This patch implements functionalities of following ioctls:
RTC_PLL_GET - Getting PLL correction
Read the PLL correction for RTCs that support PLL. The PLL correction
is returned in the following structure:
struct rtc_pll_info {
int pll_ctrl; /* placeholder for fancier control */
int pll_value; /* get/set correction value */
int pll_max; /* max +ve (faster) adjustment value */
int pll_min; /* max -ve (slower) adjustment value */
int pll_posmult; /* factor for +ve correction */
int pll_negmult; /* factor for -ve correction */
long pll_clock; /* base PLL frequency */
};
A pointer to this structure should be passed as the third
ioctl's argument.
RTC_PLL_SET - Setting PLL correction
Sets the PLL correction for RTCs that support PLL. The PLL correction
that is set is specified by the rtc_pll_info structure pointed to by
the third ioctl's' argument.
Implementation notes:
All ioctls in this patch have a pointer to a structure rtc_pll_info
as their third argument. All elements of this structure are of
type 'int', except the last one that is of type 'long'. That is
the reason why a separate target structure (target_rtc_pll_info)
is defined in linux-user/syscall_defs. The rest of the
implementation is straightforward.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-6-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
This patch implements functionalities of following ioctls:
RTC_WKALM_SET, RTC_WKALM_GET - Getting/Setting wakeup alarm
Some RTCs support a more powerful alarm interface, using these
ioctls to read or write the RTC's alarm time (respectively)
with this structure:
struct rtc_wkalrm {
unsigned char enabled;
unsigned char pending;
struct rtc_time time;
};
The enabled flag is used to enable or disable the alarm
interrupt, or to read its current status; when using these
calls, RTC_AIE_ON and RTC_AIE_OFF are not used. The pending
flag is used by RTC_WKALM_RD to report a pending interrupt
(so it's mostly useless on Linux, except when talking to the
RTC managed by EFI firmware). The time field is as used with
RTC_ALM_READ and RTC_ALM_SET except that the tm_mday, tm_mon,
and tm_year fields are also valid. A pointer to this structure
should be passed as the third ioctl's argument.
Implementation notes:
All ioctls in this patch have a pointer to a structure
rtc_wkalrm as their third argument. That is the reason why
corresponding definition is added in linux-user/syscall_types.h.
Since all elements of this structure are either of type
'unsigned char' or 'struct rtc_time' (that was covered in one
of previous patches), the rest of the implementation is
straightforward.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-5-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
This patch implements functionalities of following ioctls:
RTC_IRQP_READ, RTC_IRQP_SET - Getting/Setting IRQ rate
Read and set the frequency for periodic interrupts, for RTCs
that support periodic interrupts. The periodic interrupt must
be separately enabled or disabled using the RTC_PIE_ON,
RTC_PIE_OFF requests. The third ioctl's argument is an
unsigned long * or an unsigned long, respectively. The value
is the frequency in interrupts per second. The set of allow‐
able frequencies is the multiples of two in the range 2 to
8192. Only a privileged process (i.e., one having the
CAP_SYS_RESOURCE capability) can set frequencies above the
value specified in /proc/sys/dev/rtc/max-user-freq. (This
file contains the value 64 by default.)
RTC_EPOCH_READ, RTC_EPOCH_SET - Getting/Setting epoch
Many RTCs encode the year in an 8-bit register which is either
interpreted as an 8-bit binary number or as a BCD number. In
both cases, the number is interpreted relative to this RTC's
Epoch. The RTC's Epoch is initialized to 1900 on most systems
but on Alpha and MIPS it might also be initialized to 1952,
1980, or 2000, depending on the value of an RTC register for
the year. With some RTCs, these operations can be used to
read or to set the RTC's Epoch, respectively. The third
ioctl's argument is an unsigned long * or an unsigned long,
respectively, and the value returned (or assigned) is the
Epoch. To set the RTC's Epoch the process must be privileged
(i.e., have the CAP_SYS_TIME capability).
