Machine queue, 2021-07-07

Deprecation:
 * Deprecate pmem=on with non-DAX capable backend file
   (Igor Mammedov)
 
 Feature:
 * virtio-mem: vfio support (David Hildenbrand)
 
 Cleanup:
 * vmbus: Don't make QOM property registration conditional
   (Eduardo Habkost)
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCAAyFiEEWjIv1avE09usz9GqKAeTb5hNxaYFAmDnWBgUHGVoYWJrb3N0
 QHJlZGhhdC5jb20ACgkQKAeTb5hNxaaH4A//SNp6wZ5VtK59KtnrVgGSeeqJFHC8
 NyRDy9vQgYJHwBdvQ77IahAovjV2vSD7m1bl2R4ZGUkUNl0t34oq/BvW9olZHJ6R
 Z52L92kZ8KjfWq99DbMvz3n7maR4mvTLmDcksi459V2+nf+pn9iI9Bux+dRVy6as
 u85yK7rVmkwNKakYSBHsFQBzImkf7ufWvRVe200c5rm46z3t9jVxI7p/q49J8bgi
 OurdkxXHIOAjkVbiWjxIW9pL+uf81+UUPrn6v3Pw62su47Ra5edtHopdTVJb35rh
 YTLnJnnFqXTFn+s9RZWdR8okJZdWU3PA2opeT+pFXqPP11etL59l/j1zCWuVxYCa
 afbEaZiFLTS7vhy8aXpCVi2jI+3OBDvK2+UyS4zcUxs5T25eqTUqUKHhU0zNwK0s
 srBaRbl7Clj1keV6SYRSCh79NxjMskLE9bb36fY3XaUTVoQQ5+SvvErzsZmr4U4p
 /zGf+ilQhLCOgkDxpO0NEAtWV2UlQPhdFJDTMQHACC9GCQvU0meJhwi0UuAZ2QXj
 Yoo+yhcBnOfpbqKaX+Qoc7fKruRNNM7be130ESC3AqeC2NEPXenonnkBFbCYChvB
 elMYABjsKfYwf56n4pa9PKSidDS1ld0XImcqobobqpZ4Fd6rzyPocvz1Q63zPYkd
 presZ5ePekGcW+M=
 =NEaj
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/ehabkost-gl/tags/machine-next-pull-request' into staging

Machine queue, 2021-07-07

Deprecation:
* Deprecate pmem=on with non-DAX capable backend file
  (Igor Mammedov)

Feature:
* virtio-mem: vfio support (David Hildenbrand)

Cleanup:
* vmbus: Don't make QOM property registration conditional
  (Eduardo Habkost)

# gpg: Signature made Thu 08 Jul 2021 20:55:04 BST
# gpg:                using RSA key 5A322FD5ABC4D3DBACCFD1AA2807936F984DC5A6
# gpg:                issuer "ehabkost@redhat.com"
# gpg: Good signature from "Eduardo Habkost <ehabkost@redhat.com>" [full]
# Primary key fingerprint: 5A32 2FD5 ABC4 D3DB ACCF  D1AA 2807 936F 984D C5A6

* remotes/ehabkost-gl/tags/machine-next-pull-request:
  vfio: Disable only uncoordinated discards for VFIO_TYPE1 iommus
  virtio-mem: Require only coordinated discards
  softmmu/physmem: Extend ram_block_discard_(require|disable) by two discard types
  softmmu/physmem: Don't use atomic operations in ram_block_discard_(disable|require)
  vfio: Support for RamDiscardManager in the vIOMMU case
  vfio: Sanity check maximum number of DMA mappings with RamDiscardManager
  vfio: Query and store the maximum number of possible DMA mappings
  vfio: Support for RamDiscardManager in the !vIOMMU case
  virtio-mem: Implement RamDiscardManager interface
  virtio-mem: Don't report errors when ram_block_discard_range() fails
  virtio-mem: Factor out traversing unplugged ranges
  memory: Helpers to copy/free a MemoryRegionSection
  memory: Introduce RamDiscardManager for RAM memory regions
  Deprecate pmem=on with non-DAX capable backend file
  vmbus: Don't make QOM property registration conditional

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2021-07-09 17:58:38 +01:00
commit ebd1f71002
11 changed files with 1170 additions and 126 deletions

View File

@ -221,6 +221,24 @@ This machine is deprecated because we have enough AST2500 based OpenPOWER
machines. It can be easily replaced by the ``witherspoon-bmc`` or the
``romulus-bmc`` machines.
Backend options
---------------
Using non-persistent backing file with pmem=on (since 6.1)
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
This option is used when ``memory-backend-file`` is consumed by emulated NVDIMM
device. However enabling ``memory-backend-file.pmem`` option, when backing file
is (a) not DAX capable or (b) not on a filesystem that support direct mapping
of persistent memory, is not safe and may lead to data loss or corruption in case
of host crash.
Options are:
- modify VM configuration to set ``pmem=off`` to continue using fake NVDIMM
(without persistence guaranties) with backing file on non DAX storage
- move backing file to NVDIMM storage and keep ``pmem=on``
(to have NVDIMM with persistence guaranties).
Device options
--------------

View File

@ -2372,6 +2372,14 @@ static void vmbus_dev_realize(DeviceState *dev, Error **errp)
assert(!qemu_uuid_is_null(&vdev->instanceid));
if (!qemu_uuid_is_null(&vdc->instanceid)) {
/* Class wants to only have a single instance with a fixed UUID */
if (!qemu_uuid_is_equal(&vdev->instanceid, &vdc->instanceid)) {
error_setg(&err, "instance id can't be changed");
goto error_out;
}
}
/* Check for instance id collision for this class id */
QTAILQ_FOREACH(child, &BUS(vmbus)->children, sibling) {
VMBusDevice *child_dev = VMBUS_DEVICE(child->child);
@ -2438,18 +2446,22 @@ static void vmbus_dev_unrealize(DeviceState *dev)
free_channels(vdev);
}
static Property vmbus_dev_props[] = {
DEFINE_PROP_UUID("instanceid", VMBusDevice, instanceid),
DEFINE_PROP_END_OF_LIST()
};
static void vmbus_dev_class_init(ObjectClass *klass, void *data)
{
DeviceClass *kdev = DEVICE_CLASS(klass);
device_class_set_props(kdev, vmbus_dev_props);
kdev->bus_type = TYPE_VMBUS;
kdev->realize = vmbus_dev_realize;
kdev->unrealize = vmbus_dev_unrealize;
kdev->reset = vmbus_dev_reset;
}
static Property vmbus_dev_instanceid =
DEFINE_PROP_UUID("instanceid", VMBusDevice, instanceid);
static void vmbus_dev_instance_init(Object *obj)
{
VMBusDevice *vdev = VMBUS_DEVICE(obj);
@ -2458,8 +2470,6 @@ static void vmbus_dev_instance_init(Object *obj)
if (!qemu_uuid_is_null(&vdc->instanceid)) {
/* Class wants to only have a single instance with a fixed UUID */
vdev->instanceid = vdc->instanceid;
} else {
qdev_property_add_static(DEVICE(vdev), &vmbus_dev_instanceid);
}
}

