There is nothing left related to the XICS object in the realize
functions of the KVMXICSState and XICSState class. So adapt the
interfaces to call these routines directly from the sPAPR machine init
sequence.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is the last step to remove the XICSState abstraction and have the
machine hold all the objects related to interrupts : ICSs and ICPs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The reset of the ICP objects is currently handled by XICS but this can
be done for each individual ICP.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_dt_xics() only needs the number of servers to build the device
tree nodes. Let's change the routine interface to reflect that.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also introduce a xics_icp_get() helper to simplify the changes.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Let's add two new handlers for ICPs. One is to get an ICP object from
a server number and a second is to resend the irqs when needed.
The icp_resend() handler is a temporary workaround needed by the
ics-simple post_load() handler. It will be removed when the post_load
portion can be done at the machine level.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is not used anymore.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The reset of the ICS objects is currently handled by XICS but this can
be done for each individual ICS. This also reduces the use of the XICS
list of ICS.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also change the ICPState 'xics' backlink to be a XICSFabric, this
removes the need of using qdev_get_machine() to get the QOM interface
in some of the routines.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add 'ics_get' and 'ics_resend' handlers to the sPAPR machine. These
are relatively simple for a single ICS.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A list of ICS objects was introduced under the XICS object for the
PowerNV machine but, for the sPAPR machine, it brings extra complexity
as there is only a single ICS. To simplify the code, let's add the ICS
pointer under the sPAPR machine and try to reduce the use of this list
where possible.
Also, change the xics_spapr_*() routines to use an ICS object instead
of an XICSState and change their name to reflect that these are
specific to the sPAPR ICS object.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the ICP (Interrupt Controller Presenter) objects are created by
the 'nr_servers' property handler of the XICS object and a class
handler. They are realized in the XICS object realize routine.
Let's simplify the process by creating the ICP objects along with the
XICS object at the machine level.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the ICS (Interrupt Controller Source) object is created and
realized by the init and realize routines of the XICS object, but some
of the parameters are only known at the machine level.
These parameters are passed from the sPAPR machine to the ICS object
in a rather convoluted way using property handlers and a class handler
of the XICS object. The number of irqs required to allocate the IRQ
state objects in the ICS realize routine is one of them.
Let's simplify the process by creating the ICS object along with the
XICS object at the machine level and link the ICS into the XICS list
of ICSs at this level also. In the sPAPR machine, there is only a
single ICS but that will change with the PowerNV machine.
Also, QOMify the creation of the objects and get rid of the
superfluous code.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently xics - the component of the IBM POWER interrupt controller
representing the overall interrupt fabric / architecture is
represented as a descendent of SysBusDevice. However, this is not
really correct - the xics presents nothing in MMIO space so it should
be an "unattached" device in the current QOM model.
Since this device will always be created by the machine type, not created
specifically from the command line, and because it has no migrated state
it should be safe to move it around the device composition tree.
Therefore this patch changes it to a descendent of TYPE_DEVICE, and
makes it an unattached device. So that its reset handler still gets
called correctly, we add a qdev_set_parent_bus() to attach it to
sysbus. It's not really clear that's correct (instead of using
register_reset()) but it appears to a common technique.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[clg corrected problems with reset]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg folded together and updated commit message]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since commit 1d2d974244 "spapr_pci: enumerate and add PCI device tree", QEMU
populates the PCI device tree in the opposite order compared to SLOF.
Before 1d2d974244:
Populating /pci@800000020000000
00 0000 (D) : 1af4 1000 virtio [ net ]
00 0800 (D) : 1af4 1001 virtio [ block ]
00 1000 (D) : 1af4 1009 virtio [ network ]
Populating /pci@800000020000000/unknown-legacy-device@2
7e5294b8 : /pci@800000020000000
7e52b998 : |-- ethernet@0
7e52c0c8 : |-- scsi@1
7e52c7e8 : +-- unknown-legacy-device@2 ok
Since 1d2d974244:
Populating /pci@800000020000000
00 1000 (D) : 1af4 1009 virtio [ network ]
Populating /pci@800000020000000/unknown-legacy-device@2
00 0800 (D) : 1af4 1001 virtio [ block ]
00 0000 (D) : 1af4 1000 virtio [ net ]
7e5e8118 : /pci@800000020000000
7e5ea6a0 : |-- unknown-legacy-device@2
7e5eadb8 : |-- scsi@1
7e5eb4d8 : +-- ethernet@0 ok
This behaviour change is not actually a bug since no assumptions should be
made on DT ordering. But it has no real justification either, other than
being the consequence of the way fdt_add_subnode() inserts new elements
to the front of the FDT rather than adding them to the tail.
This patch reverts to the historical SLOF ordering by walking PCI devices
in reverse order. This reconciles pseries with x86 machine types behavior.
It is expected to make things easier when porting existing applications to
power.
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
(slight update to the changelog)
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pseries machine type implements the behaviour of a PAPR compliant
hypervisor, without actually executing such a hypervisor on the virtual
CPU. To do this we need some hooks in the CPU code to make hypervisor
facilities get redirected to the machine instead of emulated internally.
For hypercalls this is managed through the cpu->vhyp field, which points
to a QOM interface with a method implementing the hypercall.
For the hashed page table (HPT) - also a hypervisor resource - we use an
older hack. CPUPPCState has an 'external_htab' field which when non-NULL
indicates that the HPT is stored in qemu memory, rather than within the
guest's address space.
For consistency - and to make some future extensions easier - this merges
the external HPT mechanism into the vhyp mechanism. Methods are added
to vhyp for the basic operations the core hash MMU code needs: map_hptes()
and unmap_hptes() for reading the HPT, store_hpte() for updating it and
hpt_mask() to retrieve its size.
