clang's C11 atomic_fetch_*() functions only take a C11 atomic type
pointer argument. QEMU uses direct types (int, etc) and this causes a
compiler error when a QEMU code calls these functions in a source file
that also included <stdatomic.h> via a system header file:
$ CC=clang CXX=clang++ ./configure ... && make
../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid)
Avoid using atomic_*() names in QEMU's atomic.h since that namespace is
used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h
and <stdatomic.h> can co-exist. I checked /usr/include on my machine and
searched GitHub for existing "qatomic_" users but there seem to be none.
This patch was generated using:
$ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \
sort -u >/tmp/changed_identifiers
$ for identifier in $(</tmp/changed_identifiers); do
sed -i "s%\<$identifier\>%q$identifier%g" \
$(git grep -I -l "\<$identifier\>")
done
I manually fixed line-wrap issues and misaligned rST tables.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200923105646.47864-1-stefanha@redhat.com>
Coverity warns that we store the address of a stack variable through a
pointer passed in by the caller, which would let the caller trivially
trigger use-after-free if that stored value is still present when we
finish execution. However, the way coroutines work is that after our
call to qemu_coroutine_yield(), control is temporarily continued in
the caller prior to our function concluding, and in order to resume
our coroutine, the caller must poll until the variable has been set to
NULL. Thus, we can add an assert that we do not leak stack storage to
the caller on function exit.
Fixes: Coverity CID 1406474
CC: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20191111203524.21912-1-eblake@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Introduce a function to gracefully wake a coroutine sleeping in
qemu_co_sleep_ns().
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20191009084158.15614-2-vsementsov@virtuozzo.com>
Signed-off-by: Eric Blake <eblake@redhat.com>
The AioContext pointer argument to co_aio_sleep_ns() is only used for
the sleep timer. It does not affect where the caller coroutine is
resumed.
Due to changes to coroutine and AIO APIs it is now possible to drop the
AioContext pointer argument. This is safe to do since no caller has
specific requirements for which AioContext the timer must run in.
This patch drops the AioContext pointer argument and renames the
function to simplify the API.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-id: 20171109102652.6360-1-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The previous patch fixed a race condition, in which there were
coroutines being executing doubly, or after coroutine deletion.
We can detect common scenarios when this happens, and print an error
message and abort before we corrupt memory / data, or segfault.
This patch will abort if an attempt to enter a coroutine is made while
it is currently pending execution, either in a specific AioContext bh,
or pending execution via a timer. It will also abort if a coroutine
is scheduled, before a prior scheduled run has occurred.
We cannot rely on the existing co->caller check for recursive re-entry
to catch this, as the coroutine may run and exit with
COROUTINE_TERMINATE before the scheduled coroutine executes.
(This is the scenario that was occurring and fixed in the previous
patch).
This patch also re-orders the Coroutine struct elements in an attempt to
optimize caching.
Signed-off-by: Jeff Cody <jcody@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Daniel P. Berrange <berrange@redhat.com>
Message-id: 20170213135235.12274-13-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
In practice the entry argument is always known at creation time, and
it is confusing that sometimes qemu_coroutine_enter is used with a
non-NULL argument to re-enter a coroutine (this happens in
block/sheepdog.c and tests/test-coroutine.c). So pass the opaque value
at creation time, for consistency with e.g. aio_bh_new.
Mostly done with the following semantic patch:
@ entry1 @
expression entry, arg, co;
@@
- co = qemu_coroutine_create(entry);
+ co = qemu_coroutine_create(entry, arg);
...
- qemu_coroutine_enter(co, arg);
+ qemu_coroutine_enter(co);
@ entry2 @
expression entry, arg;
identifier co;
@@
- Coroutine *co = qemu_coroutine_create(entry);
+ Coroutine *co = qemu_coroutine_create(entry, arg);
...
- qemu_coroutine_enter(co, arg);
+ qemu_coroutine_enter(co);
@ entry3 @
expression entry, arg;
@@
- qemu_coroutine_enter(qemu_coroutine_create(entry), arg);
+ qemu_coroutine_enter(qemu_coroutine_create(entry, arg));
@ reentry @
expression co;
@@
- qemu_coroutine_enter(co, NULL);
+ qemu_coroutine_enter(co);
except for the aforementioned few places where the semantic patch
stumbled (as expected) and for test_co_queue, which would otherwise
produce an uninitialized variable warning.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Clean up includes so that osdep.h is included first and headers
which it implies are not included manually.
This commit was created with scripts/clean-includes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1454089805-5470-6-git-send-email-peter.maydell@linaro.org
The coroutine files are currently referenced by the block-obj-y
variable. The coroutine functionality though is already used by
more than just the block code. eg migration code uses coroutine
yield. In the future the I/O channel code will also use the
coroutine yield functionality. Since the coroutine code is nicely
self-contained it can be easily built as part of the libqemuutil.a
library, making it widely available.
The headers are also moved into include/qemu, instead of the
include/block directory, since they are now part of the util
codebase, and the impl was never in the block/ directory
either.
Signed-off-by: Daniel P. Berrange <berrange@redhat.com>