Implementation notes:
All ioctls in this patch have a pointer to 'ulong' as their
third argument. That is the reason why corresponding parts
of added code in linux-user/syscall_defs.h contain special
handling related to 'ulong' type: they use 'abi_ulong' type
to make sure that ioctl's code is calculated correctly for
both 32-bit and 64-bit targets. Also, 'MK_PTR(TYPE_ULONG)'
is used for the similar reason in linux-user/ioctls.h.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-4-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
This patch implements functionalities of following ioctls:
RTC_RD_TIME - Getting RTC time
Returns this RTC's time in the following structure:
struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday; /* unused */
int tm_yday; /* unused */
int tm_isdst; /* unused */
};
The fields in this structure have the same meaning and ranges
as the tm structure described in gmtime man page. A pointer
to this structure should be passed as the third ioctl's argument.
RTC_SET_TIME - Setting RTC time
Sets this RTC's time to the time specified by the rtc_time
structure pointed to by the third ioctl's argument. To set
the RTC's time the process must be privileged (i.e., have the
CAP_SYS_TIME capability).
RTC_ALM_READ, RTC_ALM_SET - Getting/Setting alarm time
Read and set the alarm time, for RTCs that support alarms.
The alarm interrupt must be separately enabled or disabled
using the RTC_AIE_ON, RTC_AIE_OFF requests. The third
ioctl's argument is a pointer to a rtc_time structure. Only
the tm_sec, tm_min, and tm_hour fields of this structure are
used.
Implementation notes:
All ioctls in this patch have pointer to a structure rtc_time
as their third argument. That is the reason why corresponding
definition is added in linux-user/syscall_types.h. Since all
elements of this structure are of type 'int', the rest of the
implementation is straightforward.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-3-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
This patch implements functionalities of following ioctls:
RTC_AIE_ON, RTC_AIE_OFF - Alarm interrupt enabling on/off
Enable or disable the alarm interrupt, for RTCs that support
alarms. The third ioctl's argument is ignored.
RTC_UIE_ON, RTC_UIE_OFF - Update interrupt enabling on/off
Enable or disable the interrupt on every clock update, for
RTCs that support this once-per-second interrupt. The third
ioctl's argument is ignored.
RTC_PIE_ON, RTC_PIE_OFF - Periodic interrupt enabling on/off
Enable or disable the periodic interrupt, for RTCs that sup‐
port these periodic interrupts. The third ioctl's argument
is ignored. Only a privileged process (i.e., one having the
CAP_SYS_RESOURCE capability) can enable the periodic interrupt
if the frequency is currently set above the value specified in
/proc/sys/dev/rtc/max-user-freq.
RTC_WIE_ON, RTC_WIE_OFF - Watchdog interrupt enabling on/off
Enable or disable the Watchdog interrupt, for RTCs that sup-
port this Watchdog interrupt. The third ioctl's argument is
ignored.
Implementation notes:
Since all of involved ioctls have NULL as their third argument,
their implementation was straightforward.
The line '#include <linux/rtc.h>' was added to recognize
preprocessor definitions for these ioctls. This needs to be
done only once in this series of commits. Also, the content
of this file (with respect to ioctl definitions) remained
unchanged for a long time, therefore there is no need to
worry about supporting older Linux kernel version.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-2-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
KCOV_INIT_TRACE ioctl plays the role in kernel coverage tracing.
This ioctl's third argument is of type 'unsigned long', and the
implementation in QEMU is straightforward.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-13-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
KCOV_ENABLE and KCOV_DISABLE play the role in kernel coverage
tracing. These ioctls do not use the third argument of ioctl()
system call and are straightforward to implement in QEMU.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-12-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
FDFMTBEG, FDFMTTRK, and FDFMTEND ioctls provide means for controlling
formatting of a floppy drive.
FDFMTTRK's third agrument is a pointer to the structure:
struct format_descr {
unsigned int device,head,track;
};
defined in Linux kernel header <linux/fd.h>.
Since all fields of the structure are of type 'unsigned int', there is
no need to define "target_format_descr".
