* hw: arm: Set vendor property for IMX SDHCI emulations

* sd: sdhci: Implement basic vendor specific register support
  * hw/net/imx_fec: Convert debug fprintf() to trace events
  * target/arm/cpu: adjust virtual time for all KVM arm cpus
  * Implement configurable descriptor size in ftgmac100
  * hw/misc/imx6ul_ccm: Implement non writable bits in CCM registers
  * target/arm: More Neon decodetree conversion work
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAl7olzoZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3kkqD/9UtCpXnSTQemK5ejuUrhnb
 LLtth7ce+XHPIoxyEeaAR89umZkooAjFG5ySnZ5QV5b0FxWrcUyK2saDdBKNHhcG
 En2kWJxebbAbMAw+vvgWx/NgzbpTwGsdYw7h2gmwpJ0RLqjzfMxwXIm4sA3g9kHs
 d2ymitwiDvAhQZHJzJ3nWZQ4QUJyDueWuHy5mjBEjAmU3R1YkOAzNCJisq3zMzFV
 4bLhA48HnqqJc8sfDqiNSk1+NoP9BUhORHtgPmz2V2RVbT6fHsIyP+pAD+vZIPht
 NmEY86RmCbuNWrPfYSnCaqx86Jj0T5ZghFlfOlKwy+AghebsAjlQmV5QvksjR5NA
 1um0usrnsMT5AF0Hmca7wMizc2Y7Dw7OJQC8LYRWhonR78XvLJU3NNL2K+lk5CQa
 lzoBauYOZdcQcwNue+xBNN6vR1g7H0Qq0Rpq9acpuU5enjn9KV/fOTdfq6Xy5h8G
 0MVwKNtH4HuQKVJXFMXKz7eZvguqRn6aKFNa1FYobfyPHX7V9HmRyWo1nKDK2WL6
 oJ3QgH6m2Bumd9GGCDyyWWd/iEn8l+zVHaUZkdEB/msMZdjlqtXMX6AzQMvR54Kd
 Ee2wgli/O01KAfqVhk11+WCV0Xn3sAC0g3/a9Hg4n884Ef42/+pBbSH8/I+HbJiC
 ETJeogXVMrBH8v4DDrKzsQ==
 =UmOR
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20200616' into staging

 * hw: arm: Set vendor property for IMX SDHCI emulations
 * sd: sdhci: Implement basic vendor specific register support
 * hw/net/imx_fec: Convert debug fprintf() to trace events
 * target/arm/cpu: adjust virtual time for all KVM arm cpus
 * Implement configurable descriptor size in ftgmac100
 * hw/misc/imx6ul_ccm: Implement non writable bits in CCM registers
 * target/arm: More Neon decodetree conversion work

# gpg: Signature made Tue 16 Jun 2020 10:56:10 BST
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20200616: (23 commits)
  hw: arm: Set vendor property for IMX SDHCI emulations
  sd: sdhci: Implement basic vendor specific register support
  hw/net/imx_fec: Convert debug fprintf() to trace events
  target/arm/cpu: adjust virtual time for all KVM arm cpus
  Implement configurable descriptor size in ftgmac100
  hw/misc/imx6ul_ccm: Implement non writable bits in CCM registers
  target/arm: Convert Neon VDUP (scalar) to decodetree
  target/arm: Convert Neon VTBL, VTBX to decodetree
  target/arm: Convert Neon VEXT to decodetree
  target/arm: Convert Neon 2-reg-scalar long multiplies to decodetree
  target/arm: Convert Neon 2-reg-scalar VQRDMLAH, VQRDMLSH to decodetree
  target/arm: Convert Neon 2-reg-scalar VQDMULH, VQRDMULH to decodetree
  target/arm: Convert Neon 2-reg-scalar float multiplies to decodetree
  target/arm: Convert Neon 2-reg-scalar integer multiplies to decodetree
  target/arm: Add missing TCG temp free in do_2shift_env_64()
  target/arm: Add 'static' and 'const' annotations to VSHLL function arrays
  target/arm: Convert Neon 3-reg-diff polynomial VMULL
  target/arm: Convert Neon 3-reg-diff saturating doubling multiplies
  target/arm: Convert Neon 3-reg-diff long multiplies
  target/arm: Convert Neon 3-reg-diff VABAL, VABDL to decodetree
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>

# Conflicts:
#	hw/arm/fsl-imx25.c
#	hw/arm/fsl-imx6.c
#	hw/arm/fsl-imx6ul.c
#	hw/arm/fsl-imx7.c
This commit is contained in:
Peter Maydell 2020-06-16 13:36:31 +01:00
commit cb8278cd99
18 changed files with 1495 additions and 766 deletions

View File

@ -263,6 +263,12 @@ static void fsl_imx25_realize(DeviceState *dev, Error **errp)
&err);
object_property_set_uint(OBJECT(&s->esdhc[i]), IMX25_ESDHC_CAPABILITIES,
"capareg", &err);
object_property_set_uint(OBJECT(&s->esdhc[i]), SDHCI_VENDOR_IMX,
"vendor", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_realize(SYS_BUS_DEVICE(&s->esdhc[i]), &err);
if (err) {
error_propagate(errp, err);

View File

@ -339,6 +339,12 @@ static void fsl_imx6_realize(DeviceState *dev, Error **errp)
&err);
object_property_set_uint(OBJECT(&s->esdhc[i]), IMX6_ESDHC_CAPABILITIES,
"capareg", &err);
object_property_set_uint(OBJECT(&s->esdhc[i]), SDHCI_VENDOR_IMX,
"vendor", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_realize(SYS_BUS_DEVICE(&s->esdhc[i]), &err);
if (err) {
error_propagate(errp, err);

View File

@ -479,6 +479,8 @@ static void fsl_imx6ul_realize(DeviceState *dev, Error **errp)
FSL_IMX6UL_USDHC2_IRQ,
};
object_property_set_uint(OBJECT(&s->usdhc[i]), SDHCI_VENDOR_IMX,
"vendor", &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->usdhc[i]), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->usdhc[i]), 0,

View File

@ -393,6 +393,8 @@ static void fsl_imx7_realize(DeviceState *dev, Error **errp)
FSL_IMX7_USDHC3_IRQ,
};
object_property_set_uint(OBJECT(&s->usdhc[i]), SDHCI_VENDOR_IMX,
"vendor", &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->usdhc[i]), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->usdhc[i]), 0,