To match this, the pseries machine now sets these vhyp fields in its
existing vhyp class, rather than reaching into the cpu object to set the
external_htab field.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
CPUPPCState includes fields htab_base and htab_mask which store the base
address (GPA) and size (as a mask) of the guest's hashed page table (HPT).
These are set when the SDR1 register is updated.
Keeping these in sync with the SDR1 is actually a little bit fiddly, and
probably not useful for performance, since keeping them expands the size of
CPUPPCState. It also makes some upcoming changes harder to implement.
This patch removes these fields, in favour of calculating them directly
from the SDR1 contents when necessary.
This does make a change to the behaviour of attempting to write a bad value
(invalid HPT size) to the SDR1 with an mtspr instruction. Previously, the
bad value would be stored in SDR1 and could be retrieved with a later
mfspr, but the HPT size as used by the softmmu would be, clamped to the
allowed values. Now, writing a bad value is treated as a no-op. An error
message is printed in both new and old versions.
I'm not sure which behaviour, if either, matches real hardware. I don't
think it matters that much, since it's pretty clear that if an OS writes
a bad value to SDR1, it's not going to boot.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Accesses to the hashed page table (HPT) are complicated by the fact that
the HPT could be in one of three places:
1) Within guest memory - when we're emulating a full guest CPU at the
hardware level (e.g. powernv, mac99, g3beige)
2) Within qemu, but outside guest memory - when we're emulating user and
supervisor instructions within TCG, but instead of emulating
the CPU's hypervisor mode, we just emulate a hypervisor's behaviour
(pseries in TCG or KVM-PR)
3) Within the host kernel - a pseries machine using KVM-HV
acceleration. Mostly accesses to the HPT are handled by KVM,
but there are a few cases where qemu needs to access it via a
special fd for the purpose.
In order to batch accesses to the fd in case (3), we use a somewhat awkward
ppc_hash64_start_access() / ppc_hash64_stop_access() pair, which for case
(3) reads / releases several HPTEs from the kernel as a batch (usually a
whole PTEG). For cases (1) & (2) it just returns an address value. The
actual HPTE load helpers then need to interpret the returned token
differently in the 3 cases.
This patch keeps the same basic structure, but simplfiies the details.
First start_access() / stop_access() are renamed to map_hptes() and
unmap_hptes() to make their operation more obvious. Second, map_hptes()
now always returns a qemu pointer, which can always be used in the same way
by the load_hpte() helpers. In case (1) it comes from address_space_map()
in case (2) directly from qemu's HPT buffer and in case (3) from a
temporary buffer read from the KVM fd.
While we're at it, make things a bit more consistent in terms of types and
variable names: avoid variables named 'index' (it shadows index(3) which
can lead to confusing results), use 'hwaddr ptex' for HPTE indices and
uint64_t for each of the HPTE words, use ptex throughout the call stack
instead of pte_offset in some places (we still need that at the bottom
layer, but nowhere else).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
cpu_ppc_set_papr() sets up various aspects of CPU state for use with PAPR
paravirtualized guests. However, it doesn't set the virtual hypervisor,
so callers must also call cpu_ppc_set_vhyp() so that PAPR hypercalls are
handled properly. This is a bit silly, so fold setting the virtual
hypervisor into cpu_ppc_set_papr().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
* Standardize on 'ptex' instead of 'pte_index' for HPTE index variables
for consistency and brevity
* Avoid variables named 'index'; shadowing index(3) from libc can lead to
surprising bugs if the variable is removed, because compiler errors
might not appear for remaining references
* Clarify index calculations in h_enter() - we have two cases, H_EXACT
where the exact HPTE slot is given, and !H_EXACT where we search for
an empty slot within the hash bucket. Make the calculation more
consistent between the cases.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Some systems can already provide more than 255 hardware threads.
Bumping the QEMU limit to 1024 seems reasonable:
- it has no visible overhead in top;
- the limit itself has no effect on hot paths.
Cc: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When DT node names for PCI devices are generated by SLOF,
they are generated according to the type of the device
(for instance, ethernet for virtio-net-pci device).
Node name for hotplugged devices is generated by QEMU.
This patch adds the mechanic to QEMU to create the node
name according to the device type too.
The data structure has been roughly copied from OpenBIOS/OpenHackware,
node names from SLOF.
Example:
Hotplugging some PCI cards with QEMU monitor:
device_add virtio-tablet-pci
device_add virtio-serial-pci
device_add virtio-mouse-pci
device_add virtio-scsi-pci
device_add virtio-gpu-pci
device_add ne2k_pci
device_add nec-usb-xhci
device_add intel-hda
What we can see in linux device tree:
for dir in /proc/device-tree/pci@800000020000000/*@*/; do
echo $dir
cat $dir/name
echo
done
WITHOUT this patch:
/proc/device-tree/pci@800000020000000/pci@0/
pci
/proc/device-tree/pci@800000020000000/pci@1/
pci
/proc/device-tree/pci@800000020000000/pci@2/
pci
/proc/device-tree/pci@800000020000000/pci@3/
pci
/proc/device-tree/pci@800000020000000/pci@4/
pci
/proc/device-tree/pci@800000020000000/pci@5/
pci
/proc/device-tree/pci@800000020000000/pci@6/
pci
/proc/device-tree/pci@800000020000000/pci@7/
pci
WITH this patch:
/proc/device-tree/pci@800000020000000/communication-controller@1/
communication-controller
/proc/device-tree/pci@800000020000000/display@4/
display
/proc/device-tree/pci@800000020000000/ethernet@5/
ethernet
/proc/device-tree/pci@800000020000000/input-controller@0/
input-controller
/proc/device-tree/pci@800000020000000/mouse@2/
mouse
/proc/device-tree/pci@800000020000000/multimedia-device@7/
multimedia-device
/proc/device-tree/pci@800000020000000/scsi@3/
scsi
/proc/device-tree/pci@800000020000000/usb-xhci@6/
usb-xhci
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This finally allows TCG to benefit from the iothread introduction: Drop
the global mutex while running pure TCG CPU code. Reacquire the lock
when entering MMIO or PIO emulation, or when leaving the TCG loop.