View File

@ -36,6 +36,7 @@
#include "qemu/range.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "trace.h"
#include "qapi/error.h"
#include "migration/migration.h"
@ -134,6 +135,29 @@ static const char *index_to_str(VFIODevice *vbasedev, int index)
}
}
static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
{
switch (container->iommu_type) {
case VFIO_TYPE1v2_IOMMU:
case VFIO_TYPE1_IOMMU:
/*
* We support coordinated discarding of RAM via the RamDiscardManager.
*/
return ram_block_uncoordinated_discard_disable(state);
default:
/*
* VFIO_SPAPR_TCE_IOMMU most probably works just fine with
* RamDiscardManager, however, it is completely untested.
*
* VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
* completely the opposite of managing mapping/pinning dynamically as
* required by RamDiscardManager. We would have to special-case sections
* with a RamDiscardManager.
*/
return ram_block_discard_disable(state);
}
}
int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
int action, int fd, Error **errp)
{
@ -569,6 +593,44 @@ static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
error_report("iommu map to non memory area %"HWADDR_PRIx"",
xlat);
return false;
} else if (memory_region_has_ram_discard_manager(mr)) {
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
MemoryRegionSection tmp = {
.mr = mr,
.offset_within_region = xlat,
.size = int128_make64(len),
};
/*
* Malicious VMs can map memory into the IOMMU, which is expected
* to remain discarded. vfio will pin all pages, populating memory.
* Disallow that. vmstate priorities make sure any RamDiscardManager
* were already restored before IOMMUs are restored.
*/
if (!ram_discard_manager_is_populated(rdm, &tmp)) {
error_report("iommu map to discarded memory (e.g., unplugged via"
" virtio-mem): %"HWADDR_PRIx"",
iotlb->translated_addr);
return false;
}
/*
* Malicious VMs might trigger discarding of IOMMU-mapped memory. The
* pages will remain pinned inside vfio until unmapped, resulting in a
* higher memory consumption than expected. If memory would get
* populated again later, there would be an inconsistency between pages
* pinned by vfio and pages seen by QEMU. This is the case until
* unmapped from the IOMMU (e.g., during device reset).
*
* With malicious guests, we really only care about pinning more memory
* than expected. RLIMIT_MEMLOCK set for the user/process can never be
* exceeded and can be used to mitigate this problem.
*/
warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
" RAM (e.g., virtio-mem) works, however, malicious"
" guests can trigger pinning of more memory than"
" intended via an IOMMU. It's possible to mitigate "
" by setting/adjusting RLIMIT_MEMLOCK.");
}
/*
@ -649,6 +711,153 @@ out:
rcu_read_unlock();
}
static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
MemoryRegionSection *section)
{
VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
listener);
const hwaddr size = int128_get64(section->size);
const hwaddr iova = section->offset_within_address_space;
int ret;
/* Unmap with a single call. */
ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
if (ret) {
error_report("%s: vfio_dma_unmap() failed: %s", __func__,
strerror(-ret));
}
}
static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
MemoryRegionSection *section)
{
VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
listener);
const hwaddr end = section->offset_within_region +
int128_get64(section->size);
hwaddr start, next, iova;
void *vaddr;
int ret;
/*
* Map in (aligned within memory region) minimum granularity, so we can
* unmap in minimum granularity later.
*/
for (start = section->offset_within_region; start < end; start = next) {
next = ROUND_UP(start + 1, vrdl->granularity);
next = MIN(next, end);
iova = start - section->offset_within_region +
section->offset_within_address_space;
vaddr = memory_region_get_ram_ptr(section->mr) + start;
ret = vfio_dma_map(vrdl->container, iova, next - start,
vaddr, section->readonly);
if (ret) {
/* Rollback */
vfio_ram_discard_notify_discard(rdl, section);
return ret;
}
}
return 0;
}
static void vfio_register_ram_discard_listener(VFIOContainer *container,
MemoryRegionSection *section)
{
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
VFIORamDiscardListener *vrdl;
/* Ignore some corner cases not relevant in practice. */
g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
TARGET_PAGE_SIZE));
g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
vrdl = g_new0(VFIORamDiscardListener, 1);
vrdl->container = container;
vrdl->mr = section->mr;
vrdl->offset_within_address_space = section->offset_within_address_space;
vrdl->size = int128_get64(section->size);
vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
section->mr);
g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
g_assert(vrdl->granularity >= 1 << ctz64(container->pgsizes));
ram_discard_listener_init(&vrdl->listener,
vfio_ram_discard_notify_populate,
vfio_ram_discard_notify_discard, true);
ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
/*
* Sanity-check if we have a theoretically problematic setup where we could
* exceed the maximum number of possible DMA mappings over time. We assume
* that each mapped section in the same address space as a RamDiscardManager
* section consumes exactly one DMA mapping, with the exception of
* RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
* in the same address space as RamDiscardManager sections.
*
* We assume that each section in the address space consumes one memslot.
* We take the number of KVM memory slots as a best guess for the maximum
* number of sections in the address space we could have over time,
* also consuming DMA mappings.
*/
if (container->dma_max_mappings) {
unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
#ifdef CONFIG_KVM
if (kvm_enabled()) {
max_memslots = kvm_get_max_memslots();
}
#endif
QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
hwaddr start, end;
start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
vrdl->granularity);
end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
vrdl->granularity);
vrdl_mappings += (end - start) / vrdl->granularity;
vrdl_count++;
}
if (vrdl_mappings + max_memslots - vrdl_count >
container->dma_max_mappings) {
warn_report("%s: possibly running out of DMA mappings. E.g., try"
" increasing the 'block-size' of virtio-mem devies."
" Maximum possible DMA mappings: %d, Maximum possible"
" memslots: %d", __func__, container->dma_max_mappings,
max_memslots);
}
}
}
static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
MemoryRegionSection *section)
{
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
VFIORamDiscardListener *vrdl = NULL;
QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
if (vrdl->mr == section->mr &&