View File

@ -19,6 +19,62 @@
#include "trace.h"
static const uint32_t ccm_mask[CCM_MAX] = {
[CCM_CCR] = 0xf01fef80,
[CCM_CCDR] = 0xfffeffff,
[CCM_CSR] = 0xffffffff,
[CCM_CCSR] = 0xfffffef2,
[CCM_CACRR] = 0xfffffff8,
[CCM_CBCDR] = 0xc1f8e000,
[CCM_CBCMR] = 0xfc03cfff,
[CCM_CSCMR1] = 0x80700000,
[CCM_CSCMR2] = 0xe01ff003,
[CCM_CSCDR1] = 0xfe00c780,
[CCM_CS1CDR] = 0xfe00fe00,
[CCM_CS2CDR] = 0xf8007000,
[CCM_CDCDR] = 0xf00fffff,
[CCM_CHSCCDR] = 0xfffc01ff,
[CCM_CSCDR2] = 0xfe0001ff,
[CCM_CSCDR3] = 0xffffc1ff,
[CCM_CDHIPR] = 0xffffffff,
[CCM_CTOR] = 0x00000000,
[CCM_CLPCR] = 0xf39ff01c,
[CCM_CISR] = 0xfb85ffbe,
[CCM_CIMR] = 0xfb85ffbf,
[CCM_CCOSR] = 0xfe00fe00,
[CCM_CGPR] = 0xfffc3fea,
[CCM_CCGR0] = 0x00000000,
[CCM_CCGR1] = 0x00000000,
[CCM_CCGR2] = 0x00000000,
[CCM_CCGR3] = 0x00000000,
[CCM_CCGR4] = 0x00000000,
[CCM_CCGR5] = 0x00000000,
[CCM_CCGR6] = 0x00000000,
[CCM_CMEOR] = 0xafffff1f,
};
static const uint32_t analog_mask[CCM_ANALOG_MAX] = {
[CCM_ANALOG_PLL_ARM] = 0xfff60f80,
[CCM_ANALOG_PLL_USB1] = 0xfffe0fbc,
[CCM_ANALOG_PLL_USB2] = 0xfffe0fbc,
[CCM_ANALOG_PLL_SYS] = 0xfffa0ffe,
[CCM_ANALOG_PLL_SYS_SS] = 0x00000000,
[CCM_ANALOG_PLL_SYS_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_SYS_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_AUDIO] = 0xffe20f80,
[CCM_ANALOG_PLL_AUDIO_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_AUDIO_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_VIDEO] = 0xffe20f80,
[CCM_ANALOG_PLL_VIDEO_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_VIDEO_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_ENET] = 0xffc20ff0,
[CCM_ANALOG_PFD_480] = 0x40404040,
[CCM_ANALOG_PFD_528] = 0x40404040,
[PMU_MISC0] = 0x01fe8306,
[PMU_MISC1] = 0x07fcede0,
[PMU_MISC2] = 0x005f5f5f,
};
static const char *imx6ul_ccm_reg_name(uint32_t reg)
{
static char unknown[20];
@ -596,11 +652,8 @@ static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->ccm[index] = (uint32_t)value;
s->ccm[index] = (s->ccm[index] & ccm_mask[index]) |
((uint32_t)value & ~ccm_mask[index]);
}
static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
@ -737,7 +790,7 @@ static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
* the REG_NAME register. So we change the value of the
* REG_NAME register, setting bits passed in the value.
*/
s->analog[index - 1] |= value;
s->analog[index - 1] |= (value & ~analog_mask[index - 1]);
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
@ -762,7 +815,7 @@ static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
* the REG_NAME register. So we change the value of the
* REG_NAME register, unsetting bits passed in the value.
*/
s->analog[index - 2] &= ~value;
s->analog[index - 2] &= ~(value & ~analog_mask[index - 2]);
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
@ -787,14 +840,11 @@ static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
* the REG_NAME register. So we change the value of the
* REG_NAME register, toggling bits passed in the value.
*/
s->analog[index - 3] ^= value;
s->analog[index - 3] ^= (value & ~analog_mask[index - 3]);
break;
default:
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->analog[index] = value;
s->analog[index] = (s->analog[index] & analog_mask[index]) |
(value & ~analog_mask[index]);
break;
}
}

View File

@ -79,6 +79,16 @@
#define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf)
#define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12)
/*
* DMA burst length and arbitration control register
*/
#define FTGMAC100_DBLAC_RXBURST_SIZE(x) (((x) >> 8) & 0x3)
#define FTGMAC100_DBLAC_TXBURST_SIZE(x) (((x) >> 10) & 0x3)
#define FTGMAC100_DBLAC_RXDES_SIZE(x) ((((x) >> 12) & 0xf) * 8)
#define FTGMAC100_DBLAC_TXDES_SIZE(x) ((((x) >> 16) & 0xf) * 8)
#define FTGMAC100_DBLAC_IFG_CNT(x) (((x) >> 20) & 0x7)
#define FTGMAC100_DBLAC_IFG_INC (1 << 23)
/*
* PHY control register
*/
@ -553,7 +563,7 @@ static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
if (bd.des0 & s->txdes0_edotr) {
addr = tx_ring;
} else {
addr += sizeof(FTGMAC100Desc);
addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac);
}
}
@ -800,6 +810,18 @@ static void ftgmac100_write(void *opaque, hwaddr addr,
s->phydata = value & 0xffff;
break;
case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
if (FTGMAC100_DBLAC_TXDES_SIZE(s->dblac) < sizeof(FTGMAC100Desc)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: transmit descriptor too small : %d bytes\n",
__func__, FTGMAC100_DBLAC_TXDES_SIZE(s->dblac));
break;
}
if (FTGMAC100_DBLAC_RXDES_SIZE(s->dblac) < sizeof(FTGMAC100Desc)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: receive descriptor too small : %d bytes\n",
__func__, FTGMAC100_DBLAC_RXDES_SIZE(s->dblac));
break;
}
s->dblac = value;
break;
case FTGMAC100_REVR: /* Feature Register */
@ -982,7 +1004,7 @@ static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
if (bd.des0 & s->rxdes0_edorr) {
addr = s->rx_ring;
} else {
addr += sizeof(FTGMAC100Desc);
addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac);
}
}
s->rx_descriptor = addr;