We have to revert a few optimization for the current TCG threading
model, namely kicking the TCG thread in qemu_mutex_lock_iothread and not
kicking it in qemu_cpu_kick. We also need to disable RAM block
reordering until we have a more efficient locking mechanism at hand.
Still, a Linux x86 UP guest and my Musicpal ARM model boot fine here.
These numbers demonstrate where we gain something:
20338 jan 20 0 331m 75m 6904 R 99 0.9 0:50.95 qemu-system-arm
20337 jan 20 0 331m 75m 6904 S 20 0.9 0:26.50 qemu-system-arm
The guest CPU was fully loaded, but the iothread could still run mostly
independent on a second core. Without the patch we don't get beyond
32206 jan 20 0 330m 73m 7036 R 82 0.9 1:06.00 qemu-system-arm
32204 jan 20 0 330m 73m 7036 S 21 0.9 0:17.03 qemu-system-arm
We don't benefit significantly, though, when the guest is not fully
loading a host CPU.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Message-Id: <1439220437-23957-10-git-send-email-fred.konrad@greensocs.com>
[FK: Rebase, fix qemu_devices_reset deadlock, rm address_space_* mutex]
Signed-off-by: KONRAD Frederic <fred.konrad@greensocs.com>
[EGC: fixed iothread lock for cpu-exec IRQ handling]
Signed-off-by: Emilio G. Cota <cota@braap.org>
[AJB: -smp single-threaded fix, clean commit msg, BQL fixes]
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
[PM: target-arm changes]
Acked-by: Peter Maydell <peter.maydell@linaro.org>
When performing clock calculations, the ppc405_uc code
has several places where it multiplies together two
32-bit variables and assigns the result to a 64-bit
variable. This doesn't quite do what is intended because
C will compute a 32-bit multiply result. Add casts to
ensure we don't truncate the result.
(Spotted by Coverity, CID 1005504, 1005505.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On POWER, the valid page sizes that the guest can use are bound
to the CPU and not to the memory region. QEMU already has some
fancy logic to find out the right maximum memory size to tell
it to the guest during boot (see getrampagesize() in the file
target/ppc/kvm.c for more information).
However, once we're booted and the guest is using huge pages
already, it is currently still possible to hot-plug memory regions
that does not support huge pages - which of course does not work
on POWER, since the guest thinks that it is possible to use huge
pages everywhere. The KVM_RUN ioctl will then abort with -EFAULT,
QEMU spills out a not very helpful error message together with
a register dump and the user is annoyed that the VM unexpectedly
died.
To avoid this situation, we should check the page size of hot-plugged
DIMMs to see whether it is possible to use it in the current VM.
If it does not fit, we can print out a better error message and
refuse to add it, so that the VM does not die unexpectely and the
user has a second chance to plug a DIMM with a matching memory
backend instead.
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1419466
Signed-off-by: Thomas Huth <thuth@redhat.com>
[dwg: Fix a build error on 32-bit builds with KVM]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Generic helper machine_query_hotpluggable_cpus() replaced
target specific query_hotpluggable_cpus() callbacks so
there is no need in it anymore. However inon NULL callback
value is used to detect/report hotpluggable cpus support,
therefore it can be removed completely.
Replace it with MachineClass.has_hotpluggable_cpus boolean
which is sufficient for the task.
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
All callbacks FOO_query_hotpluggable_cpus() are practically
the same except of setting vcpus_count to different values.
Convert them to a generic machine_query_hotpluggable_cpus()
callback by moving vcpus_count initialization to per machine
specific callback possible_cpu_arch_ids().
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Replace SPAPR specific cores[] array with generic
machine->possible_cpus and store core objects there.
It makes cores bookkeeping similar to x86 cpus and
will allow to unify similar code.
It would allow to replace cpu_index based NUMA node
mapping with iproperty based one (for -device created
cores) since possible_cpus carries board defined
topology/layout.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The last byte of the option vector was missing due to an off-by-one
error. Without this fix, client architecture support negotiation will
fail because the last byte of option vector 5, which contains the MMU
support, will be missed.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
error_report() already puts a prefix with the program name in front
of the error strings, so the "qemu:" prefix is not necessary here
anymore.
Reported-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_core_unplug() were essentially spapr_core_unplug_request()
handler that requested CPU removal and registered callback
which did actual cpu core removali but it was called from
spapr_machine_device_unplug() which is intended for actual object
removal. Commit (cf632463 spapr: Memory hot-unplug support)
sort of fixed it introducing spapr_machine_device_unplug_request()
and calling spapr_core_unplug() but it hasn't renamed callback and
by mistake calls it from spapr_machine_device_unplug().