vrdl->offset_within_address_space ==
section->offset_within_address_space) {
break;
}
}
if (!vrdl) {
hw_error("vfio: Trying to unregister missing RAM discard listener");
}
ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
QLIST_REMOVE(vrdl, next);
g_free(vrdl);
}
static void vfio_listener_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
@ -810,6 +1019,16 @@ static void vfio_listener_region_add(MemoryListener *listener,
/* Here we assume that memory_region_is_ram(section->mr)==true */
/*
* For RAM memory regions with a RamDiscardManager, we only want to map the
* actually populated parts - and update the mapping whenever we're notified
* about changes.
*/
if (memory_region_has_ram_discard_manager(section->mr)) {
vfio_register_ram_discard_listener(container, section);
return;
}
vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
@ -947,6 +1166,10 @@ static void vfio_listener_region_del(MemoryListener *listener,
pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
} else if (memory_region_has_ram_discard_manager(section->mr)) {
vfio_unregister_ram_discard_listener(container, section);
/* Unregistering will trigger an unmap. */
try_unmap = false;
}
if (try_unmap) {
@ -1108,6 +1331,49 @@ static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
rcu_read_unlock();
}
static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
void *opaque)
{
const hwaddr size = int128_get64(section->size);
const hwaddr iova = section->offset_within_address_space;
const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
section->offset_within_region;
VFIORamDiscardListener *vrdl = opaque;
/*
* Sync the whole mapped region (spanning multiple individual mappings)
* in one go.
*/
return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
}
static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
MemoryRegionSection *section)
{
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
VFIORamDiscardListener *vrdl = NULL;
QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
if (vrdl->mr == section->mr &&
vrdl->offset_within_address_space ==
section->offset_within_address_space) {
break;
}
}
if (!vrdl) {
hw_error("vfio: Trying to sync missing RAM discard listener");
}
/*
* We only want/can synchronize the bitmap for actually mapped parts -
* which correspond to populated parts. Replay all populated parts.
*/
return ram_discard_manager_replay_populated(rdm, section,
vfio_ram_discard_get_dirty_bitmap,
&vrdl);
}
static int vfio_sync_dirty_bitmap(VFIOContainer *container,
MemoryRegionSection *section)
{
@ -1139,6 +1405,8 @@ static int vfio_sync_dirty_bitmap(VFIOContainer *container,
}
}
return 0;
} else if (memory_region_has_ram_discard_manager(section->mr)) {
return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
}
ram_addr = memory_region_get_ram_addr(section->mr) +
@ -1732,15 +2000,25 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
* new memory, it will not yet set ram_block_discard_set_required() and
* therefore, neither stops us here or deals with the sudden memory
* consumption of inflated memory.
*
* We do support discarding of memory coordinated via the RamDiscardManager
* with some IOMMU types. vfio_ram_block_discard_disable() handles the
* details once we know which type of IOMMU we are using.
*/
ret = ram_block_discard_disable(true);
if (ret) {
error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
return ret;
}
QLIST_FOREACH(container, &space->containers, next) {
if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
ret = vfio_ram_block_discard_disable(container, true);
if (ret) {
error_setg_errno(errp, -ret,
"Cannot set discarding of RAM broken");
if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
&container->fd)) {
error_report("vfio: error disconnecting group %d from"
" container", group->groupid);
}
return ret;
}
group->container = container;
QLIST_INSERT_HEAD(&container->group_list, group, container_next);
vfio_kvm_device_add_group(group);
@ -1768,14 +2046,22 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
container->fd = fd;
container->error = NULL;
container->dirty_pages_supported = false;
container->dma_max_mappings = 0;
QLIST_INIT(&container->giommu_list);
QLIST_INIT(&container->hostwin_list);
QLIST_INIT(&container->vrdl_list);
ret = vfio_init_container(container, group->fd, errp);
if (ret) {
goto free_container_exit;
}
ret = vfio_ram_block_discard_disable(container, true);
if (ret) {
error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
goto free_container_exit;
}
switch (container->iommu_type) {
case VFIO_TYPE1v2_IOMMU:
case VFIO_TYPE1_IOMMU:
@ -1798,7 +2084,10 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
container->pgsizes = info->iova_pgsizes;
/* The default in the kernel ("dma_entry_limit") is 65535. */
container->dma_max_mappings = 65535;
if (!ret) {
vfio_get_info_dma_avail(info, &container->dma_max_mappings);
vfio_get_iommu_info_migration(container, info);
}
g_free(info);
@ -1820,7 +2109,7 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
if (ret) {
error_setg_errno(errp, errno, "failed to enable container");
ret = -errno;
goto free_container_exit;
goto enable_discards_exit;
}
} else {
container->prereg_listener = vfio_prereg_listener;
@ -1832,7 +2121,7 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
ret = -1;
error_propagate_prepend(errp, container->error,
"RAM memory listener initialization failed: ");
goto free_container_exit;
goto enable_discards_exit;
}
}
@ -1845,7 +2134,7 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
if (v2) {
memory_listener_unregister(&container->prereg_listener);
}
goto free_container_exit;
goto enable_discards_exit;
}
if (v2) {
@ -1860,7 +2149,7 @@ static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
if (ret) {
error_setg_errno(errp, -ret,
"failed to remove existing window");
goto free_container_exit;
goto enable_discards_exit;
}
} else {
/* The default table uses 4K pages */
@ -1901,6 +2190,9 @@ listener_release_exit:
vfio_kvm_device_del_group(group);
vfio_listener_release(container);
enable_discards_exit:
vfio_ram_block_discard_disable(container, false);
free_container_exit:
g_free(container);
@ -1908,7 +2200,6 @@ close_fd_exit:
close(fd);
put_space_exit:
ram_block_discard_disable(false);
vfio_put_address_space(space);
return ret;
@ -2030,7 +2321,7 @@ void vfio_put_group(VFIOGroup *group)
}
if (!group->ram_block_discard_allowed) {
ram_block_discard_disable(false);
vfio_ram_block_discard_disable(group->container, false);
}
vfio_kvm_device_del_group(group);
vfio_disconnect_container(group);
@ -2084,7 +2375,7 @@ int vfio_get_device(VFIOGroup *group, const char *name,
if (!group->ram_block_discard_allowed) {
group->ram_block_discard_allowed = true;
ram_block_discard_disable(false);
vfio_ram_block_discard_disable(group->container, false);
}
}