View File

@ -31,34 +31,11 @@
#include "qemu/module.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "trace.h"
/* For crc32 */
#include <zlib.h>
#ifndef DEBUG_IMX_FEC
#define DEBUG_IMX_FEC 0
#endif
#define FEC_PRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_FEC) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
__func__, ##args); \
} \
} while (0)
#ifndef DEBUG_IMX_PHY
#define DEBUG_IMX_PHY 0
#endif
#define PHY_PRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_PHY) { \
fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
__func__, ##args); \
} \
} while (0)
#define IMX_MAX_DESC 1024
static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
@ -262,43 +239,45 @@ static void imx_eth_update(IMXFECState *s);
* For now we don't handle any GPIO/interrupt line, so the OS will
* have to poll for the PHY status.
*/
static void phy_update_irq(IMXFECState *s)
static void imx_phy_update_irq(IMXFECState *s)
{
imx_eth_update(s);
}
static void phy_update_link(IMXFECState *s)
static void imx_phy_update_link(IMXFECState *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
PHY_PRINTF("link is down\n");
trace_imx_phy_update_link("down");
s->phy_status &= ~0x0024;
s->phy_int |= PHY_INT_DOWN;
} else {
PHY_PRINTF("link is up\n");
trace_imx_phy_update_link("up");
s->phy_status |= 0x0024;
s->phy_int |= PHY_INT_ENERGYON;
s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
}
phy_update_irq(s);
imx_phy_update_irq(s);
}
static void imx_eth_set_link(NetClientState *nc)
{
phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
}
static void phy_reset(IMXFECState *s)
static void imx_phy_reset(IMXFECState *s)
{
trace_imx_phy_reset();
s->phy_status = 0x7809;
s->phy_control = 0x3000;
s->phy_advertise = 0x01e1;
s->phy_int_mask = 0;
s->phy_int = 0;
phy_update_link(s);
imx_phy_update_link(s);
}
static uint32_t do_phy_read(IMXFECState *s, int reg)
static uint32_t imx_phy_read(IMXFECState *s, int reg)
{
uint32_t val;
@ -332,7 +311,7 @@ static uint32_t do_phy_read(IMXFECState *s, int reg)
case 29: /* Interrupt source. */
val = s->phy_int;
s->phy_int = 0;
phy_update_irq(s);
imx_phy_update_irq(s);
break;
case 30: /* Interrupt mask */
val = s->phy_int_mask;
@ -352,14 +331,14 @@ static uint32_t do_phy_read(IMXFECState *s, int reg)
break;
}
PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
trace_imx_phy_read(val, reg);
return val;
}
static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
{
PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
trace_imx_phy_write(val, reg);
if (reg > 31) {
/* we only advertise one phy */
@ -369,7 +348,7 @@ static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
switch (reg) {
case 0: /* Basic Control */
if (val & 0x8000) {
phy_reset(s);
imx_phy_reset(s);
} else {
s->phy_control = val & 0x7980;
/* Complete autonegotiation immediately. */
@ -383,7 +362,7 @@ static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
break;
case 30: /* Interrupt mask */
s->phy_int_mask = val & 0xff;
phy_update_irq(s);
imx_phy_update_irq(s);
break;
case 17:
case 18:
@ -402,6 +381,8 @@ static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
{
dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
}
static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
@ -412,6 +393,9 @@ static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
{
dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
bd->option, bd->status);
}
static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
@ -471,11 +455,11 @@ static void imx_fec_do_tx(IMXFECState *s)
int len;
imx_fec_read_bd(&bd, addr);
FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
addr, bd.flags, bd.length, bd.data);
if ((bd.flags & ENET_BD_R) == 0) {
/* Run out of descriptors to transmit. */
FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
trace_imx_eth_tx_bd_busy();
break;
}
len = bd.length;
@ -552,11 +536,11 @@ static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
int len;
imx_enet_read_bd(&bd, addr);
FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
"status %04x\n", addr, bd.flags, bd.length, bd.data,
bd.option, bd.status);
if ((bd.flags & ENET_BD_R) == 0) {
/* Run out of descriptors to transmit. */
trace_imx_eth_tx_bd_busy();
break;
}
len = bd.length;
@ -633,7 +617,7 @@ static void imx_eth_enable_rx(IMXFECState *s, bool flush)
s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
if (!s->regs[ENET_RDAR]) {
FEC_PRINTF("RX buffer full\n");
trace_imx_eth_rx_bd_full();
} else if (flush) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
@ -676,7 +660,7 @@ static void imx_eth_reset(DeviceState *d)
memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
/* We also reset the PHY */
phy_reset(s);
imx_phy_reset(s);
}
static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
@ -774,8 +758,7 @@ static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
break;
}
FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
value);
trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
return value;
}
@ -884,8 +867,7 @@ static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
uint32_t index = offset >> 2;
FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
(uint32_t)value);
trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
switch (index) {
case ENET_EIR:
@ -940,12 +922,12 @@ static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
if (extract32(value, 29, 1)) {
/* This is a read operation */
s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
do_phy_read(s,
imx_phy_read(s,
extract32(value,
18, 10)));
} else {
/* This a write operation */
do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
}
/* raise the interrupt as the PHY operation is done */
s->regs[ENET_EIR] |= ENET_INT_MII;
@ -1053,8 +1035,6 @@ static bool imx_eth_can_receive(NetClientState *nc)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
FEC_PRINTF("\n");
return !!s->regs[ENET_RDAR];
}
@ -1071,7 +1051,7 @@ static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
unsigned int buf_len;
size_t size = len;
FEC_PRINTF("len %d\n", (int)size);
trace_imx_fec_receive(size);
if (!s->regs[ENET_RDAR]) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
@ -1113,7 +1093,7 @@ static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
bd.length = buf_len;
size -= buf_len;
FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
trace_imx_fec_receive_len(addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4) {
@ -1131,7 +1111,9 @@ static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | ENET_BD_L;
FEC_PRINTF("rx frame flags %04x\n", bd.flags);
trace_imx_fec_receive_last(bd.flags);
s->regs[ENET_EIR] |= ENET_INT_RXF;
} else {
s->regs[ENET_EIR] |= ENET_INT_RXB;
@ -1164,7 +1146,7 @@ static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
size_t size = len;
bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
FEC_PRINTF("len %d\n", (int)size);
trace_imx_enet_receive(size);
if (!s->regs[ENET_RDAR]) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
@ -1210,7 +1192,7 @@ static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
bd.length = buf_len;
size -= buf_len;
FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
trace_imx_enet_receive_len(addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4) {
@ -1246,7 +1228,9 @@ static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | ENET_BD_L;
FEC_PRINTF("rx frame flags %04x\n", bd.flags);
trace_imx_enet_receive_last(bd.flags);
/* Indicate that we've updated the last buffer descriptor. */
bd.last_buffer = ENET_BD_BDU;
if (bd.option & ENET_BD_RX_INT) {