FDFMTBEG and FDFMTEND ioctls do not use the third argument.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-9-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
FDSETEMSGTRESH, FDSETMAXERRS, and FDGETMAXERRS ioctls are commands
for controlling error reporting of a floppy drive.
FDSETEMSGTRESH's third agrument is a pointer to the structure:
struct floppy_max_errors {
unsigned int
abort, /* number of errors to be reached before aborting */
read_track, /* maximal number of errors permitted to read an
* entire track at once */
reset, /* maximal number of errors before a reset is tried */
recal, /* maximal number of errors before a recalibrate is
* tried */
/*
* Threshold for reporting FDC errors to the console.
* Setting this to zero may flood your screen when using
* ultra cheap floppies ;-)
*/
reporting;
};
defined in Linux kernel header <linux/fd.h>.
Since all fields of the structure are of type 'unsigned int', there is
no need to define "target_floppy_max_errors".
FDSETMAXERRS and FDGETMAXERRS ioctls do not use the third argument.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-8-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
These FS_IOC32_<GET|SET>VERSION ioctls are identical to
FS_IOC_<GET|SET>VERSION ioctls, but without the anomaly of their
number defined as if their third argument is of type long, while
it is treated internally in kernel as is of type int.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-4-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
These FS_IOC32_<GET|SET>FLAGS ioctls are identical to
FS_IOC_<GET|SET>FLAGS ioctls, but without the anomaly of their
number defined as if their third argument is of type long, while
it is treated internally in kernel as is of type int.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-3-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
A very specific thing for these two ioctls is that their code
implies that their third argument is of type 'long', but the
kernel uses that argument as if it is of type 'int'. This anomaly
is recognized also in commit 6080723 (linux-user: Implement
FS_IOC_GETFLAGS and FS_IOC_SETFLAGS ioctls).
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-2-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
FDFLUSH is used for flushing buffers of floppy drives. Support in
QEMU is needed because some of Debian packages use this ioctl while
running post-build tests. One such example is 'tar' package.
Signed-off-by: Yunqiang Su <ysu@wavecomp.com>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <1567601968-26946-5-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
FIOGETOWN and FIOSETOWN ioctls have platform-specific definitions,
hence non-standard definition in QEMU too.
Other than that, they both have a single integer argument, and their
functionality is emulated in a straightforward way.
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <1567601968-26946-4-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
RNDRESEEDCRNG is a newer ioctl (added in kernel 4.17), and an
"ifdef" guard is used for that reason in this patch.
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <1567601968-26946-3-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
The SIOCGSTAMP symbol was previously defined in the
asm-generic/sockios.h header file. QEMU sees that header
indirectly via sys/socket.h
In linux kernel commit 0768e17073dc527ccd18ed5f96ce85f9985e9115
the asm-generic/sockios.h header no longer defines SIOCGSTAMP.
Instead it provides only SIOCGSTAMP_OLD, which only uses a
32-bit time_t on 32-bit architectures.
The linux/sockios.h header then defines SIOCGSTAMP using
either SIOCGSTAMP_OLD or SIOCGSTAMP_NEW as appropriate. If
SIOCGSTAMP_NEW is used, then the tv_sec field is 64-bit even
on 32-bit architectures
To cope with this we must now convert the old and new type from
the target to the host one.
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Message-Id: <20190718130641.15294-1-laurent@vivier.eu>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Add support for getting and setting extended private flags of a
network device via SIOCSIFPFLAGS and SIOCGIFPFLAGS ioctls.
The ioctl numeric values are platform-independent and determined by
the file include/uapi/linux/sockios.h in Linux kernel source code:
#define SIOCSIFPFLAGS 0x8934
#define SIOCGIFPFLAGS 0x8935
These ioctls get (or set) the field ifr_flags of type short in the
structure ifreq. Such functionality is achieved in QEMU by using
MK_STRUCT() and MK_PTR() macros with an appropriate argument, as
it was done for existing similar cases.
Signed-off-by: Neng Chen <nchen@wavecomp.com>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <1554839486-3527-1-git-send-email-aleksandar.markovic@rt-rk.com>
Message-Id: <1558282527-22183-4-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Add support for setting the process (or process group) to receive SIGIO
or SIGURG signals when I/O becomes possible or urgent data is available,
using SIOCSPGRP ioctl.