However spapr_machine_device_unplug() isn't ever called for
cpu core since spapr_core_release() doesn't follow expected
hotunplug call flow which is:
1: device_del() ->
hotplug_handler_unplug_request() ->
set destroy_cb()
2: destroy_cb() ->
hotplug_handler_unplug() ->
object_unparent // actual device removal
Fix it by renaming spapr_core_unplug() to spapr_core_unplug_request()
which is called from spapr_machine_device_unplug_request() and
making spapr_core_release() call hotplug_handler_unplug() which
will call spapr_machine_device_unplug() -> spapr_core_unplug()
to remove cpu core.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reveiwed-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_core_pre_plug/spapr_core_plug/spapr_core_unplug() are managing
wiring CPU core into spapr machine state and not internal CPU core state.
So move them from spapr_cpu_core.c to spapr.c where other similar
(spapr_memory_[foo]plug()) callbacks are located, which also matches
x86 target practice.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Split off destroying VCPU threads from drc callback
spapr_core_release() into new spapr_cpu_core_unrealizefn()
which takes care of internal cpu core state cleanup (i.e.
VCPU threads) and is called when object_unparent(core)
is called.
That leaves spapr_core_release() only with board mgmt
code, which will be moved to board related file in
follow up patch along with the rest on hotplug callbacks.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Block backends defined with -drive if=ide are meant to be picked up by
machine initialization code: a suitable frontend gets created and
wired up automatically.
if=ide drives not picked up that way can still be used with -device as
if they had if=none, but that's unclean and best avoided. Unused ones
produce an "Orphaned drive without device" warning.
-drive parameter "if" is optional, and the default depends on the
machine type. If a machine type doesn't specify a default, the
default is "ide".
Many machine types default to if=ide, even though they don't actually
have an IDE controller. A future patch will change these defaults to
something more sensible. To prepare for it, this patch makes default
"ide" explicit for the machines that actually pick up if=ide drives:
* alpha: clipper
* arm/aarch64: spitz borzoi terrier tosa
* i386/x86_64: generic-pc-machine (with concrete subtypes pc-q35-*
pc-i440fx-* pc-* isapc xenfv)
* mips64el: fulong2e
* mips/mipsel/mips64el: malta mips
* ppc/ppc64: mac99 g3beige prep
* sh4/sh4eb: r2d
* sparc64: sun4u sun4v
Note that ppc64 machine powernv already sets an "ide" default
explicitly. Its IDE controller isn't implemented, yet.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1487153147-11530-2-git-send-email-armbru@redhat.com>
it's not very convenient to use the crash-information property interface,
so provide a CPU class callback to get the guest crash information, and pass
that information in the event
Signed-off-by: Anton Nefedov <anton.nefedov@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Message-Id: <1487053524-18674-3-git-send-email-den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hw_error() is for CPU related errors only (it dumps the CPU registers
and calls abort()!), so using error_report() is the better choice
of reporting an error in case we simply did not find a file.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Machines bamboo, e500 and virtex-ml507 assume a certain MMU model,
otherwise resulting in unpredictable behavior. Add apropriate checks
into *_init functions.
Signed-off-by: Valentin Plotkin <caliborn@sdf.org>
[regarding virtex parts]
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We are switching BUILD_BUG_ON to verify that it's parameter is a
compile-time constant, and it turns out that some gcc versions
(specifically gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609) are
not smart enough to figure it out for expressions involving local
variables. This is harmless but means that the check is ineffective for
these platforms. To fix, replace the variable with macros.
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[dwg: Correct a printf format warning]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is a port to ppc of the i386 commit:
00f4d64 kvmclock: clock should count only if vm is running
We remove timebase_post_load function, and use the VM state
change handler to save and restore the guest_timebase (on stop
and continue).
We keep timebase_pre_save to reduce the clock difference on
migration like in:
6053a86 kvmclock: reduce kvmclock difference on migration
Time base offset has originally been introduced by commit
98a8b52 spapr: Add support for time base offset migration
So while VM is paused, the time is stopped. This allows to have
the same result with date (based on Time Base Register) and
hwclock (based on "get-time-of-day" RTAS call).
Moreover in TCG mode, the Time Base is always paused, so this
patch also adjust the behavior between TCG and KVM.
VM state field "time_of_the_day_ns" is now useless but we keep
it to be able to migrate to older version of the machine.
As vmstate_ppc_timebase structure (with timebase_pre_save() and
timebase_post_load() functions) was only used by vmstate_spapr,
we register the VM state change handler only in ppc_spapr_init().
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It is completely unused, thus it can be removed without problems.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If the DECAR register is set to 0, QEMU tries to reload the decrementer with
zero in an inifinite loop. According to PPC documentation, the decrementer is
triggered on 1->0 transition, so avoid reloading the decrementer if if is
already zero.
The problem does not manifest under Linux, but it is valid to set DECAR to zero
(and may make sense as part of decrementer initialization when interrupts are
disabled).
Signed-off-by: Roman Kapl <rka@sysgo.com>
[dwg: Fixed style nit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Once a compatiblity mode is negotiated with the guest,
h_client_architecture_support() uses run_on_cpu() to update each CPU to
the new mode. We're going to want this logic somewhere else shortly,
so make a helper function to do this global update.
We put it in target-ppc/compat.c - it makes as much sense at the CPU level
as it does at the machine level. We also move the cpu_synchronize_state()
into ppc_set_compat(), since it doesn't really make any sense to call that
without synchronizing state.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
During boot, PAPR guests negotiate CPU model support with the
ibm,client-architecture-support mechanism. The logic to implement this in
qemu is very convoluted. This cleans it up to be cleaner, using the new
ppc_check_compat() call.