View File

@ -408,3 +408,21 @@ i82596_receive_packet(size_t sz) "len=%zu"
i82596_new_mac(const char *id_with_mac) "New MAC for: %s"
i82596_set_multicast(uint16_t count) "Added %d multicast entries"
i82596_channel_attention(void *s) "%p: Received CHANNEL ATTENTION"
# imx_fec.c
imx_phy_read(uint32_t val, int reg) "0x%04"PRIx32" <= reg[%d]"
imx_phy_write(uint32_t val, int reg) "0x%04"PRIx32" => reg[%d]"
imx_phy_update_link(const char *s) "%s"
imx_phy_reset(void) ""
imx_fec_read_bd(uint64_t addr, int flags, int len, int data) "tx_bd 0x%"PRIx64" flags 0x%04x len %d data 0x%08x"
imx_enet_read_bd(uint64_t addr, int flags, int len, int data, int options, int status) "tx_bd 0x%"PRIx64" flags 0x%04x len %d data 0x%08x option 0x%04x status 0x%04x"
imx_eth_tx_bd_busy(void) "tx_bd ran out of descriptors to transmit"
imx_eth_rx_bd_full(void) "RX buffer is full"
imx_eth_read(int reg, const char *reg_name, uint32_t value) "reg[%d:%s] => 0x%08"PRIx32
imx_eth_write(int reg, const char *reg_name, uint64_t value) "reg[%d:%s] <= 0x%08"PRIx64
imx_fec_receive(size_t size) "len %zu"
imx_fec_receive_len(uint64_t addr, int len) "rx_bd 0x%"PRIx64" length %d"
imx_fec_receive_last(int last) "rx frame flags 0x%04x"
imx_enet_receive(size_t size) "len %zu"
imx_enet_receive_len(uint64_t addr, int len) "rx_bd 0x%"PRIx64" length %d"
imx_enet_receive_last(int last) "rx frame flags 0x%04x"

View File

@ -75,6 +75,7 @@
#define SDHC_CMD_INHIBIT 0x00000001
#define SDHC_DATA_INHIBIT 0x00000002
#define SDHC_DAT_LINE_ACTIVE 0x00000004
#define SDHC_IMX_CLOCK_GATE_OFF 0x00000080
#define SDHC_DOING_WRITE 0x00000100
#define SDHC_DOING_READ 0x00000200
#define SDHC_SPACE_AVAILABLE 0x00000400
@ -289,7 +290,10 @@ extern const VMStateDescription sdhci_vmstate;
#define ESDHC_MIX_CTRL 0x48
#define ESDHC_VENDOR_SPEC 0xc0
#define ESDHC_IMX_FRC_SDCLK_ON (1 << 8)
#define ESDHC_DLL_CTRL 0x60
#define ESDHC_TUNING_CTRL 0xcc
@ -326,6 +330,7 @@ extern const VMStateDescription sdhci_vmstate;
#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
DEFINE_PROP_UINT8("vendor", _state, vendor, SDHCI_VENDOR_NONE), \
\
/* Capabilities registers provide information on supported
* features of this specific host controller implementation */ \

View File

@ -1569,11 +1569,13 @@ static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
}
break;
case ESDHC_VENDOR_SPEC:
ret = s->vendor_spec;
break;
case ESDHC_DLL_CTRL:
case ESDHC_TUNE_CTRL_STATUS:
case ESDHC_UNDOCUMENTED_REG27:
case ESDHC_TUNING_CTRL:
case ESDHC_VENDOR_SPEC:
case ESDHC_MIX_CTRL:
case ESDHC_WTMK_LVL:
ret = 0;
@ -1596,7 +1598,21 @@ usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
case ESDHC_UNDOCUMENTED_REG27:
case ESDHC_TUNING_CTRL:
case ESDHC_WTMK_LVL:
break;
case ESDHC_VENDOR_SPEC:
s->vendor_spec = value;
switch (s->vendor) {
case SDHCI_VENDOR_IMX:
if (value & ESDHC_IMX_FRC_SDCLK_ON) {
s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
} else {
s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
}
break;
default:
break;
}
break;
case SDHC_HOSTCTL:

View File

@ -74,6 +74,7 @@ typedef struct SDHCIState {
uint16_t acmd12errsts; /* Auto CMD12 error status register */
uint16_t hostctl2; /* Host Control 2 */
uint64_t admasysaddr; /* ADMA System Address Register */
uint16_t vendor_spec; /* Vendor specific register */
/* Read-only registers */
uint64_t capareg; /* Capabilities Register */
@ -96,8 +97,12 @@ typedef struct SDHCIState {
uint32_t quirks;
uint8_t sd_spec_version;
uint8_t uhs_mode;
uint8_t vendor; /* For vendor specific functionality */
} SDHCIState;
#define SDHCI_VENDOR_NONE 0
#define SDHCI_VENDOR_IMX 1
/*
* Controller does not provide transfer-complete interrupt when not
* busy.

View File

@ -1245,6 +1245,10 @@ void arm_cpu_post_init(Object *obj)
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
}
if (kvm_enabled()) {
kvm_arm_add_vcpu_properties(obj);
}
}
static void arm_cpu_finalizefn(Object *obj)
@ -2029,7 +2033,6 @@ static void arm_max_initfn(Object *obj)
if (kvm_enabled()) {
kvm_arm_set_cpu_features_from_host(cpu);
kvm_arm_add_vcpu_properties(obj);
} else {
cortex_a15_initfn(obj);
@ -2183,7 +2186,6 @@ static void arm_host_initfn(Object *obj)
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
aarch64_add_sve_properties(obj);
}
kvm_arm_add_vcpu_properties(obj);
arm_cpu_post_init(obj);
}

View File

@ -592,7 +592,6 @@ static void aarch64_max_initfn(Object *obj)
if (kvm_enabled()) {
kvm_arm_set_cpu_features_from_host(cpu);
kvm_arm_add_vcpu_properties(obj);
} else {
uint64_t t;
uint32_t u;

View File

@ -194,17 +194,18 @@ static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
/* KVM VCPU properties should be prefixed with "kvm-". */
void kvm_arm_add_vcpu_properties(Object *obj)
{
if (!kvm_enabled()) {
return;
}
ARMCPU *cpu = ARM_CPU(obj);
CPUARMState *env = &cpu->env;
ARM_CPU(obj)->kvm_adjvtime = true;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
cpu->kvm_adjvtime = true;
object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
kvm_no_adjvtime_set);
object_property_set_description(obj, "kvm-no-adjvtime",
"Set on to disable the adjustment of "
"the virtual counter. VM stopped time "
"will be counted.");
}
}
bool kvm_arm_pmu_supported(CPUState *cpu)

