mirror of
https://github.com/qemu/qemu.git
synced 2024-11-24 19:33:39 +08:00
softfloat: Move int_to_float to softfloat-parts.c.inc
Rename to parts$N_sint_to_float. Reimplement int{32,64}_to_float128 with FloatParts128. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
4ab4aef018
commit
e368951998
@ -883,3 +883,35 @@ static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
|
||||
float_raise(flags, s);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* Integer to float conversions
|
||||
*
|
||||
* Returns the result of converting the two's complement integer `a'
|
||||
* to the floating-point format. The conversion is performed according
|
||||
* to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*/
|
||||
static void partsN(sint_to_float)(FloatPartsN *p, int64_t a,
|
||||
int scale, float_status *s)
|
||||
{
|
||||
uint64_t f = a;
|
||||
int shift;
|
||||
|
||||
memset(p, 0, sizeof(*p));
|
||||
|
||||
if (a == 0) {
|
||||
p->cls = float_class_zero;
|
||||
return;
|
||||
}
|
||||
|
||||
p->cls = float_class_normal;
|
||||
if (a < 0) {
|
||||
f = -f;
|
||||
p->sign = true;
|
||||
}
|
||||
shift = clz64(f);
|
||||
scale = MIN(MAX(scale, -0x10000), 0x10000);
|
||||
|
||||
p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
|
||||
p->frac_hi = f << shift;
|
||||
}
|
||||
|
136
fpu/softfloat.c
136
fpu/softfloat.c
@ -849,6 +849,14 @@ static uint64_t parts128_float_to_uint(FloatParts128 *p, FloatRoundMode rmode,
|
||||
#define parts_float_to_uint(P, R, Z, M, S) \
|
||||
PARTS_GENERIC_64_128(float_to_uint, P)(P, R, Z, M, S)
|
||||
|
||||
static void parts64_sint_to_float(FloatParts64 *p, int64_t a,
|
||||
int scale, float_status *s);
|
||||
static void parts128_sint_to_float(FloatParts128 *p, int64_t a,
|
||||
int scale, float_status *s);
|
||||
|
||||
#define parts_sint_to_float(P, I, Z, S) \
|
||||
PARTS_GENERIC_64_128(sint_to_float, P)(P, I, Z, S)
|
||||
|
||||
/*
|
||||
* Helper functions for softfloat-parts.c.inc, per-size operations.
|
||||
*/
|
||||
@ -2940,42 +2948,15 @@ uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *s)
|
||||
}
|
||||
|
||||
/*
|
||||
* Integer to float conversions
|
||||
*
|
||||
* Returns the result of converting the two's complement integer `a'
|
||||
* to the floating-point format. The conversion is performed according
|
||||
* to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
* Signed integer to floating-point conversions
|
||||
*/
|
||||
|
||||
static FloatParts64 int_to_float(int64_t a, int scale, float_status *status)
|
||||
{
|
||||
FloatParts64 r = { .sign = false };
|
||||
|
||||
if (a == 0) {
|
||||
r.cls = float_class_zero;
|
||||
} else {
|
||||
uint64_t f = a;
|
||||
int shift;
|
||||
|
||||
r.cls = float_class_normal;
|
||||
if (a < 0) {
|
||||
f = -f;
|
||||
r.sign = true;
|
||||
}
|
||||
shift = clz64(f);
|
||||
scale = MIN(MAX(scale, -0x10000), 0x10000);
|
||||
|
||||
r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
|
||||
r.frac = f << shift;
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
|
||||
{
|
||||
FloatParts64 pa = int_to_float(a, scale, status);
|
||||
return float16_round_pack_canonical(&pa, status);
|
||||
FloatParts64 p;
|
||||
|
||||
parts_sint_to_float(&p, a, scale, status);
|
||||
return float16_round_pack_canonical(&p, status);
|
||||
}
|
||||
|
||||
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
|
||||
@ -3010,8 +2991,10 @@ float16 int8_to_float16(int8_t a, float_status *status)
|
||||
|
||||
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
|
||||
{
|
||||
FloatParts64 pa = int_to_float(a, scale, status);
|
||||
return float32_round_pack_canonical(&pa, status);
|
||||
FloatParts64 p;
|
||||
|
||||
parts64_sint_to_float(&p, a, scale, status);
|
||||
return float32_round_pack_canonical(&p, status);
|
||||
}
|
||||
|
||||
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
|
||||
@ -3041,8 +3024,10 @@ float32 int16_to_float32(int16_t a, float_status *status)
|
||||
|
||||
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
|
||||
{
|
||||
FloatParts64 pa = int_to_float(a, scale, status);
|
||||
return float64_round_pack_canonical(&pa, status);
|
||||
FloatParts64 p;
|
||||
|
||||
parts_sint_to_float(&p, a, scale, status);
|
||||
return float64_round_pack_canonical(&p, status);
|
||||
}
|
||||
|
||||
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
|
||||
@ -3070,15 +3055,12 @@ float64 int16_to_float64(int16_t a, float_status *status)
|
||||
return int64_to_float64_scalbn(a, 0, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the result of converting the two's complement integer `a'
|
||||
* to the bfloat16 format.