View File

@ -145,7 +145,173 @@ static bool virtio_mem_is_busy(void)
return migration_in_incoming_postcopy() || !migration_is_idle();
}
static bool virtio_mem_test_bitmap(VirtIOMEM *vmem, uint64_t start_gpa,
typedef int (*virtio_mem_range_cb)(const VirtIOMEM *vmem, void *arg,
uint64_t offset, uint64_t size);
static int virtio_mem_for_each_unplugged_range(const VirtIOMEM *vmem, void *arg,
virtio_mem_range_cb cb)
{
unsigned long first_zero_bit, last_zero_bit;
uint64_t offset, size;
int ret = 0;
first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size);
while (first_zero_bit < vmem->bitmap_size) {
offset = first_zero_bit * vmem->block_size;
last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
first_zero_bit + 1) - 1;
size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size;
ret = cb(vmem, arg, offset, size);
if (ret) {
break;
}
first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
last_zero_bit + 2);
}
return ret;
}
/*
* Adjust the memory section to cover the intersection with the given range.
*
* Returns false if the intersection is empty, otherwise returns true.
*/
static bool virito_mem_intersect_memory_section(MemoryRegionSection *s,
uint64_t offset, uint64_t size)
{
uint64_t start = MAX(s->offset_within_region, offset);
uint64_t end = MIN(s->offset_within_region + int128_get64(s->size),
offset + size);
if (end <= start) {
return false;
}
s->offset_within_address_space += start - s->offset_within_region;
s->offset_within_region = start;
s->size = int128_make64(end - start);
return true;
}
typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg);
static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem,
MemoryRegionSection *s,
void *arg,
virtio_mem_section_cb cb)
{
unsigned long first_bit, last_bit;
uint64_t offset, size;
int ret = 0;
first_bit = s->offset_within_region / vmem->bitmap_size;
first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit);
while (first_bit < vmem->bitmap_size) {
MemoryRegionSection tmp = *s;
offset = first_bit * vmem->block_size;
last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
first_bit + 1) - 1;
size = (last_bit - first_bit + 1) * vmem->block_size;
if (!virito_mem_intersect_memory_section(&tmp, offset, size)) {
break;
}
ret = cb(&tmp, arg);
if (ret) {
break;
}
first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
last_bit + 2);
}
return ret;
}
static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg)
{
RamDiscardListener *rdl = arg;
return rdl->notify_populate(rdl, s);
}
static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg)
{
RamDiscardListener *rdl = arg;
rdl->notify_discard(rdl, s);
return 0;
}
static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset,
uint64_t size)
{
RamDiscardListener *rdl;
QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
MemoryRegionSection tmp = *rdl->section;
if (!virito_mem_intersect_memory_section(&tmp, offset, size)) {
continue;
}
rdl->notify_discard(rdl, &tmp);
}
}
static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset,
uint64_t size)
{
RamDiscardListener *rdl, *rdl2;
int ret = 0;
QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
MemoryRegionSection tmp = *rdl->section;
if (!virito_mem_intersect_memory_section(&tmp, offset, size)) {
continue;
}
ret = rdl->notify_populate(rdl, &tmp);
if (ret) {
break;
}
}
if (ret) {
/* Notify all already-notified listeners. */
QLIST_FOREACH(rdl2, &vmem->rdl_list, next) {
MemoryRegionSection tmp = *rdl->section;
if (rdl2 == rdl) {
break;
}
if (!virito_mem_intersect_memory_section(&tmp, offset, size)) {
continue;
}
rdl2->notify_discard(rdl2, &tmp);
}
}
return ret;
}
static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem)
{
RamDiscardListener *rdl;
if (!vmem->size) {
return;
}
QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
if (rdl->double_discard_supported) {
rdl->notify_discard(rdl, rdl->section);
} else {
virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
virtio_mem_notify_discard_cb);
}
}
}
static bool virtio_mem_test_bitmap(const VirtIOMEM *vmem, uint64_t start_gpa,
uint64_t size, bool plugged)
{
const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size;
@ -198,7 +364,8 @@ static void virtio_mem_send_response_simple(VirtIOMEM *vmem,
virtio_mem_send_response(vmem, elem, &resp);
}
static bool virtio_mem_valid_range(VirtIOMEM *vmem, uint64_t gpa, uint64_t size)
static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa,
uint64_t size)
{
if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) {
return false;
@ -219,19 +386,21 @@ static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa,
uint64_t size, bool plug)
{
const uint64_t offset = start_gpa - vmem->addr;
int ret;
RAMBlock *rb = vmem->memdev->mr.ram_block;
if (virtio_mem_is_busy()) {
return -EBUSY;
}
if (!plug) {
ret = ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size);
if (ret) {
error_report("Unexpected error discarding RAM: %s",
strerror(-ret));
if (ram_block_discard_range(rb, offset, size)) {
return -EBUSY;
}
virtio_mem_notify_unplug(vmem, offset, size);
} else if (virtio_mem_notify_plug(vmem, offset, size)) {
/* Could be a mapping attempt resulted in memory getting populated. */
ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size);
return -EBUSY;
}
virtio_mem_set_bitmap(vmem, start_gpa, size, plug);
return 0;
@ -318,17 +487,16 @@ static void virtio_mem_resize_usable_region(VirtIOMEM *vmem,
static int virtio_mem_unplug_all(VirtIOMEM *vmem)
{
RAMBlock *rb = vmem->memdev->mr.ram_block;
int ret;
if (virtio_mem_is_busy()) {
return -EBUSY;
}
ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb));
if (ret) {
error_report("Unexpected error discarding RAM: %s", strerror(-ret));
if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) {
return -EBUSY;
}
virtio_mem_notify_unplug_all(vmem);
bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size);
if (vmem->size) {
vmem->size = 0;
@ -551,7 +719,7 @@ static void virtio_mem_device_realize(DeviceState *dev, Error **errp)
return;
}
if (ram_block_discard_require(true)) {
if (ram_block_coordinated_discard_require(true)) {
error_setg(errp, "Discarding RAM is disabled");
return;
}
@ -559,7 +727,7 @@ static void virtio_mem_device_realize(DeviceState *dev, Error **errp)
ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb));
if (ret) {
error_setg_errno(errp, -ret, "Unexpected error discarding RAM");
ram_block_discard_require(false);
ram_block_coordinated_discard_require(false);
return;
}
@ -577,6 +745,13 @@ static void virtio_mem_device_realize(DeviceState *dev, Error **errp)
vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem));
qemu_register_reset(virtio_mem_system_reset, vmem);
precopy_add_notifier(&vmem->precopy_notifier);
/*
* Set ourselves as RamDiscardManager before the plug handler maps the
* memory region and exposes it via an address space.
*/
memory_region_set_ram_discard_manager(&vmem->memdev->mr,
RAM_DISCARD_MANAGER(vmem));
}
static void virtio_mem_device_unrealize(DeviceState *dev)
@ -584,6 +759,11 @@ static void virtio_mem_device_unrealize(DeviceState *dev)
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtIOMEM *vmem = VIRTIO_MEM(dev);
/*
* The unplug handler unmapped the memory region, it cannot be
* found via an address space anymore. Unset ourselves.
*/
memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL);
precopy_remove_notifier(&vmem->precopy_notifier);
qemu_unregister_reset(virtio_mem_system_reset, vmem);
vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem));