View File

@ -397,3 +397,133 @@ VCVT_FU_2sh 1111 001 1 1 . ...... .... 1111 0 . . 1 .... @2reg_vcvt
# So we have a single decode line and check the cmode/op in the
# trans function.
Vimm_1r 1111 001 . 1 . 000 ... .... cmode:4 0 . op:1 1 .... @1reg_imm
######################################################################
# Within the "two registers, or three registers of different lengths"
# grouping ([23,4]=0b10), bits [21:20] are either part of the opcode
# decode: 0b11 for VEXT, two-reg-misc, VTBL, and duplicate-scalar;
# or they are a size field for the three-reg-different-lengths and
# two-reg-and-scalar insn groups (where size cannot be 0b11). This
# is slightly awkward for decodetree: we handle it with this
# non-exclusive group which contains within it two exclusive groups:
# one for the size=0b11 patterns, and one for the size-not-0b11
# patterns. This allows us to check that none of the insns within
# each subgroup accidentally overlap each other. Note that all the
# trans functions for the size-not-0b11 patterns must check and
# return false for size==3.
######################################################################
{
[
##################################################################
# Miscellaneous size=0b11 insns
##################################################################
VEXT 1111 001 0 1 . 11 .... .... imm:4 . q:1 . 0 .... \
vm=%vm_dp vn=%vn_dp vd=%vd_dp
VTBL 1111 001 1 1 . 11 .... .... 10 len:2 . op:1 . 0 .... \
vm=%vm_dp vn=%vn_dp vd=%vd_dp
VDUP_scalar 1111 001 1 1 . 11 index:3 1 .... 11 000 q:1 . 0 .... \
vm=%vm_dp vd=%vd_dp size=0
VDUP_scalar 1111 001 1 1 . 11 index:2 10 .... 11 000 q:1 . 0 .... \
vm=%vm_dp vd=%vd_dp size=1
VDUP_scalar 1111 001 1 1 . 11 index:1 100 .... 11 000 q:1 . 0 .... \
vm=%vm_dp vd=%vd_dp size=2
]
# Subgroup for size != 0b11
[
##################################################################
# 3-reg-different-length grouping:
# 1111 001 U 1 D sz!=11 Vn:4 Vd:4 opc:4 N 0 M 0 Vm:4
##################################################################
&3diff vm vn vd size
@3diff .... ... . . . size:2 .... .... .... . . . . .... \
&3diff vm=%vm_dp vn=%vn_dp vd=%vd_dp
VADDL_S_3d 1111 001 0 1 . .. .... .... 0000 . 0 . 0 .... @3diff
VADDL_U_3d 1111 001 1 1 . .. .... .... 0000 . 0 . 0 .... @3diff
VADDW_S_3d 1111 001 0 1 . .. .... .... 0001 . 0 . 0 .... @3diff
VADDW_U_3d 1111 001 1 1 . .. .... .... 0001 . 0 . 0 .... @3diff
VSUBL_S_3d 1111 001 0 1 . .. .... .... 0010 . 0 . 0 .... @3diff
VSUBL_U_3d 1111 001 1 1 . .. .... .... 0010 . 0 . 0 .... @3diff
VSUBW_S_3d 1111 001 0 1 . .. .... .... 0011 . 0 . 0 .... @3diff
VSUBW_U_3d 1111 001 1 1 . .. .... .... 0011 . 0 . 0 .... @3diff
VADDHN_3d 1111 001 0 1 . .. .... .... 0100 . 0 . 0 .... @3diff
VRADDHN_3d 1111 001 1 1 . .. .... .... 0100 . 0 . 0 .... @3diff
VABAL_S_3d 1111 001 0 1 . .. .... .... 0101 . 0 . 0 .... @3diff
VABAL_U_3d 1111 001 1 1 . .. .... .... 0101 . 0 . 0 .... @3diff
VSUBHN_3d 1111 001 0 1 . .. .... .... 0110 . 0 . 0 .... @3diff
VRSUBHN_3d 1111 001 1 1 . .. .... .... 0110 . 0 . 0 .... @3diff
VABDL_S_3d 1111 001 0 1 . .. .... .... 0111 . 0 . 0 .... @3diff
VABDL_U_3d 1111 001 1 1 . .. .... .... 0111 . 0 . 0 .... @3diff
VMLAL_S_3d 1111 001 0 1 . .. .... .... 1000 . 0 . 0 .... @3diff
VMLAL_U_3d 1111 001 1 1 . .. .... .... 1000 . 0 . 0 .... @3diff
VQDMLAL_3d 1111 001 0 1 . .. .... .... 1001 . 0 . 0 .... @3diff
VMLSL_S_3d 1111 001 0 1 . .. .... .... 1010 . 0 . 0 .... @3diff
VMLSL_U_3d 1111 001 1 1 . .. .... .... 1010 . 0 . 0 .... @3diff
VQDMLSL_3d 1111 001 0 1 . .. .... .... 1011 . 0 . 0 .... @3diff
VMULL_S_3d 1111 001 0 1 . .. .... .... 1100 . 0 . 0 .... @3diff
VMULL_U_3d 1111 001 1 1 . .. .... .... 1100 . 0 . 0 .... @3diff
VQDMULL_3d 1111 001 0 1 . .. .... .... 1101 . 0 . 0 .... @3diff
VMULL_P_3d 1111 001 0 1 . .. .... .... 1110 . 0 . 0 .... @3diff
##################################################################
# 2-regs-plus-scalar grouping:
# 1111 001 Q 1 D sz!=11 Vn:4 Vd:4 opc:4 N 1 M 0 Vm:4
##################################################################
&2scalar vm vn vd size q
@2scalar .... ... q:1 . . size:2 .... .... .... . . . . .... \
&2scalar vm=%vm_dp vn=%vn_dp vd=%vd_dp
# For the 'long' ops the Q bit is part of insn decode
@2scalar_q0 .... ... . . . size:2 .... .... .... . . . . .... \
&2scalar vm=%vm_dp vn=%vn_dp vd=%vd_dp q=0
VMLA_2sc 1111 001 . 1 . .. .... .... 0000 . 1 . 0 .... @2scalar
VMLA_F_2sc 1111 001 . 1 . .. .... .... 0001 . 1 . 0 .... @2scalar
VMLAL_S_2sc 1111 001 0 1 . .. .... .... 0010 . 1 . 0 .... @2scalar_q0
VMLAL_U_2sc 1111 001 1 1 . .. .... .... 0010 . 1 . 0 .... @2scalar_q0
VQDMLAL_2sc 1111 001 0 1 . .. .... .... 0011 . 1 . 0 .... @2scalar_q0
VMLS_2sc 1111 001 . 1 . .. .... .... 0100 . 1 . 0 .... @2scalar
VMLS_F_2sc 1111 001 . 1 . .. .... .... 0101 . 1 . 0 .... @2scalar
VMLSL_S_2sc 1111 001 0 1 . .. .... .... 0110 . 1 . 0 .... @2scalar_q0
VMLSL_U_2sc 1111 001 1 1 . .. .... .... 0110 . 1 . 0 .... @2scalar_q0
VQDMLSL_2sc 1111 001 0 1 . .. .... .... 0111 . 1 . 0 .... @2scalar_q0
VMUL_2sc 1111 001 . 1 . .. .... .... 1000 . 1 . 0 .... @2scalar
VMUL_F_2sc 1111 001 . 1 . .. .... .... 1001 . 1 . 0 .... @2scalar
VMULL_S_2sc 1111 001 0 1 . .. .... .... 1010 . 1 . 0 .... @2scalar_q0
VMULL_U_2sc 1111 001 1 1 . .. .... .... 1010 . 1 . 0 .... @2scalar_q0
VQDMULL_2sc 1111 001 0 1 . .. .... .... 1011 . 1 . 0 .... @2scalar_q0
VQDMULH_2sc 1111 001 . 1 . .. .... .... 1100 . 1 . 0 .... @2scalar
VQRDMULH_2sc 1111 001 . 1 . .. .... .... 1101 . 1 . 0 .... @2scalar
VQRDMLAH_2sc 1111 001 . 1 . .. .... .... 1110 . 1 . 0 .... @2scalar
VQRDMLSH_2sc 1111 001 . 1 . .. .... .... 1111 . 1 . 0 .... @2scalar
]
}

