bus, 0, 0); } else { isa_vga_init(); } } rtc_state = rtc_init(0x70, isa_reserve_irq(8), 2000); qemu_register_boot_set(pc_boot_set, rtc_state); register_ioport_read(0x92, 1, 1, ioport92_read, NULL); register_ioport_write(0x92, 1, 1, ioport92_write, NULL); if (pci_enabled) { isa_irq_state->ioapic = ioapic_init(); } pit = pit_init(0x40, isa_reserve_irq(0)); pcspk_init(pit); if (!no_hpet) { hpet_init(isa_irq); } for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_init(serial_io[i], isa_reserve_irq(serial_irq[i]), 115200, serial_hds[i]); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { if (parallel_hds[i]) { parallel_init(parallel_io[i], isa_reserve_irq(parallel_irq[i]), parallel_hds[i]); } } watchdog_pc_init(pci_bus); for(i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) pc_init_ne2k_isa(nd); else pci_nic_init(nd, "e1000", NULL); } piix4_acpi_system_hot_add_init(); if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) { fprintf(stderr, "qemu: too many IDE bus\n"); exit(1); } for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) { dinfo = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); hd[i] = dinfo ? dinfo->bdrv : NULL; } if (pci_enabled) { pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1, isa_irq); } else { for(i = 0; i < MAX_IDE_BUS; i++) { isa_ide_init(ide_iobase[i], ide_iobase2[i], isa_reserve_irq(ide_irq[i]), hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); } } isa_dev = isa_create_simple("i8042", 0x60, 0x64); isa_connect_irq(isa_dev, 0, 1); isa_connect_irq(isa_dev, 1, 12); DMA_init(0); #ifdef HAS_AUDIO audio_init(pci_enabled ? pci_bus : NULL, isa_irq); #endif for(i = 0; i < MAX_FD; i++) { dinfo = drive_get(IF_FLOPPY, 0, i); fd[i] = dinfo ? dinfo->bdrv : NULL; } floppy_controller = fdctrl_init_isa(6, 2, 0x3f0, fd); cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd); if (pci_enabled && usb_enabled) { usb_uhci_piix3_init(pci_bus, piix3_devfn + 2); } if (pci_enabled && acpi_enabled) { uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */ i2c_bus *smbus; /* TODO: Populate SPD eeprom data. */ smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, isa_reserve_irq(9)); for (i = 0; i < 8; i++) { DeviceState *eeprom; eeprom = qdev_create((BusState *)smbus, "smbus-eeprom"); qdev_prop_set_uint32(eeprom, "address", 0x50 + i); qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256)); qdev_init(eeprom); } } if (i440fx_state) { i440fx_init_memory_mappings(i440fx_state); } if (pci_enabled) { int max_bus; int bus; max_bus = drive_get_max_bus(IF_SCSI); for (bus = 0; bus <= max_bus; bus++) { pci_create_simple(pci_bus, -1, "lsi53c895a"); } } /* Add virtio balloon device */ if (pci_enabled && virtio_balloon) { pci_dev = pci_create("virtio-balloon-pci", virtio_balloon_devaddr); qdev_init(&pci_dev->qdev); } /* Add virtio console devices */ if (pci_enabled) { for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) { if (virtcon_hds[i]) { pci_create_simple(pci_bus, -1, "virtio-console-pci"); } } } } static void pc_init_pci(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { pc_init1(ram_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, 1); } static void pc_init_isa(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { pc_init1(ram_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, 0); } /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) BIOS will read it and start S3 resume at POST Entry */ void cmos_set_s3_resume(void) { if (rtc_state) rtc_set_memory(rtc_state, 0xF, 0xFE); } static QEMUMachine pc_machine = { .name = "pc-0.11", .alias = "pc", .desc = "Standard PC", .init = pc_init_pci, .max_cpus = 255, .is_default = 1, }; static QEMUMachine pc_machine_v0_10 = { .name = "pc-0.10", .desc = "Standard PC, qemu 0.10", .init = pc_init_pci, .max_cpus = 255, .compat_props = (CompatProperty[]) { { .driver = "virtio-blk-pci", .property = "class", .value = stringify(PCI_CLASS_STORAGE_OTHER), },{ .driver = "virtio-console-pci", .property = "class", .value = stringify(PCI_CLASS_DISPLAY_OTHER), },{ .driver = "virtio-net-pci", .property = "vectors", .value = stringify(0), },{ .driver = "virtio-blk-pci", .property = "vectors", .value = stringify(0), }, { /* end of list */ } }, }; static QEMUMachine isapc_machine = { .name = "isapc", .desc = "ISA-only PC", .init = pc_init_isa, .max_cpus = 1, }; static void pc_machine_init(void) { qemu_register_machine(&pc_machine); qemu_register_machine(&pc_machine_v0_10); qemu_register_machine(&isapc_machine); } machine_init(pc_machine_init);