The ioctl numeric values for SIOCSPGRP are platform-dependent and are
determined by following files in Linux kernel source tree:
arch/ia64/include/uapi/asm/sockios.h:#define SIOCSPGRP 0x8902
arch/mips/include/uapi/asm/sockios.h:#define SIOCSPGRP _IOW('s', 8, pid_t)
arch/parisc/include/uapi/asm/sockios.h:#define SIOCSPGRP 0x8902
arch/sh/include/uapi/asm/sockios.h:#define SIOCSPGRP _IOW('s', 8, pid_t)
arch/xtensa/include/uapi/asm/sockios.h:#define SIOCSPGRP _IOW('s', 8, pid_t)
arch/alpha/include/uapi/asm/sockios.h:#define SIOCSPGRP _IOW('s', 8, pid_t)
arch/sparc/include/uapi/asm/sockios.h:#define SIOCSPGRP 0x8902
include/uapi/asm-generic/sockios.h:#define SIOCSPGRP 0x8902
Hence the different definition for alpha, mips, sh4, and xtensa.
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <1558282527-22183-3-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Userspace submits a USB Request Buffer to the kernel, optionally
discards it, and finally reaps the URB. Thunk buffers from target
to host and back.
Tested by running an i386 scanner driver on ARMv7 and by running
the PowerPC lsusb utility on x86_64. The discardurb ioctl is
not exercised in these tests.
Signed-off-by: Cortland Tölva <cst@tolva.net>
Message-Id: <20181008163521.17341-4-cst@tolva.net>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
With glibc 2.27 the openpty function prefers the TIOCGPTPEER ioctl.
Signed-off-by: Andreas Schwab <schwab@suse.de>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <mvmbmhdosb9.fsf_-_@suse.de>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Mirror syscall_defs.h for the element type of struct timeval
and struct timespec, even though that's not 100% accurate for
each guest.
Signed-off-by: Helge Deller <deller@gmx.de>
[rth: Changed the MK_ARRAY types as per above; added ioctl.h entries.]
Signed-off-by: Richard Henderson <rth@twiddle.net>
Some architectures (ppc, alpha, sparc, parisc, sh and xtensa) define the
BSD TIOCSTART and TIOCSTOP ioctls in their kernel headers to provide
compatibility to other operating systems.
Those ioctls are not implemented in Linux, nevertheless, bash will use
this ioctl if it's available on those architectures.
To avoid false warnings, add code to simply ignore those ioctls.
Signed-off-by: Helge Deller <deller@gmx.de>
Message-Id: <20161206152403.GA6651@ls3530>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Implement the FS_IOC_GETFLAGS and FS_IOC_SETFLAGS ioctls, as used
by chattr.
Note that the type information encoded in these ioctl numbers
is at odds with the actual type the kernel accesses, as discussed
in http://thread.gmane.org/gmane.linux.file-systems/80164.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
The SIOCATMARK ioctl takes an argument which should be a
pointer to an integer where the kernel will write the result.
We were incorrectly declaring it as TYPE_NULL which would mean
it would always fail (with EFAULT) when it should succeed.
Correct the type.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
Add some new blk ioctls (these are 0x12,119 through
to 0x12,127). Several of these are used by mke2fs; this silences
the warnings:
mke2fs 1.42.12 (29-Aug-2014)
Unsupported ioctl: cmd=0x127b
Unsupported ioctl: cmd=0x127a
warning: Unable to get device geometry for /dev/loop5
Unsupported ioctl: cmd=0x127c
Unsupported ioctl: cmd=0x127c
Unsupported ioctl: cmd=0x1277
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
The LOOP_GET_STATUS and LOOP_GET_STATUS64 ioctls were incorrectly
defined as IOC_W rather than IOC_R, which meant we weren't
correctly copying the information back from the kernel to the guest.
The loop_info64 structure definition was also missing a member
and using the wrong type for several 32-bit fields.