The new logic for choosing a compatibility mode is:
1. Usually, use the most recent compatibility mode that is
a) supported by the guest
b) supported by the CPU
and c) no later than the maximum allowed (if specified)
2. If no suitable compatibility mode was found, the guest *does*
support this CPU explicitly, and no maximum compatibility mode is
specified, then use "raw" mode for the current CPU
3. Otherwise, fail the boot.
This differs from the results of the old code: the old code preferred using
"raw" mode to a compatibility mode, whereas the new code prefers a
compatibility mode if available. Using compatibility mode preferentially
means that we're more likely to be able to migrate the guest to a similar
but not identical host.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Machine supports both Open Hack'Ware and OpenBIOS.
Open Hack'Ware is the default because OpenBIOS is currently unable to boot
PReP boot partitions or PReP kernels.
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
[dwg: Correct compile failure with KVM located by Thomas Huth]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Added CONFIG_RS6000_MC to ppc64 or it breaks testcases]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This device is a partial duplicate of System I/O device available in hw/ppc/prep.c
This new one doesn't have all the Motorola-specific registers.
The old one should be deprecated and removed with the 'prep' machine.
Partial documentation available at
ftp://ftp.software.ibm.com/rs6000/technology/spec/srp1_1.exe
section 6.1.5 (I/O Device Mapping)
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Drop the old SysBus init function and use instance_init
Signed-off-by: xiaoqiang zhao <zxq_yx_007@163.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Drop the old SysBus init function and use instance_init
Signed-off-by: xiaoqiang zhao <zxq_yx_007@163.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To continue consolidation of compatibility mode information, this rewrites
the ppc_get_compat_smt_threads() function using the table of compatiblity
modes in target-ppc/compat.c.
It's not a direct replacement, the new ppc_compat_max_threads() function
has simpler semantics - it just returns the number of threads the cpu
model has, taking into account any compatiblity mode it is in.
This no longer takes into account kvmppc_smt_threads() as the previous
version did. That check wasn't useful because we check in
ppc_cpu_realizefn() that CPUs aren't instantiated with more threads
than kvm allows (or if we didn't things will already be broken and
this won't make it any worse).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
When passing through an USB storage device to a pseries guest, it
is currently not possible to automatically boot from the device
if the "bootindex" property has been specified, too (e.g. when using
"-device nec-usb-xhci -device usb-host,hostbus=1,hostaddr=2,bootindex=0"
at the command line). The problem is that QEMU builds a device tree path
like "/pci@800000020000000/usb@0/usb-host@1" and passes it to SLOF
in the /chosen/qemu,boot-list property. SLOF, however, probes the
USB device, recognizes that it is a storage device and thus changes
its name to "storage", and additionally adds a child node for the
SCSI LUN, so the correct boot path in SLOF is something like
"/pci@800000020000000/usb@0/storage@1/disk@101000000000000" instead.
So when we detect an USB mass storage device with SCSI interface,
we've got to adjust the firmware boot-device path properly that
SLOF can automatically boot from the device.
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1354177
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The H_SIGNAL_SYS_RESET hcall allows a guest CPU to raise a system reset
exception on CPUs within the same guest -- all CPUs, all-but-self, or a
specific CPU (including self).
This has not made its way to a PAPR release yet, but we have an hcall
number assigned.
H_SIGNAL_SYS_RESET = 0x380
Syntax:
hcall(uint64 H_SIGNAL_SYS_RESET, int64 target);
Generate a system reset NMI on the threads indicated by target.
Values for target:
-1 = target all online threads including the caller
-2 = target all online threads except for the caller
All other negative values: reserved
Positive values: The thread to be targeted, obtained from the value
of the "ibm,ppc-interrupt-server#s" property of the CPU in the OF
device tree.
Semantics:
- Invalid target: return H_Parameter.
- Otherwise: Generate a system reset NMI on target thread(s),
return H_Success.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'cpu_version' field in PowerPCCPU is badly named. It's named after the
'cpu-version' device tree property where it is advertised, but that meaning
may not be obvious in most places it appears.
Worse, it doesn't even really correspond to that device tree property. The
property contains either the processor's PVR, or, if the CPU is running in
a compatibility mode, a special "logical PVR" representing which mode.
Rename the cpu_version field, and a number of related variables to
compat_pvr to make this clearer.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Thomas Huth <thuth@redhat.com>
The pseries machine type is a bit unusual in that it runs a paravirtualized
guest. The guest expects to interact with a hypervisor, and qemu
emulates the functions of that hypervisor directly, rather than executing
hypervisor code within the emulated system.
To implement this in TCG, we need to intercept hypercall instructions and
direct them to the machine's hypercall handlers, rather than attempting to
perform a privilege change within TCG. This is controlled by a global
hook - cpu_ppc_hypercall.
This cleanup makes the handling a little cleaner and more extensible than
a single global variable. Instead, each CPU to have hypercalls intercepted
has a pointer set to a QOM object implementing a new virtual hypervisor
interface. A method in that interface is called by TCG when it sees a
hypercall instruction. It's possible we may want to add other methods in
future.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
spapr_h_cas_compose_response() includes a cpu_update parameter which
controls whether it includes updated information on the CPUs in the device
tree fragment returned from the ibm,client-architecture-support (CAS) call.
Providing the updated information is essential when CAS has negotiated
compatibility options which require different cpu information to be
presented to the guest. However, it should be safe to provide in other
cases (it will just override the existing data in the device tree with
identical data). This simplifies the code by removing the parameter and
always providing the cpu update information.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Currently the pseries machine has two paths for constructing CPUs. On
newer machine type versions, which support cpu hotplug, it constructs
cpu core objects, which in turn construct CPU threads. For older machine
versions it individually constructs the CPU threads.