@ -591,43 +771,47 @@ static void virtio_mem_device_unrealize(DeviceState *dev)
virtio_del_queue(vdev, 0);
virtio_cleanup(vdev);
g_free(vmem->bitmap);
ram_block_discard_require(false);
ram_block_coordinated_discard_require(false);
}
static int virtio_mem_discard_range_cb(const VirtIOMEM *vmem, void *arg,
uint64_t offset, uint64_t size)
{
RAMBlock *rb = vmem->memdev->mr.ram_block;
return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0;
}
static int virtio_mem_restore_unplugged(VirtIOMEM *vmem)
{
RAMBlock *rb = vmem->memdev->mr.ram_block;
unsigned long first_zero_bit, last_zero_bit;
uint64_t offset, length;
int ret;
/* Find consecutive unplugged blocks and discard the consecutive range. */
first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size);
while (first_zero_bit < vmem->bitmap_size) {
offset = first_zero_bit * vmem->block_size;
last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
first_zero_bit + 1) - 1;
length = (last_zero_bit - first_zero_bit + 1) * vmem->block_size;
ret = ram_block_discard_range(rb, offset, length);
if (ret) {
error_report("Unexpected error discarding RAM: %s",
strerror(-ret));
return -EINVAL;
}
first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
last_zero_bit + 2);
}
return 0;
/* Make sure all memory is really discarded after migration. */
return virtio_mem_for_each_unplugged_range(vmem, NULL,
virtio_mem_discard_range_cb);
}
static int virtio_mem_post_load(void *opaque, int version_id)
{
VirtIOMEM *vmem = VIRTIO_MEM(opaque);
RamDiscardListener *rdl;
int ret;
/*
* We started out with all memory discarded and our memory region is mapped
* into an address space. Replay, now that we updated the bitmap.
*/
QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
virtio_mem_notify_populate_cb);
if (ret) {
return ret;
}
}
if (migration_in_incoming_postcopy()) {
return 0;
}
return virtio_mem_restore_unplugged(VIRTIO_MEM(opaque));
return virtio_mem_restore_unplugged(vmem);
}
typedef struct VirtIOMEMMigSanityChecks {
@ -702,6 +886,7 @@ static const VMStateDescription vmstate_virtio_mem_device = {
.name = "virtio-mem-device",
.minimum_version_id = 1,
.version_id = 1,
.priority = MIG_PRI_VIRTIO_MEM,
.post_load = virtio_mem_post_load,
.fields = (VMStateField[]) {
VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks,
@ -872,28 +1057,19 @@ static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name,
vmem->block_size = value;
}
static void virtio_mem_precopy_exclude_unplugged(VirtIOMEM *vmem)
static int virtio_mem_precopy_exclude_range_cb(const VirtIOMEM *vmem, void *arg,
uint64_t offset, uint64_t size)
{
void * const host = qemu_ram_get_host_addr(vmem->memdev->mr.ram_block);
unsigned long first_zero_bit, last_zero_bit;
uint64_t offset, length;
/*
* Find consecutive unplugged blocks and exclude them from migration.
*
* Note: Blocks cannot get (un)plugged during precopy, no locking needed.
*/
first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size);
while (first_zero_bit < vmem->bitmap_size) {
offset = first_zero_bit * vmem->block_size;
last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
first_zero_bit + 1) - 1;
length = (last_zero_bit - first_zero_bit + 1) * vmem->block_size;
qemu_guest_free_page_hint(host + offset, size);
return 0;
}
qemu_guest_free_page_hint(host + offset, length);
first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
last_zero_bit + 2);
}
static void virtio_mem_precopy_exclude_unplugged(VirtIOMEM *vmem)
{
virtio_mem_for_each_unplugged_range(vmem, NULL,
virtio_mem_precopy_exclude_range_cb);
}
static int virtio_mem_precopy_notify(NotifierWithReturn *n, void *data)
@ -918,6 +1094,7 @@ static void virtio_mem_instance_init(Object *obj)
notifier_list_init(&vmem->size_change_notifiers);
vmem->precopy_notifier.notify = virtio_mem_precopy_notify;
QLIST_INIT(&vmem->rdl_list);
object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size,
NULL, NULL, NULL);
@ -937,11 +1114,107 @@ static Property virtio_mem_properties[] = {
DEFINE_PROP_END_OF_LIST(),
};
static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm,
const MemoryRegion *mr)
{
const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
g_assert(mr == &vmem->memdev->mr);
return vmem->block_size;
}
static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm,
const MemoryRegionSection *s)
{
const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
uint64_t start_gpa = vmem->addr + s->offset_within_region;
uint64_t end_gpa = start_gpa + int128_get64(s->size);
g_assert(s->mr == &vmem->memdev->mr);
start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size);
end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size);
if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) {
return false;
}
return virtio_mem_test_bitmap(vmem, start_gpa, end_gpa - start_gpa, true);
}
struct VirtIOMEMReplayData {
void *fn;
void *opaque;
};
static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg)
{
struct VirtIOMEMReplayData *data = arg;
return ((ReplayRamPopulate)data->fn)(s, data->opaque);
}
static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm,
MemoryRegionSection *s,
ReplayRamPopulate replay_fn,
void *opaque)
{
const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
struct VirtIOMEMReplayData data = {
.fn = replay_fn,
.opaque = opaque,
};
g_assert(s->mr == &vmem->memdev->mr);
return virtio_mem_for_each_plugged_section(vmem, s, &data,
virtio_mem_rdm_replay_populated_cb);
}
static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl,
MemoryRegionSection *s)
{
VirtIOMEM *vmem = VIRTIO_MEM(rdm);
int ret;
g_assert(s->mr == &vmem->memdev->mr);
rdl->section = memory_region_section_new_copy(s);
QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next);
ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
virtio_mem_notify_populate_cb);
if (ret) {
error_report("%s: Replaying plugged ranges failed: %s", __func__,
strerror(-ret));
}
}
static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl)
{
VirtIOMEM *vmem = VIRTIO_MEM(rdm);
g_assert(rdl->section->mr == &vmem->memdev->mr);
if (vmem->size) {
if (rdl->double_discard_supported) {
rdl->notify_discard(rdl, rdl->section);
} else {
virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
virtio_mem_notify_discard_cb);
}
}
memory_region_section_free_copy(rdl->section);
rdl->section = NULL;
QLIST_REMOVE(rdl, next);
}
static void virtio_mem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass);
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass);
device_class_set_props(dc, virtio_mem_properties);
dc->vmsd = &vmstate_virtio_mem;
@ -957,6 +1230,12 @@ static void virtio_mem_class_init(ObjectClass *klass, void *data)
vmc->get_memory_region = virtio_mem_get_memory_region;
vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier;
vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier;
rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity;
rdmc->is_populated = virtio_mem_rdm_is_populated;
rdmc->replay_populated = virtio_mem_rdm_replay_populated;
rdmc->register_listener = virtio_mem_rdm_register_listener;
rdmc->unregister_listener = virtio_mem_rdm_unregister_listener;
}
static const TypeInfo virtio_mem_info = {
@ -966,6 +1245,10 @@ static const TypeInfo virtio_mem_info = {
.instance_init = virtio_mem_instance_init,
.class_init = virtio_mem_class_init,
.class_size = sizeof(VirtIOMEMClass),
.interfaces = (InterfaceInfo[]) {
{ TYPE_RAM_DISCARD_MANAGER },
{ }
},
};
static void virtio_register_types(void)

