mirror of
https://github.com/qemu/qemu.git
synced 2024-11-23 19:03:38 +08:00
hvf: Add Apple Silicon support
With Apple Silicon available to the masses, it's a good time to add support for driving its virtualization extensions from QEMU. This patch adds all necessary architecture specific code to get basic VMs working, including save/restore. Known limitations: - WFI handling is missing (follows in later patch) - No watchpoint/breakpoint support Signed-off-by: Alexander Graf <agraf@csgraf.de> Reviewed-by: Roman Bolshakov <r.bolshakov@yadro.com> Reviewed-by: Sergio Lopez <slp@redhat.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 20210916155404.86958-5-agraf@csgraf.de [PMM: added missing #include] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
ce7f5b1c50
commit
a1477da3dd
@ -433,6 +433,11 @@ F: accel/accel-*.c
|
||||
F: accel/Makefile.objs
|
||||
F: accel/stubs/Makefile.objs
|
||||
|
||||
Apple Silicon HVF CPUs
|
||||
M: Alexander Graf <agraf@csgraf.de>
|
||||
S: Maintained
|
||||
F: target/arm/hvf/
|
||||
|
||||
X86 HVF CPUs
|
||||
M: Cameron Esfahani <dirty@apple.com>
|
||||
M: Roman Bolshakov <r.bolshakov@yadro.com>
|
||||
|
@ -60,6 +60,10 @@
|
||||
|
||||
HVFState *hvf_state;
|
||||
|
||||
#ifdef __aarch64__
|
||||
#define HV_VM_DEFAULT NULL
|
||||
#endif
|
||||
|
||||
/* Memory slots */
|
||||
|
||||
hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
|
||||
@ -376,7 +380,11 @@ static int hvf_init_vcpu(CPUState *cpu)
|
||||
pthread_sigmask(SIG_BLOCK, NULL, &set);
|
||||
sigdelset(&set, SIG_IPI);
|
||||
|
||||
#ifdef __aarch64__
|
||||
r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
|
||||
#else
|
||||
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
|
||||
#endif
|
||||
cpu->vcpu_dirty = 1;
|
||||
assert_hvf_ok(r);
|
||||
|
||||
@ -452,6 +460,7 @@ static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
|
||||
AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
|
||||
|
||||
ops->create_vcpu_thread = hvf_start_vcpu_thread;
|
||||
ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
|
||||
|
||||
ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
|
||||
ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
|
||||
|
@ -11,7 +11,11 @@
|
||||
#ifndef HVF_INT_H
|
||||
#define HVF_INT_H
|
||||
|
||||
#ifdef __aarch64__
|
||||
#include <Hypervisor/Hypervisor.h>
|
||||
#else
|
||||
#include <Hypervisor/hv.h>
|
||||
#endif
|
||||
|
||||
/* hvf_slot flags */
|
||||
#define HVF_SLOT_LOG (1 << 0)
|
||||
@ -40,11 +44,14 @@ struct HVFState {
|
||||
int num_slots;
|
||||
|
||||
hvf_vcpu_caps *hvf_caps;
|
||||
uint64_t vtimer_offset;
|
||||
};
|
||||
extern HVFState *hvf_state;
|
||||
|
||||
struct hvf_vcpu_state {
|
||||
int fd;
|
||||
uint64_t fd;
|
||||
void *exit;
|
||||
bool vtimer_masked;
|
||||
};
|
||||
|
||||
void assert_hvf_ok(hv_return_t ret);
|
||||
@ -55,5 +62,6 @@ int hvf_vcpu_exec(CPUState *);
|
||||
hvf_slot *hvf_find_overlap_slot(uint64_t, uint64_t);
|
||||
int hvf_put_registers(CPUState *);
|
||||
int hvf_get_registers(CPUState *);
|
||||
void hvf_kick_vcpu_thread(CPUState *cpu);
|
||||
|
||||
#endif
|
||||
|
@ -2169,6 +2169,7 @@ if have_system or have_user
|
||||
'accel/tcg',
|
||||
'hw/core',
|
||||
'target/arm',
|
||||
'target/arm/hvf',
|
||||
'target/hppa',
|
||||
'target/i386',
|
||||
'target/i386/kvm',
|
||||
|
794
target/arm/hvf/hvf.c
Normal file
794
target/arm/hvf/hvf.c
Normal file
@ -0,0 +1,794 @@
|
||||
/*
|
||||
* QEMU Hypervisor.framework support for Apple Silicon
|
||||
|
||||
* Copyright 2020 Alexander Graf <agraf@csgraf.de>
|
||||
*
|
||||
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||||
* See the COPYING file in the top-level directory.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "qemu/osdep.h"
|
||||
#include "qemu-common.h"
|
||||
#include "qemu/error-report.h"
|
||||
|
||||
#include "sysemu/runstate.h"
|
||||
#include "sysemu/hvf.h"
|
||||
#include "sysemu/hvf_int.h"
|
||||
#include "sysemu/hw_accel.h"
|
||||
|
||||
#include <mach/mach_time.h>
|
||||
|
||||
#include "exec/address-spaces.h"
|
||||
#include "hw/irq.h"
|
||||
#include "qemu/main-loop.h"
|
||||
#include "sysemu/cpus.h"
|
||||
#include "target/arm/cpu.h"
|
||||
#include "target/arm/internals.h"
|
||||
#include "trace/trace-target_arm_hvf.h"
|
||||
#include "migration/vmstate.h"
|
||||
|
||||
#define HVF_SYSREG(crn, crm, op0, op1, op2) \
|
||||
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
|
||||
#define PL1_WRITE_MASK 0x4
|
||||
|
||||
#define SYSREG(op0, op1, crn, crm, op2) \
|
||||
((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
|
||||
#define SYSREG_MASK SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
|
||||
#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
|
||||