File diff suppressed because it is too large Load Diff

View File

@ -377,43 +377,6 @@ static void gen_revsh(TCGv_i32 dest, TCGv_i32 var)
tcg_gen_ext16s_i32(dest, var);
}
/* 32x32->64 multiply. Marks inputs as dead. */
static TCGv_i64 gen_mulu_i64_i32(TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 lo = tcg_temp_new_i32();
TCGv_i32 hi = tcg_temp_new_i32();
TCGv_i64 ret;
tcg_gen_mulu2_i32(lo, hi, a, b);
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
ret = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(ret, lo, hi);
tcg_temp_free_i32(lo);
tcg_temp_free_i32(hi);
return ret;
}
static TCGv_i64 gen_muls_i64_i32(TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 lo = tcg_temp_new_i32();
TCGv_i32 hi = tcg_temp_new_i32();
TCGv_i64 ret;
tcg_gen_muls2_i32(lo, hi, a, b);
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
ret = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(ret, lo, hi);
tcg_temp_free_i32(lo);
tcg_temp_free_i32(hi);
return ret;
}
/* Swap low and high halfwords. */
static void gen_swap_half(TCGv_i32 var)
{
@ -2624,24 +2587,6 @@ static int disas_dsp_insn(DisasContext *s, uint32_t insn)
#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7)
#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5)
static void gen_neon_dup_low16(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ext16u_i32(var, var);
tcg_gen_shli_i32(tmp, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_neon_dup_high16(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(var, var, 0xffff0000);
tcg_gen_shri_i32(tmp, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
static inline bool use_goto_tb(DisasContext *s, target_ulong dest)
{
#ifndef CONFIG_USER_ONLY
@ -2991,55 +2936,6 @@ static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
#define CPU_V001 cpu_V0, cpu_V0, cpu_V1
static inline void gen_neon_add(int size, TCGv_i32 t0, TCGv_i32 t1)
{
switch (size) {
case 0: gen_helper_neon_add_u8(t0, t0, t1); break;
case 1: gen_helper_neon_add_u16(t0, t0, t1); break;
case 2: tcg_gen_add_i32(t0, t0, t1); break;
default: abort();
}
}
static inline void gen_neon_rsb(int size, TCGv_i32 t0, TCGv_i32 t1)
{
switch (size) {
case 0: gen_helper_neon_sub_u8(t0, t1, t0); break;
case 1: gen_helper_neon_sub_u16(t0, t1, t0); break;
case 2: tcg_gen_sub_i32(t0, t1, t0); break;
default: return;
}
}
static TCGv_i32 neon_load_scratch(int scratch)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
return tmp;
}
static void neon_store_scratch(int scratch, TCGv_i32 var)
{
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
tcg_temp_free_i32(var);
}
static inline TCGv_i32 neon_get_scalar(int size, int reg)
{
TCGv_i32 tmp;
if (size == 1) {
tmp = neon_load_reg(reg & 7, reg >> 4);
if (reg & 8) {
gen_neon_dup_high16(tmp);
} else {
gen_neon_dup_low16(tmp);
}
} else {
tmp = neon_load_reg(reg & 15, reg >> 4);
}
return tmp;
}
static int gen_neon_unzip(int rd, int rm, int size, int q)
{
TCGv_ptr pd, pm;
@ -3231,68 +3127,6 @@ static inline void gen_neon_addl(int size)
}
}
static inline void gen_neon_subl(int size)
{
switch (size) {
case 0: gen_helper_neon_subl_u16(CPU_V001); break;
case 1: gen_helper_neon_subl_u32(CPU_V001); break;
case 2: tcg_gen_sub_i64(CPU_V001); break;
default: abort();
}
}
static inline void gen_neon_negl(TCGv_i64 var, int size)
{
switch (size) {
case 0: gen_helper_neon_negl_u16(var, var); break;
case 1: gen_helper_neon_negl_u32(var, var); break;
case 2:
tcg_gen_neg_i64(var, var);
break;
default: abort();
}
}
static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size)
{
switch (size) {
case 1: gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); break;
case 2: gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); break;
default: abort();
}
}
static inline void gen_neon_mull(TCGv_i64 dest, TCGv_i32 a, TCGv_i32 b,
int size, int u)
{
TCGv_i64 tmp;
switch ((size << 1) | u) {
case 0: gen_helper_neon_mull_s8(dest, a, b); break;
case 1: gen_helper_neon_mull_u8(dest, a, b); break;
case 2: gen_helper_neon_mull_s16(dest, a, b); break;
case 3: gen_helper_neon_mull_u16(dest, a, b); break;
case 4:
tmp = gen_muls_i64_i32(a, b);
tcg_gen_mov_i64(dest, tmp);
tcg_temp_free_i64(tmp);
break;
case 5:
tmp = gen_mulu_i64_i32(a, b);
tcg_gen_mov_i64(dest, tmp);
tcg_temp_free_i64(tmp);
break;
default: abort();
}
/* gen_helper_neon_mull_[su]{8|16} do not free their parameters.
Don't forget to clean them now. */
if (size < 2) {
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
}
}
static void gen_neon_narrow_op(int op, int u, int size,
TCGv_i32 dest, TCGv_i64 src)
{
@ -5191,15 +5025,12 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
{
int op;
int q;
int rd, rn, rm, rd_ofs, rn_ofs, rm_ofs;
int rd, rm, rd_ofs, rm_ofs;
int size;
int pass;
int u;
int vec_size;
uint32_t imm;
TCGv_i32 tmp, tmp2, tmp3, tmp4, tmp5;
TCGv_ptr ptr1;
TCGv_i64 tmp64;
TCGv_i32 tmp, tmp2, tmp3;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return 1;
@ -5220,12 +5051,10 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
q = (insn & (1 << 6)) != 0;
u = (insn >> 24) & 1;
VFP_DREG_D(rd, insn);
VFP_DREG_N(rn, insn);
VFP_DREG_M(rm, insn);
size = (insn >> 20) & 3;
vec_size = q ? 16 : 8;
rd_ofs = neon_reg_offset(rd, 0);
rn_ofs = neon_reg_offset(rn, 0);
rm_ofs = neon_reg_offset(rm, 0);
if ((insn & (1 << 23)) == 0) {
@ -5236,454 +5065,15 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
return 1;
} else { /* (insn & 0x00800010 == 0x00800000) */
if (size != 3) {
op = (insn >> 8) & 0xf;
if ((insn & (1 << 6)) == 0) {
/* Three registers of different lengths. */