View File

@ -42,6 +42,12 @@ typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
typedef struct RamDiscardManagerClass RamDiscardManagerClass;
typedef struct RamDiscardManager RamDiscardManager;
DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
#ifdef CONFIG_FUZZ
void fuzz_dma_read_cb(size_t addr,
size_t len,
@ -65,6 +71,28 @@ struct ReservedRegion {
unsigned type;
};
/**
* struct MemoryRegionSection: describes a fragment of a #MemoryRegion
*
* @mr: the region, or %NULL if empty
* @fv: the flat view of the address space the region is mapped in
* @offset_within_region: the beginning of the section, relative to @mr's start
* @size: the size of the section; will not exceed @mr's boundaries
* @offset_within_address_space: the address of the first byte of the section
* relative to the region's address space
* @readonly: writes to this section are ignored
* @nonvolatile: this section is non-volatile
*/
struct MemoryRegionSection {
Int128 size;
MemoryRegion *mr;
FlatView *fv;
hwaddr offset_within_region;
hwaddr offset_within_address_space;
bool readonly;
bool nonvolatile;
};
typedef struct IOMMUTLBEntry IOMMUTLBEntry;
/* See address_space_translate: bit 0 is read, bit 1 is write. */
@ -448,6 +476,206 @@ struct IOMMUMemoryRegionClass {
Error **errp);
};
typedef struct RamDiscardListener RamDiscardListener;
typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
MemoryRegionSection *section);
typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
MemoryRegionSection *section);
struct RamDiscardListener {
/*
* @notify_populate:
*
* Notification that previously discarded memory is about to get populated.
* Listeners are able to object. If any listener objects, already
* successfully notified listeners are notified about a discard again.
*
* @rdl: the #RamDiscardListener getting notified
* @section: the #MemoryRegionSection to get populated. The section
* is aligned within the memory region to the minimum granularity
* unless it would exceed the registered section.
*
* Returns 0 on success. If the notification is rejected by the listener,
* an error is returned.
*/
NotifyRamPopulate notify_populate;
/*
* @notify_discard:
*
* Notification that previously populated memory was discarded successfully
* and listeners should drop all references to such memory and prevent
* new population (e.g., unmap).
*
* @rdl: the #RamDiscardListener getting notified
* @section: the #MemoryRegionSection to get populated. The section
* is aligned within the memory region to the minimum granularity
* unless it would exceed the registered section.
*/
NotifyRamDiscard notify_discard;
/*
* @double_discard_supported:
*
* The listener suppors getting @notify_discard notifications that span
* already discarded parts.
*/
bool double_discard_supported;
MemoryRegionSection *section;
QLIST_ENTRY(RamDiscardListener) next;
};
static inline void ram_discard_listener_init(RamDiscardListener *rdl,
NotifyRamPopulate populate_fn,
NotifyRamDiscard discard_fn,
bool double_discard_supported)
{
rdl->notify_populate = populate_fn;
rdl->notify_discard = discard_fn;
rdl->double_discard_supported = double_discard_supported;
}
typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
/*
* RamDiscardManagerClass:
*
* A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
* regions are currently populated to be used/accessed by the VM, notifying
* after parts were discarded (freeing up memory) and before parts will be
* populated (consuming memory), to be used/acessed by the VM.
*
* A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
* #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
* mapped.
*
* The #RamDiscardManager is intended to be used by technologies that are
* incompatible with discarding of RAM (e.g., VFIO, which may pin all
* memory inside a #MemoryRegion), and require proper coordination to only
* map the currently populated parts, to hinder parts that are expected to
* remain discarded from silently getting populated and consuming memory.
* Technologies that support discarding of RAM don't have to bother and can
* simply map the whole #MemoryRegion.
*
* An example #RamDiscardManager is virtio-mem, which logically (un)plugs
* memory within an assigned RAM #MemoryRegion, coordinated with the VM.
* Logically unplugging memory consists of discarding RAM. The VM agreed to not
* access unplugged (discarded) memory - especially via DMA. virtio-mem will
* properly coordinate with listeners before memory is plugged (populated),
* and after memory is unplugged (discarded).
*
* Listeners are called in multiples of the minimum granularity (unless it
* would exceed the registered range) and changes are aligned to the minimum
* granularity within the #MemoryRegion. Listeners have to prepare for memory
* becomming discarded in a different granularity than it was populated and the
* other way around.
*/
struct RamDiscardManagerClass {
/* private */
InterfaceClass parent_class;
/* public */
/**
* @get_min_granularity:
*
* Get the minimum granularity in which listeners will get notified
* about changes within the #MemoryRegion via the #RamDiscardManager.
*
* @rdm: the #RamDiscardManager
* @mr: the #MemoryRegion
*
* Returns the minimum granularity.
*/
uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
const MemoryRegion *mr);
/**
* @is_populated:
*
* Check whether the given #MemoryRegionSection is completely populated
* (i.e., no parts are currently discarded) via the #RamDiscardManager.
* There are no alignment requirements.
*
* @rdm: the #RamDiscardManager
* @section: the #MemoryRegionSection
*
* Returns whether the given range is completely populated.
*/
bool (*is_populated)(const RamDiscardManager *rdm,
const MemoryRegionSection *section);
/**
* @replay_populated:
*
* Call the #ReplayRamPopulate callback for all populated parts within the
* #MemoryRegionSection via the #RamDiscardManager.
*
* In case any call fails, no further calls are made.
*
* @rdm: the #RamDiscardManager
* @section: the #MemoryRegionSection
* @replay_fn: the #ReplayRamPopulate callback
* @opaque: pointer to forward to the callback
*
* Returns 0 on success, or a negative error if any notification failed.
*/
int (*replay_populated)(const RamDiscardManager *rdm,
MemoryRegionSection *section,
ReplayRamPopulate replay_fn, void *opaque);
/**
* @register_listener:
*
* Register a #RamDiscardListener for the given #MemoryRegionSection and
* immediately notify the #RamDiscardListener about all populated parts
* within the #MemoryRegionSection via the #RamDiscardManager.
*
* In case any notification fails, no further notifications are triggered
* and an error is logged.
*
* @rdm: the #RamDiscardManager
* @rdl: the #RamDiscardListener
* @section: the #MemoryRegionSection
*/
void (*register_listener)(RamDiscardManager *rdm,
RamDiscardListener *rdl,
MemoryRegionSection *section);
/**
* @unregister_listener:
*
* Unregister a previously registered #RamDiscardListener via the
* #RamDiscardManager after notifying the #RamDiscardListener about all
* populated parts becoming unpopulated within the registered
* #MemoryRegionSection.
*
* @rdm: the #RamDiscardManager
* @rdl: the #RamDiscardListener
*/
void (*unregister_listener)(RamDiscardManager *rdm,
RamDiscardListener *rdl);
};
uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
const MemoryRegion *mr);
bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
const MemoryRegionSection *section);
int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
MemoryRegionSection *section,
ReplayRamPopulate replay_fn,
void *opaque);
void ram_discard_manager_register_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl,
MemoryRegionSection *section);
void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl);
typedef struct CoalescedMemoryRange CoalescedMemoryRange;
typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
@ -494,6 +722,7 @@ struct MemoryRegion {
const char *name;
unsigned ioeventfd_nb;
MemoryRegionIoeventfd *ioeventfds;
RamDiscardManager *rdm; /* Only for RAM */
};
struct IOMMUMemoryRegion {
@ -825,28 +1054,6 @@ typedef bool (*flatview_cb)(Int128 start,
*/
void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
/**
* struct MemoryRegionSection: describes a fragment of a #MemoryRegion
*
* @mr: the region, or %NULL if empty
* @fv: the flat view of the address space the region is mapped in
* @offset_within_region: the beginning of the section, relative to @mr's start
* @size: the size of the section; will not exceed @mr's boundaries
* @offset_within_address_space: the address of the first byte of the section
* relative to the region's address space
* @readonly: writes to this section are ignored
* @nonvolatile: this section is non-volatile
*/
struct MemoryRegionSection {
Int128 size;
MemoryRegion *mr;
FlatView *fv;
hwaddr offset_within_region;
hwaddr offset_within_address_space;
bool readonly;
bool nonvolatile;
};
static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
MemoryRegionSection *b)
{
@ -859,6 +1066,26 @@ static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
a->nonvolatile == b->nonvolatile;
}
/**
* memory_region_section_new_copy: Copy a memory region section
*
* Allocate memory for a new copy, copy the memory region section, and
* properly take a reference on all relevant members.
*
* @s: the #MemoryRegionSection to copy
*/
MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
/**
* memory_region_section_new_copy: Free a copied memory region section
*
* Free a copy of a memory section created via memory_region_section_new_copy().
* properly dropping references on all relevant members.
*
* @s: the #MemoryRegionSection to copy
*/
void memory_region_section_free_copy(MemoryRegionSection *s);
/**
* memory_region_init: Initialize a memory region
*
@ -2023,6 +2250,41 @@ bool memory_region_present(MemoryRegion *container, hwaddr addr);
*/
bool memory_region_is_mapped(MemoryRegion *mr);
/**
* memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
* #MemoryRegion
*
* The #RamDiscardManager cannot change while a memory region is mapped.
*
* @mr: the #MemoryRegion
*/
RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
/**
* memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
* #RamDiscardManager assigned
*
* @mr: the #MemoryRegion
*/
static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
{
return !!memory_region_get_ram_discard_manager(mr);
}
/**
* memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
* #MemoryRegion
*
* This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
* that does not cover RAM, or a #MemoryRegion that already has a
* #RamDiscardManager assigned.
*
* @mr: the #MemoryRegion
* @rdm: #RamDiscardManager to set
*/
void memory_region_set_ram_discard_manager(MemoryRegion *mr,
RamDiscardManager *rdm);
/**
* memory_region_find: translate an address/size relative to a
* MemoryRegion into a #MemoryRegionSection.
@ -2631,6 +2893,12 @@ static inline MemOp devend_memop(enum device_endian end)
*/
int ram_block_discard_disable(bool state);
/*
* See ram_block_discard_disable(): only disable uncoordinated discards,
* keeping coordinated discards (via the RamDiscardManager) enabled.
*/
int ram_block_uncoordinated_discard_disable(bool state);
/*
* Inhibit technologies that disable discarding of pages in RAM blocks.
*
@ -2640,12 +2908,20 @@ int ram_block_discard_disable(bool state);
int ram_block_discard_require(bool state);
/*
* Test if discarding of memory in ram blocks is disabled.
* See ram_block_discard_require(): only inhibit technologies that disable
* uncoordinated discarding of pages in RAM blocks, allowing co-existance with
* technologies that only inhibit uncoordinated discards (via the
* RamDiscardManager).
*/
int ram_block_coordinated_discard_require(bool state);
/*
* Test if any discarding of memory in ram blocks is disabled.
*/
bool ram_block_discard_is_disabled(void);
/*
* Test if discarding of memory in ram blocks is required to work reliably.
* Test if any discarding of memory in ram blocks is required to work reliably.
*/
bool ram_block_discard_is_required(void);