|
||||
*/
|
||||
|
||||
bfloat16 int64_to_bfloat16_scalbn(int64_t a, int scale, float_status *status)
|
||||
{
|
||||
FloatParts64 pa = int_to_float(a, scale, status);
|
||||
return bfloat16_round_pack_canonical(&pa, status);
|
||||
FloatParts64 p;
|
||||
|
||||
parts_sint_to_float(&p, a, scale, status);
|
||||
return bfloat16_round_pack_canonical(&p, status);
|
||||
}
|
||||
|
||||
bfloat16 int32_to_bfloat16_scalbn(int32_t a, int scale, float_status *status)
|
||||
@ -3106,6 +3088,19 @@ bfloat16 int16_to_bfloat16(int16_t a, float_status *status)
|
||||
return int64_to_bfloat16_scalbn(a, 0, status);
|
||||
}
|
||||
|
||||
float128 int64_to_float128(int64_t a, float_status *status)
|
||||
{
|
||||
FloatParts128 p;
|
||||
|
||||
parts_sint_to_float(&p, a, 0, status);
|
||||
return float128_round_pack_canonical(&p, status);
|
||||
}
|
||||
|
||||
float128 int32_to_float128(int32_t a, float_status *status)
|
||||
{
|
||||
return int64_to_float128(a, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Unsigned Integer to float conversions
|
||||
*
|
||||
@ -4956,28 +4951,6 @@ floatx80 int32_to_floatx80(int32_t a, float_status *status)
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 32-bit two's complement integer `a' to
|
||||
| the quadruple-precision floating-point format. The conversion is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float128 int32_to_float128(int32_t a, float_status *status)
|
||||
{
|
||||
bool zSign;
|
||||
uint32_t absA;
|
||||
int8_t shiftCount;
|
||||
uint64_t zSig0;
|
||||
|
||||
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
||||
zSign = ( a < 0 );
|
||||
absA = zSign ? - a : a;
|
||||
shiftCount = clz32(absA) + 17;
|
||||
zSig0 = absA;
|
||||
return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit two's complement integer `a'
|
||||
| to the extended double-precision floating-point format. The conversion
|
||||
@ -4999,39 +4972,6 @@ floatx80 int64_to_floatx80(int64_t a, float_status *status)
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit two's complement integer `a' to
|
||||
| the quadruple-precision floating-point format. The conversion is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float128 int64_to_float128(int64_t a, float_status *status)
|
||||
{
|
||||
bool zSign;
|
||||
uint64_t absA;
|
||||
int8_t shiftCount;
|
||||
int32_t zExp;
|
||||
uint64_t zSig0, zSig1;
|
||||
|
||||
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
||||
zSign = ( a < 0 );
|
||||
absA = zSign ? - a : a;
|
||||
shiftCount = clz64(absA) + 49;
|
||||
zExp = 0x406E - shiftCount;
|
||||
if ( 64 <= shiftCount ) {
|
||||
zSig1 = 0;
|
||||
zSig0 = absA;
|
||||
shiftCount -= 64;
|
||||
}
|
||||
else {
|
||||
zSig1 = absA;
|
||||
zSig0 = 0;
|
||||
}
|
||||
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
||||
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit unsigned integer `a'
|
||||
| to the quadruple-precision floating-point format. The conversion is performed
|
||||
|
Loading…
Reference in New Issue
Block a user