In particular, this meant that "kpartx -d image.img" didn't work
and "losetup -a" behaved strangely. Correct the ioctl type definitions.
Reported-by: Chanho Park <chanho61.park@samsung.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
The BLKSSZGET ioctl takes an argument which is a pointer to an int.
We were incorrectly declaring it to take a pointer to a long, which
meant that we would incorrectly write to memory which we should not
if the guest is a 64-bit architecture.
In particular, kpartx uses this ioctl to write to an int on the
stack, which tends to result in it crashing immediately.
Reported-by: Chanho Park <chanho61.park@samsung.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
Add support for the /dev/loop-control ioctls:
LOOP_CTL_ADD
LOOP_CTL_REMOVE
LOOP_CTL_GET_FREE
[RV: fixed to apply to new header guards]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
The blkpg ioctl can take different payloads depending on the opcode in
its payload structure. Create a new special ioctl handler that can only
deal with partition style ones for now.
This patch fixes running parted for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
Wrong type was used in ioctl definition.
Signed-off-by: Joakim Tjernlund <Joakim.Tjernlund@transmode.se>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
Add a definition of the SIOCGIFINDEX ioctl, allowing its use by target
programs.
Signed-off-by: Paul Burton <paul@archlinuxmips.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
Add a definition of the KDSIGACCEPT ioctl & allow its use by target
programs.
Signed-off-by: Paul Burton <paul@archlinuxmips.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
This allows to pass the device name.
You can test this with the "route" command.
WITHOUT this patch:
$ sudo route add -net default gw 10.0.3.1 eth0
SIOCADDRT: Bad address
$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Ifa
10.0.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth
WITH this patch:
$ sudo route add -net default gw 10.0.3.1 eth0
$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Ifa
0.0.0.0 10.0.3.1 0.0.0.0 UG 0 0 0 eth
10.0.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Fix the SNDCTL_DSP_MAP{IN,OUT}BUF ioctl definitions so that they
refer to a suitably defined target struct layout rather than hardcoding
the ioctl number. This fixes complaints from the syscall_init()
consistency check when running an x86_64-to-x86_64 linux-user qemu.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This patch adds the ioctl wrapper definition for BLKBSZGET.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
This patch implements all ioctls currently implemented by device mapper,
enabling us to run dmsetup and kpartx inside of linux-user.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
This patch was validated with programs from DirectFB-1.0 and
WebKit/DirectFB.
Signed-off-by: Cédric VINCENT <cedric.vincent@st.com>
Cc: Riku Voipio <riku.voipio@iki.fi>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
DirectFB-1.0 uses at least two of the four added ioctls, and the two
others were added for completeness. This patch was validated with the
program "vlock -all/-new".
Signed-off-by: Cédric VINCENT <cedric.vincent@st.com>
Cc: Riku Voipio <riku.voipio@iki.fi>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
The result needs to be converted as it is stored in an array of struct
ifreq and sizeof(struct ifreq) differs according to target and host
alignment rules.
This patch allows to execute correctly the following program on arm
and m68k:
#include <stdio.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <alloca.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int main(void)
{
int s, ret;
struct ifconf ifc;
int i;
memset( &ifc, 0, sizeof( struct ifconf ) );
ifc.ifc_len = 8 * sizeof(struct ifreq);
ifc.ifc_buf = alloca(ifc.ifc_len);
s = socket( AF_INET, SOCK_DGRAM, 0 );
if (s < 0) {
perror("Cannot open socket");
return 1;
}
ret = ioctl( s, SIOCGIFCONF, &ifc );
if (s < 0) {
perror("ioctl() failed");
return 1;
}
for (i = 0; i < ifc.ifc_len / sizeof(struct ifreq) ; i ++) {
struct sockaddr_in *s;
s = (struct sockaddr_in*)&ifc.ifc_req[i].ifr_addr;
printf("%s\n", ifc.ifc_req[i].ifr_name);
printf("%s\n", inet_ntoa(s->sin_addr));
}
}
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Riku Voipio <riku.voipio@iki.fi>