View File

@ -88,9 +88,11 @@ typedef struct VFIOContainer {
uint64_t dirty_pgsizes;
uint64_t max_dirty_bitmap_size;
unsigned long pgsizes;
unsigned int dma_max_mappings;
QLIST_HEAD(, VFIOGuestIOMMU) giommu_list;
QLIST_HEAD(, VFIOHostDMAWindow) hostwin_list;
QLIST_HEAD(, VFIOGroup) group_list;
QLIST_HEAD(, VFIORamDiscardListener) vrdl_list;
QLIST_ENTRY(VFIOContainer) next;
} VFIOContainer;
@ -102,6 +104,16 @@ typedef struct VFIOGuestIOMMU {
QLIST_ENTRY(VFIOGuestIOMMU) giommu_next;
} VFIOGuestIOMMU;
typedef struct VFIORamDiscardListener {
VFIOContainer *container;
MemoryRegion *mr;
hwaddr offset_within_address_space;
hwaddr size;
uint64_t granularity;
RamDiscardListener listener;
QLIST_ENTRY(VFIORamDiscardListener) next;
} VFIORamDiscardListener;
typedef struct VFIOHostDMAWindow {
hwaddr min_iova;
hwaddr max_iova;

View File

@ -67,6 +67,9 @@ struct VirtIOMEM {
/* don't migrate unplugged memory */
NotifierWithReturn precopy_notifier;
/* listeners to notify on plug/unplug activity. */
QLIST_HEAD(, RamDiscardListener) rdl_list;
};
struct VirtIOMEMClass {