This division is going to make some future changes to the cpu construction
harder, so this patch unifies them. Now cpu core objects are always
created. This requires some updates to allow core objects to be created
without a full complement of threads (since older versions allowed a
number of cpus not a multiple of the threads-per-core). Likewise it needs
some changes to the cpu core hot/cold plug path so as not to choke on the
old machine types without hotplug support.
For good measure, we move the cpu construction to its own subfunction,
spapr_init_cpus().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Move the generic cpu_synchronize_ functions to the common hw_accel.h header,
in order to prepare for the addition of a second hardware accelerator.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Vincent Palatin <vpalatin@chromium.org>
Message-Id: <f5c3cffe8d520011df1c2e5437bb814989b48332.1484045952.git.vpalatin@chromium.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Currently we set the initial isolation/allocation state for DRCs
associated with coldplugged LMBs to ISOLATED/UNUSABLE,
respectively, under the assumption that the guest will move this
state to UNISOLATED/USABLE.
In fact, this is only the case for LMBs added via hotplug. For
coldplugged LMBs, the guest actually assumes the initial state to
be UNISOLATED/USABLE.
In practice, this only becomes an issue when we attempt to unplug
one of these LMBs, where the guest kernel will issue an
rtas-get-sensor-state call to check that the corresponding DRC is
in an USABLE state before it will release the LMB back to
QEMU. If the returned state is otherwise, the guest will assume no
further action is needed, which bypasses the QEMU-side cleanup that
occurs during the USABLE->UNUSABLE transition. This results in
LMBs and their corresponding pc-dimm devices to stick around
indefinitely.
This patch fixes the issue by manually setting DRCs associated with
cold-plugged LMBs to UNISOLATED/ALLOCATED, but leaving the hotplug
state untouched. As it turns out, this is analogous to the handling
for cold-plugged CPUs in spapr_core_plug().
Cc: qemu-ppc@nongnu.org
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
daa2369 "spapr_pci: Add a 64-bit MMIO window" subtly broke migration
from qemu-2.7 to the current version. It split the device's MMIO
window into two pieces for 32-bit and 64-bit MMIO.
The patch included backwards compatibility code to convert the old
property into the new format. However, the property value was also
transferred in the migration stream and compared with a (probably
unwise) VMSTATE_EQUAL. So, the "raw" value from 2.7 is compared to
the new style converted value from (pre-)2.8 giving a mismatch and
migration failure.
Along with the actual field that caused the breakage, there are
several other ill-advised VMSTATE_EQUAL()s. To fix forwards
migration, we read the values in the stream into scratch variables and
ignore them, instead of comparing for equality. To fix backwards
migration, we populate those scratch variables in pre_save() with
adjusted values to match the old behaviour.
To permit the eventual possibility of removing this cruft from the
stream, we only include these compatibility fields if a new
'pre-2.8-migration' property is set. We clear it on the pseries-2.8
machine type, which obviously can't be migrated backwards, but set it
on earlier machine type versions.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
This reverts commit 9b54ca0ba7.
The commit above corrected a migration breakage between qemu-2.7 and
qemu-2.8. However it did so by advancing the migration version for
the PCI host bridge, which obviously breaks migration backwards to
earlier qemu versions.
Although it's not totally essential, we'd like to maintain the
possibility for backwards migration, so revert the change in
preparation for a better fix.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Until very recently, the vmstate for ppc cpus included some poorly
thought out VMSTATE_EQUAL() components, that can easily break
migration compatibility, and did so between qemu-2.6 and later
versions. A hack was recently added which fixes this migration
breakage, but it leaves the unhelpful cruft of these fields in the
migration stream.
This patch adds a new cpu property allowing these fields to be removed
from the stream entirely. For the pseries-2.8 machine type - which
comes after the fix - and for all non-pseries machine types - which
aren't mature enough to care about cross-version migration - we remove
the fields from the stream.
For pseries-2.7 and earlier, The migration hack remains in place,
allowing backwards and forwards migration with the older machine
types.
This restricts the migration compatibility cruft to older machine
types, and at least opens the possibility of eventually deprecating
and removing it entirely.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
With the additional of the OV5_HP_EVT option vector, we now have
certain functionality (namely, memory unplug) that checks at run-time
for whether or not the guest negotiated the option via CAS. Because
we don't currently migrate these negotiated values, we are unable
to unplug memory from a guest after it's been migrated until after
the guest is rebooted and CAS-negotiation is repeated.
This patch fixes this by adding CAS-negotiated options to the
migration stream. We do this using a subsection, since the
negotiated value of OV5_HP_EVT is the only option currently needed
to maintain proper functionality for a running guest.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PC will use this field in other way, so move it outside the common
code so PC could set a different value, i.e. all CPUs
regardless of where they are coming from (-smp X | -device cpu...).
It's quick and dirty hack as it could be implemented in more generic
way in MashineClass. But do it in simple way since only PC is affected
so far.
Later we can generalize it when another affected target gets support
for -device cpu.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1479212236-183810-3-git-send-email-imammedo@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
If the pnv machine type is compiled on a 32-bit host, the unsigned long
(host) type is 32-bit. This means that the hweight_long() used to
calculate the number of allowed cores only considers the low 32 bits of
the cores_mask variable, and can thus return 0 in some circumstances.
This corrects the bug.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Suggested-by: Richard Henderson <rth@twiddle.net>
[clg: replaced hweight_long() by ctpop64() ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
High addresses can overflow the uint32_t pcba variable after the 8byte
shift.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XSCOM addresses for the core registers are encoded in a slightly
different way on POWER8 and POWER9.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
daa2369 "spapr_pci: Add a 64-bit MMIO window" subtly broke migration from
qemu-2.7 to the current version. It split the device's MMIO window into
two pieces for 32-bit and 64-bit MMIO.