int src1_wide;
int src2_wide;
int prewiden;
/* undefreq: bit 0 : UNDEF if size == 0
* bit 1 : UNDEF if size == 1
* bit 2 : UNDEF if size == 2
* bit 3 : UNDEF if U == 1
* Note that [2:0] set implies 'always UNDEF'
/*
* Three registers of different lengths, or two registers and
* a scalar: handled by decodetree
*/
int undefreq;
/* prewiden, src1_wide, src2_wide, undefreq */
static const int neon_3reg_wide[16][4] = {
{1, 0, 0, 0}, /* VADDL */
{1, 1, 0, 0}, /* VADDW */
{1, 0, 0, 0}, /* VSUBL */
{1, 1, 0, 0}, /* VSUBW */
{0, 1, 1, 0}, /* VADDHN */
{0, 0, 0, 0}, /* VABAL */
{0, 1, 1, 0}, /* VSUBHN */
{0, 0, 0, 0}, /* VABDL */
{0, 0, 0, 0}, /* VMLAL */
{0, 0, 0, 9}, /* VQDMLAL */
{0, 0, 0, 0}, /* VMLSL */
{0, 0, 0, 9}, /* VQDMLSL */
{0, 0, 0, 0}, /* Integer VMULL */
{0, 0, 0, 9}, /* VQDMULL */
{0, 0, 0, 0xa}, /* Polynomial VMULL */
{0, 0, 0, 7}, /* Reserved: always UNDEF */
};
prewiden = neon_3reg_wide[op][0];
src1_wide = neon_3reg_wide[op][1];
src2_wide = neon_3reg_wide[op][2];
undefreq = neon_3reg_wide[op][3];
if ((undefreq & (1 << size)) ||
((undefreq & 8) && u)) {
return 1;
}
if ((src1_wide && (rn & 1)) ||
(src2_wide && (rm & 1)) ||
(!src2_wide && (rd & 1))) {
return 1;
}
/* Handle polynomial VMULL in a single pass. */
if (op == 14) {
if (size == 0) {
/* VMULL.P8 */
tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, 16, 16,
0, gen_helper_neon_pmull_h);
} else {
/* VMULL.P64 */
if (!dc_isar_feature(aa32_pmull, s)) {
return 1;
}
tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, 16, 16,
0, gen_helper_gvec_pmull_q);
}
return 0;
}
/* Avoid overlapping operands. Wide source operands are
always aligned so will never overlap with wide
destinations in problematic ways. */
if (rd == rm && !src2_wide) {
tmp = neon_load_reg(rm, 1);
neon_store_scratch(2, tmp);
} else if (rd == rn && !src1_wide) {
tmp = neon_load_reg(rn, 1);
neon_store_scratch(2, tmp);
}
tmp3 = NULL;
for (pass = 0; pass < 2; pass++) {
if (src1_wide) {
neon_load_reg64(cpu_V0, rn + pass);
tmp = NULL;
} else {
if (pass == 1 && rd == rn) {
tmp = neon_load_scratch(2);
} else {
tmp = neon_load_reg(rn, pass);
}
if (prewiden) {
gen_neon_widen(cpu_V0, tmp, size, u);
}
}
if (src2_wide) {
neon_load_reg64(cpu_V1, rm + pass);
tmp2 = NULL;
} else {
if (pass == 1 && rd == rm) {
tmp2 = neon_load_scratch(2);
} else {
tmp2 = neon_load_reg(rm, pass);
}
if (prewiden) {
gen_neon_widen(cpu_V1, tmp2, size, u);
}
}
switch (op) {
case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */
gen_neon_addl(size);
break;
case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */
gen_neon_subl(size);
break;
case 5: case 7: /* VABAL, VABDL */
switch ((size << 1) | u) {
case 0:
gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2);
break;
case 1:
gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2);
break;
case 2:
gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2);
break;
case 3:
gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2);
break;
case 4:
gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2);
break;
case 5:
gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2);
break;
default: abort();
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
case 8: case 9: case 10: case 11: case 12: case 13:
/* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
break;
default: /* 15 is RESERVED: caught earlier */
abort();
}
if (op == 13) {
/* VQDMULL */
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
neon_store_reg64(cpu_V0, rd + pass);
} else if (op == 5 || (op >= 8 && op <= 11)) {
/* Accumulate. */
neon_load_reg64(cpu_V1, rd + pass);
switch (op) {
case 10: /* VMLSL */
gen_neon_negl(cpu_V0, size);
/* Fall through */
case 5: case 8: /* VABAL, VMLAL */
gen_neon_addl(size);
break;
case 9: case 11: /* VQDMLAL, VQDMLSL */
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
if (op == 11) {
gen_neon_negl(cpu_V0, size);
}
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
break;
default:
abort();
}
neon_store_reg64(cpu_V0, rd + pass);
} else if (op == 4 || op == 6) {
/* Narrowing operation. */
tmp = tcg_temp_new_i32();
if (!u) {
switch (size) {
case 0:
gen_helper_neon_narrow_high_u8(tmp, cpu_V0);
break;
case 1:
gen_helper_neon_narrow_high_u16(tmp, cpu_V0);
break;
case 2:
tcg_gen_extrh_i64_i32(tmp, cpu_V0);
break;
default: abort();
}
} else {
switch (size) {
case 0:
gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0);
break;
case 1:
gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0);
break;
case 2:
tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31);
tcg_gen_extrh_i64_i32(tmp, cpu_V0);
break;
default: abort();
}
}
if (pass == 0) {
tmp3 = tmp;
} else {
neon_store_reg(rd, 0, tmp3);
neon_store_reg(rd, 1, tmp);
}
} else {
/* Write back the result. */
neon_store_reg64(cpu_V0, rd + pass);
}
}
} else {
/* Two registers and a scalar. NB that for ops of this form
* the ARM ARM labels bit 24 as Q, but it is in our variable
* 'u', not 'q'.
*/
if (size == 0) {
return 1;
}
switch (op) {
case 1: /* Float VMLA scalar */
case 5: /* Floating point VMLS scalar */
case 9: /* Floating point VMUL scalar */
if (size == 1) {
return 1;
}
/* fall through */
case 0: /* Integer VMLA scalar */
case 4: /* Integer VMLS scalar */
case 8: /* Integer VMUL scalar */
case 12: /* VQDMULH scalar */
case 13: /* VQRDMULH scalar */
if (u && ((rd | rn) & 1)) {
return 1;
}
tmp = neon_get_scalar(size, rm);
neon_store_scratch(0, tmp);
for (pass = 0; pass < (u ? 4 : 2); pass++) {
tmp = neon_load_scratch(0);
tmp2 = neon_load_reg(rn, pass);
if (op == 12) {
if (size == 1) {
gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
}
} else if (op == 13) {
if (size == 1) {
gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
}
} else if (op & 1) {
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_ptr(fpstatus);
} else {
switch (size) {
case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
default: abort();
}
}
tcg_temp_free_i32(tmp2);
if (op < 8) {
/* Accumulate. */
tmp2 = neon_load_reg(rd, pass);
switch (op) {
case 0:
gen_neon_add(size, tmp, tmp2);
break;
case 1:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case 4:
gen_neon_rsb(size, tmp, tmp2);
break;
case 5:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
default:
abort();
}
tcg_temp_free_i32(tmp2);
}
neon_store_reg(rd, pass, tmp);
}
break;
case 3: /* VQDMLAL scalar */
case 7: /* VQDMLSL scalar */
case 11: /* VQDMULL scalar */
if (u == 1) {
return 1;
}
/* fall through */
case 2: /* VMLAL sclar */
case 6: /* VMLSL scalar */
case 10: /* VMULL scalar */
if (rd & 1) {
return 1;
}
tmp2 = neon_get_scalar(size, rm);
/* We need a copy of tmp2 because gen_neon_mull
* deletes it during pass 0. */
tmp4 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp4, tmp2);
tmp3 = neon_load_reg(rn, 1);
for (pass = 0; pass < 2; pass++) {
if (pass == 0) {
tmp = neon_load_reg(rn, 0);
} else {
tmp = tmp3;
tmp2 = tmp4;
}
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
if (op != 11) {
neon_load_reg64(cpu_V1, rd + pass);
}
switch (op) {
case 6:
gen_neon_negl(cpu_V0, size);
/* Fall through */
case 2:
gen_neon_addl(size);
break;
case 3: case 7:
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
if (op == 7) {
gen_neon_negl(cpu_V0, size);
}
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
break;
case 10:
/* no-op */
break;
case 11:
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
break;
default:
abort();
}
neon_store_reg64(cpu_V0, rd + pass);
}
break;
case 14: /* VQRDMLAH scalar */
case 15: /* VQRDMLSH scalar */
{
NeonGenThreeOpEnvFn *fn;
if (!dc_isar_feature(aa32_rdm, s)) {
return 1;
}
if (u && ((rd | rn) & 1)) {
return 1;
}
if (op == 14) {
if (size == 1) {
fn = gen_helper_neon_qrdmlah_s16;
} else {
fn = gen_helper_neon_qrdmlah_s32;
}
} else {
if (size == 1) {
fn = gen_helper_neon_qrdmlsh_s16;
} else {
fn = gen_helper_neon_qrdmlsh_s32;
}
}
tmp2 = neon_get_scalar(size, rm);
for (pass = 0; pass < (u ? 4 : 2); pass++) {
tmp = neon_load_reg(rn, pass);
tmp3 = neon_load_reg(rd, pass);
fn(tmp, cpu_env, tmp, tmp2, tmp3);
tcg_temp_free_i32(tmp3);
neon_store_reg(rd, pass, tmp);
}
tcg_temp_free_i32(tmp2);
}
break;
default:
g_assert_not_reached();
}
}
} else { /* size == 3 */
if (!u) {
/* Extract. */
imm = (insn >> 8) & 0xf;
if (imm > 7 && !q)
/* Extract: handled by decodetree */
return 1;
if (q && ((rd | rn | rm) & 1)) {
return 1;
}
if (imm == 0) {
neon_load_reg64(cpu_V0, rn);
if (q) {
neon_load_reg64(cpu_V1, rn + 1);
}
} else if (imm == 8) {
neon_load_reg64(cpu_V0, rn + 1);
if (q) {
neon_load_reg64(cpu_V1, rm);
}
} else if (q) {
tmp64 = tcg_temp_new_i64();
if (imm < 8) {
neon_load_reg64(cpu_V0, rn);
neon_load_reg64(tmp64, rn + 1);
} else {
neon_load_reg64(cpu_V0, rn + 1);
neon_load_reg64(tmp64, rm);
}
tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8);
tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8));
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
if (imm < 8) {
neon_load_reg64(cpu_V1, rm);
} else {
neon_load_reg64(cpu_V1, rm + 1);
imm -= 8;
}
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
tcg_gen_shri_i64(tmp64, tmp64, imm * 8);
tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64);
tcg_temp_free_i64(tmp64);
} else {
/* BUGFIX */
neon_load_reg64(cpu_V0, rn);
tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8);
neon_load_reg64(cpu_V1, rm);
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
}
neon_store_reg64(cpu_V0, rd);
if (q) {
neon_store_reg64(cpu_V1, rd + 1);
}
} else if ((insn & (1 << 11)) == 0) {
/* Two register misc. */
op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf);
@ -6184,62 +5574,8 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
}
break;
}
} else if ((insn & (1 << 10)) == 0) {
/* VTBL, VTBX. */
int n = ((insn >> 8) & 3) + 1;
if ((rn + n) > 32) {
/* This is UNPREDICTABLE; we choose to UNDEF to avoid the
* helper function running off the end of the register file.
*/
return 1;
}
n <<= 3;
if (insn & (1 << 6)) {
tmp = neon_load_reg(rd, 0);
} else {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
}
tmp2 = neon_load_reg(rm, 0);
ptr1 = vfp_reg_ptr(true, rn);
tmp5 = tcg_const_i32(n);
gen_helper_neon_tbl(tmp2, tmp2, tmp, ptr1, tmp5);
tcg_temp_free_i32(tmp);
if (insn & (1 << 6)) {
tmp = neon_load_reg(rd, 1);
} else {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
}
tmp3 = neon_load_reg(rm, 1);
gen_helper_neon_tbl(tmp3, tmp3, tmp, ptr1, tmp5);
tcg_temp_free_i32(tmp5);
tcg_temp_free_ptr(ptr1);
neon_store_reg(rd, 0, tmp2);
neon_store_reg(rd, 1, tmp3);
tcg_temp_free_i32(tmp);
} else if ((insn & 0x380) == 0) {
/* VDUP */
int element;
MemOp size;
if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) {
return 1;
}
if (insn & (1 << 16)) {
size = MO_8;
element = (insn >> 17) & 7;
} else if (insn & (1 << 17)) {
size = MO_16;
element = (insn >> 18) & 3;
} else {
size = MO_32;
element = (insn >> 19) & 1;
}
tcg_gen_gvec_dup_mem(size, neon_reg_offset(rd, 0),
neon_element_offset(rm, element, size),
q ? 16 : 8, q ? 16 : 8);
} else {
/* VTBL, VTBX, VDUP: handled by decodetree */
return 1;
}
}

View File

@ -371,6 +371,7 @@ typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);