View File

@ -153,6 +153,7 @@ typedef enum {
MIG_PRI_DEFAULT = 0,
MIG_PRI_IOMMU, /* Must happen before PCI devices */
MIG_PRI_PCI_BUS, /* Must happen before IOMMU */
MIG_PRI_VIRTIO_MEM, /* Must happen before IOMMU */
MIG_PRI_GICV3_ITS, /* Must happen before PCI devices */
MIG_PRI_GICV3, /* Must happen before the ITS */
MIG_PRI_MAX,

View File

@ -2027,6 +2027,70 @@ int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
return imrc->num_indexes(iommu_mr);
}
RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
{
if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
return NULL;
}
return mr->rdm;
}
void memory_region_set_ram_discard_manager(MemoryRegion *mr,
RamDiscardManager *rdm)
{
g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
g_assert(!rdm || !mr->rdm);
mr->rdm = rdm;
}
uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
const MemoryRegion *mr)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->get_min_granularity);
return rdmc->get_min_granularity(rdm, mr);
}
bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
const MemoryRegionSection *section)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->is_populated);
return rdmc->is_populated(rdm, section);
}
int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
MemoryRegionSection *section,
ReplayRamPopulate replay_fn,
void *opaque)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->replay_populated);
return rdmc->replay_populated(rdm, section, replay_fn, opaque);
}
void ram_discard_manager_register_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl,
MemoryRegionSection *section)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->register_listener);
rdmc->register_listener(rdm, rdl, section);
}
void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->unregister_listener);
rdmc->unregister_listener(rdm, rdl);
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
@ -2637,6 +2701,33 @@ MemoryRegionSection memory_region_find(MemoryRegion *mr,
return ret;
}
MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
{
MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
*tmp = *s;
if (tmp->mr) {
memory_region_ref(tmp->mr);
}
if (tmp->fv) {
bool ret = flatview_ref(tmp->fv);
g_assert(ret);
}
return tmp;
}
void memory_region_section_free_copy(MemoryRegionSection *s)
{
if (s->fv) {
flatview_unref(s->fv);
}
if (s->mr) {
memory_region_unref(s->mr);
}
g_free(s);
}
bool memory_region_present(MemoryRegion *container, hwaddr addr)
{
MemoryRegion *mr;
@ -3320,10 +3411,17 @@ static const TypeInfo iommu_memory_region_info = {
.abstract = true,
};
static const TypeInfo ram_discard_manager_info = {
.parent = TYPE_INTERFACE,
.name = TYPE_RAM_DISCARD_MANAGER,
.class_size = sizeof(RamDiscardManagerClass),
};
static void memory_register_types(void)
{
type_register_static(&memory_region_info);
type_register_static(&iommu_memory_region_info);
type_register_static(&ram_discard_manager_info);
}
type_init(memory_register_types)

View File

@ -3684,56 +3684,106 @@ void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
}
}
/*
* If positive, discarding RAM is disabled. If negative, discarding RAM is
* required to work and cannot be disabled.
*/
static int ram_block_discard_disabled;
/* Require any discards to work. */
static unsigned int ram_block_discard_required_cnt;
/* Require only coordinated discards to work. */
static unsigned int ram_block_coordinated_discard_required_cnt;
/* Disable any discards. */
static unsigned int ram_block_discard_disabled_cnt;
/* Disable only uncoordinated discards. */
static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
static QemuMutex ram_block_discard_disable_mutex;
static void ram_block_discard_disable_mutex_lock(void)
{
static gsize initialized;
if (g_once_init_enter(&initialized)) {
qemu_mutex_init(&ram_block_discard_disable_mutex);
g_once_init_leave(&initialized, 1);
}
qemu_mutex_lock(&ram_block_discard_disable_mutex);
}
static void ram_block_discard_disable_mutex_unlock(void)
{
qemu_mutex_unlock(&ram_block_discard_disable_mutex);
}
int ram_block_discard_disable(bool state)
{
int old;
int ret = 0;
ram_block_discard_disable_mutex_lock();
if (!state) {
qatomic_dec(&ram_block_discard_disabled);
return 0;
ram_block_discard_disabled_cnt--;
} else if (ram_block_discard_required_cnt ||
ram_block_coordinated_discard_required_cnt) {
ret = -EBUSY;
} else {
ram_block_discard_disabled_cnt++;
}
ram_block_discard_disable_mutex_unlock();
return ret;
}
do {
old = qatomic_read(&ram_block_discard_disabled);
if (old < 0) {
return -EBUSY;
}
} while (qatomic_cmpxchg(&ram_block_discard_disabled,
old, old + 1) != old);
return 0;
int ram_block_uncoordinated_discard_disable(bool state)
{
int ret = 0;
ram_block_discard_disable_mutex_lock();
if (!state) {
ram_block_uncoordinated_discard_disabled_cnt--;
} else if (ram_block_discard_required_cnt) {
ret = -EBUSY;
} else {
ram_block_uncoordinated_discard_disabled_cnt++;
}
ram_block_discard_disable_mutex_unlock();
return ret;
}
int ram_block_discard_require(bool state)
{
int old;
int ret = 0;
ram_block_discard_disable_mutex_lock();
if (!state) {
qatomic_inc(&ram_block_discard_disabled);
return 0;
ram_block_discard_required_cnt--;
} else if (ram_block_discard_disabled_cnt ||
ram_block_uncoordinated_discard_disabled_cnt) {
ret = -EBUSY;
} else {
ram_block_discard_required_cnt++;
}
ram_block_discard_disable_mutex_unlock();
return ret;
}
do {
old = qatomic_read(&ram_block_discard_disabled);
if (old > 0) {
return -EBUSY;
}
} while (qatomic_cmpxchg(&ram_block_discard_disabled,
old, old - 1) != old);
return 0;
int ram_block_coordinated_discard_require(bool state)
{
int ret = 0;
ram_block_discard_disable_mutex_lock();
if (!state) {
ram_block_coordinated_discard_required_cnt--;
} else if (ram_block_discard_disabled_cnt) {
ret = -EBUSY;
} else {
ram_block_coordinated_discard_required_cnt++;
}
ram_block_discard_disable_mutex_unlock();
return ret;
}
bool ram_block_discard_is_disabled(void)
{
return qatomic_read(&ram_block_discard_disabled) > 0;
return qatomic_read(&ram_block_discard_disabled_cnt) ||
qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
}
bool ram_block_discard_is_required(void)
{
return qatomic_read(&ram_block_discard_disabled) < 0;
return qatomic_read(&ram_block_discard_required_cnt) ||
qatomic_read(&ram_block_coordinated_discard_required_cnt);
}

View File

@ -225,6 +225,8 @@ static void *mmap_activate(void *ptr, size_t size, int fd,
"crash.\n", file_name);
g_free(proc_link);
g_free(file_name);
warn_report("Using non DAX backing file with 'pmem=on' option"
" is deprecated");
}
/*
* If mmap failed with MAP_SHARED_VALIDATE | MAP_SYNC, we will try