The patch included backwards compatibility code to convert the old property
into the new format. However, the property value was also transferred in
the migration stream and compared with a (probably unwise) VMSTATE_EQUAL.
So, the "raw" value from 2.7 is compared to the new style converted value
from (pre-)2.8 giving a mismatch and migration failure.
Although it would be technically possible to fix this in a way allowing
backwards migration, that would leave an ugly legacy around indefinitely.
This patch takes the simpler approach of bumping the migration version,
dropping the unwise VMSTATE_EQUAL (and some equally unwise ones around it)
and ignoring them on an incoming migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
PnvChip is defined twice and this can confuse old compilers :
CC ppc64-softmmu/hw/ppc/pnv_xscom.o
In file included from qemu.git/hw/ppc/pnv.c:29:
qemu.git/include/hw/ppc/pnv.h:60: error: redefinition of typedef ‘PnvChip’
qemu.git/include/hw/ppc/pnv_xscom.h:24: note: previous declaration of ‘PnvChip’ was here
make[1]: *** [hw/ppc/pnv.o] Error 1
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
powernv has some code (derived from the spapr equivalent) used in device
tree generation which depends on the CPU's compatibility mode / logical
PVR. However, compatibility modes don't make sense on powernv - at least
not as a property controlled by the host - because the guest in powernv
has full hypervisor level access to the virtual system, and so owns the
PCR (Processor Compatibility Register) which implements compatiblity modes.
Note: the new logic doesn't take into account kvmppc_smt_threads() like the
old version did. However, if core->nr_threads exceeds kvmppc_smt_threads()
then things will already be broken and clamping the value in the device
tree isn't going to save us.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
This changes the *_run_on_cpu APIs (and helpers) to pass data in a
run_on_cpu_data type instead of a plain void *. This is because we
sometimes want to pass a target address (target_ulong) and this fails on
32 bit hosts emulating 64 bit guests.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20161027151030.20863-24-alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some files contain multiple #includes of the same header file.
Removed most of those unnecessary duplicate entries using
scripts/clean-includes.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Anand J <anand.indukala@gmail.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Add support to hot remove pc-dimm memory devices.
Since we're introducing a machine-level unplug_request hook, we also
had handling for CPU unplug there as well to ensure CPU unplug
continues to work as it did before.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
* add hooks to CAS/cmdline enablement of hotplug ACR support
* add hook for CPU unplug
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 0a417869:
spapr: Move memory hotplug to RTAS_LOG_V6_HP_ID_DRC_COUNT type
dropped per-DRC/per-LMB hotplugs event in favor of a bulk add via a
single LMB count value. This was to avoid overrunning the guest EPOW
event queue with hotplug events. This works fine, but relies on the
guest exhaustively scanning for pluggable LMBs to satisfy the
requested count by issuing rtas-get-sensor(DR_ENTITY_SENSE, ...) calls
until all the LMBs associated with the DIMM are identified.
With newer support for dedicated hotplug event source, this queue
exhaustion is no longer as much of an issue due to implementation
details on the guest side, but we still try to avoid excessive hotplug
events by now supporting both a count and a starting index to avoid
unecessary work. This patch makes use of that approach when the
capability is available.
Cc: bharata@linux.vnet.ibm.com
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add support for DRC count indexed hotplug ID type which is primarily
needed for memory hot unplug. This type allows for specifying the
number of DRs that should be plugged/unplugged starting from a given
DRC index.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
* updated rtas_event_log_v6_hp to reflect count/index field ordering
used in PAPR hotplug ACR
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This adds machine options of the form:
-machine pseries,modern-hotplug-events=true
-machine pseries,modern-hotplug-events=false
If false, QEMU will force the use of "legacy" style hotplug events,
which are surfaced through EPOW events instead of a dedicated
hot plug event source, and lack certain features necessary, mainly,
for memory unplug support.
If true, QEMU will enable support for "modern" dedicated hot plug
event source. Note that we will still default to "legacy" style unless
the guest advertises support for the "modern" hotplug events via
ibm,client-architecture-support hcall during early boot.
For pseries-2.7 and earlier we default to false, for newer machine
types we default to true.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Hotplug events were previously delivered using an EPOW interrupt
and were queued by linux guests into a circular buffer. For traditional
EPOW events like shutdown/resets, this isn't an issue, but for hotplug
events there are cases where this buffer can be exhausted, resulting
in the loss of hotplug events, resets, etc.
Newer-style hotplug event are delivered using a dedicated event source.
We enable this in supported guests by adding standard an additional
event source in the guest device-tree via /event-sources, and, if
the guest advertises support for the newer-style hotplug events,
using the corresponding interrupt to signal the available of
hotplug/unplug events.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
ibm,architecture-vec-5 is supposed to encode all option vector 5 bits
negotiated between platform/guest. Currently we hardcode this property
in the boot-time device tree to advertise a single negotiated
capability, "Form 1" NUMA Affinity, regardless of whether or not CAS
has been invoked or that capability has actually been negotiated.
Improve this by generating ibm,architecture-vec-5 based on the full
set of option vector 5 capabilities negotiated via CAS.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In some cases, ibm,client-architecture-support calls can fail. This
could happen in the current code for situations where the modified
device tree segment exceeds the buffer size provided by the guest
via the call parameters. In these cases, QEMU will reset, allowing
an opportunity to regenerate the device tree from scratch via
boot-time handling. There are potentially other scenarios as well,
not currently reachable in the current code, but possible in theory,
such as cases where device-tree properties or nodes need to be removed.
We currently don't handle either of these properly for option vector
capabilities however. Instead of carrying the negotiated capability
beyond the reset and creating the boot-time device tree accordingly,
we start from scratch, generating the same boot-time device tree as we
did prior to the CAS-generated and the same device tree updates as we
did before. This could (in theory) cause us to get stuck in a reset
loop. This hasn't been observed, but depending on the extensiveness
of CAS-induced device tree updates in the future, could eventually
become an issue.
Address this by pulling capability-related device tree
updates resulting from CAS calls into a common routine,
spapr_dt_cas_updates(), and adding an sPAPROptionVector*
parameter that allows us to test for newly-negotiated capabilities.
We invoke it as follows:
1) When ibm,client-architecture-support gets called, we
call spapr_dt_cas_updates() with the set of capabilities
added since the previous call to ibm,client-architecture-support.
For the initial boot, or a system reset generated by something
other than the CAS call itself, this set will consist of *all*
options supported both the platform and the guest. For calls
to ibm,client-architecture-support immediately after a CAS-induced
reset, we call spapr_dt_cas_updates() with only the set
of capabilities added since the previous call, since the other
capabilities will have already been addressed by the boot-time
device-tree this time around. In the unlikely event that
capabilities are *removed* since the previous CAS, we will
generate a CAS-induced reset. In the unlikely event that we
cannot fit the device-tree updates into the buffer provided
by the guest, well generate a CAS-induced reset.
2) When a CAS update results in the need to reset the machine and
include the updates in the boot-time device tree, we call the
spapr_dt_cas_updates() using the full set of negotiated
capabilities as part of the reset path. At initial boot, or after
a reset generated by something other than the CAS call itself,
this set will be empty, resulting in what should be the same
boot-time device-tree as we generated prior to this patch. For
CAS-induced reset, this routine will be called with the full set of
capabilities negotiated by the platform/guest in the previous
CAS call, which should result in CAS updates from previous call
being accounted for in the initial boot-time device tree.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Changed an int -> bool conversion to be more explicit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently we access individual bytes of an option vector via
ldub_phys() to test for the presence of a particular capability
within that byte. Currently this is only done for the "dynamic
reconfiguration memory" capability bit. If that bit is present,
we pass a boolean value to spapr_h_cas_compose_response()
to generate a modified device tree segment with the additional
properties required to enable this functionality.
As more capability bits are added, will would need to modify the
code to add additional option vector accesses and extend the
param list for spapr_h_cas_compose_response() to include similar
boolean values for these parameters.
Avoid this by switching to spapr_ovec_* helpers so we can do all
the parsing in one shot and then test for these additional bits
within spapr_h_cas_compose_response() directly.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For historical reasons construction of the guest device tree in spapr is
divided between spapr_create_fdt_skel() which is called at init time, and
spapr_build_fdt() which runs at reset time. Over time, more and more
things have needed to be moved to reset time.
Previous cleanups mean the only things left in spapr_create_fdt_skel() are
the properties of the root node itself. Finish consolidating these two
parts of device tree construction, by moving this to the start of
spapr_build_fdt(), and removing spapr_create_fdt_skel() entirely.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Construction of the /vdevice node (and its children) is divided between
spapr_create_fdt_skel() (at init time), which creates the base node, and
spapr_populate_vdevice() (at reset time) which creates the nodes for each
individual virtual device.
This consolidates both into a single function called from
spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Currently the /hypervisor device tree node is constructed in
spapr_create_fdt_skel(). As part of consolidating device tree construction
to reset time, move it to a function called from spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
The /event-sources device tree node is built from spapr_create_fdt_skel().
As part of consolidating device tree construction to reset time, this moves
it to spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
For historical reasons construction of the /rtas node in the device
tree (amongst others) is split into several places. In particular
it's split between spapr_create_fdt_skel(), spapr_build_fdt() and
spapr_rtas_device_tree_setup().
In fact, as well as adding the actual RTAS tokens to the device tree,
spapr_rtas_device_tree_setup() just adds the ibm,lrdr-capacity
property, which despite going in the /rtas node, doesn't have a lot to
do with RTAS.
This patch consolidates the code constructing /rtas together into a new
spapr_dt_rtas() function. spapr_rtas_device_tree_setup() is renamed to
spapr_dt_rtas_tokens() and now only adds the token properties.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
For historical reasons, building the /chosen node in the guest device tree
is split across several places and includes both parts which write the DT
sequentially and others which use random access functions.
This patch consolidates construction of the node into one place, using
random access functions throughout.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Currently the device tree node for the XICS interrupt controller is in
spapr_create_fdt_skel(). As part of consolidating device tree construction
to reset time, this moves it to a function called from spapr_build_fdt().
In addition we move the actual code into hw/intc/xics_spapr.c with the
rest of the PAPR specific interrupt controller code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
At each system reset, the pseries machine needs to load RTAS (the runtime
portion of the guest firmware) into the VM. This means copying
the actual RTAS code into guest memory, and also updating the device
tree so that the guest OS and boot firmware can locate it.
For historical reasons the copy and update to the device tree were in
different parts of the code. This cleanup brings them both together in
an spapr_load_rtas() function.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
The flattened device tree passed to pseries guests contains a list of
reserved memory areas. Currently we construct this list early in
spapr_create_fdt_skel() as we sequentially write the fdt.
This will be inconvenient for upcoming cleanups, so this patch moves
the reserve map changes to the end of fdt construction. This changes
fdt_add_reservemap_entry() calls - which work when writing the fdt
sequentially to fdt_add_mem_rsv() calls used when altering the fdt in
random access mode.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>