#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
|
||||
#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
|
||||
#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
|
||||
|
||||
#define WFX_IS_WFE (1 << 0)
|
||||
|
||||
#define TMR_CTL_ENABLE (1 << 0)
|
||||
#define TMR_CTL_IMASK (1 << 1)
|
||||
#define TMR_CTL_ISTATUS (1 << 2)
|
||||
|
||||
typedef struct HVFVTimer {
|
||||
/* Vtimer value during migration and paused state */
|
||||
uint64_t vtimer_val;
|
||||
} HVFVTimer;
|
||||
|
||||
static HVFVTimer vtimer;
|
||||
|
||||
struct hvf_reg_match {
|
||||
int reg;
|
||||
uint64_t offset;
|
||||
};
|
||||
|
||||
static const struct hvf_reg_match hvf_reg_match[] = {
|
||||
{ HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
|
||||
{ HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
|
||||
{ HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
|
||||
{ HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
|
||||
{ HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
|
||||
{ HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
|
||||
{ HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
|
||||
{ HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
|
||||
{ HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
|
||||
{ HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
|
||||
{ HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
|
||||
{ HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
|
||||
{ HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
|
||||
{ HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
|
||||
{ HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
|
||||
{ HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
|
||||
{ HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
|
||||
{ HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
|
||||
{ HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
|
||||
{ HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
|
||||
{ HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
|
||||
{ HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
|
||||
{ HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
|
||||
{ HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
|
||||
{ HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
|
||||
{ HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
|
||||
{ HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
|
||||
{ HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
|
||||
{ HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
|
||||
{ HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
|
||||
{ HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
|
||||
{ HV_REG_PC, offsetof(CPUARMState, pc) },
|
||||
};
|
||||
|
||||
static const struct hvf_reg_match hvf_fpreg_match[] = {
|
||||
{ HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
|
||||
{ HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
|
||||
{ HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
|
||||
{ HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
|
||||
{ HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
|
||||
{ HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
|
||||
{ HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
|
||||
{ HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
|
||||
{ HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
|
||||
{ HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
|
||||
{ HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
|
||||
{ HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
|
||||
{ HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
|
||||
{ HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
|
||||
{ HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
|
||||
{ HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
|
||||
{ HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
|
||||
{ HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
|
||||
{ HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
|
||||
{ HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
|
||||
{ HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
|
||||
{ HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
|
||||
{ HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
|
||||
{ HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
|
||||
{ HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
|
||||
{ HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
|
||||
{ HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
|
||||
{ HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
|
||||
{ HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
|
||||
{ HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
|
||||
{ HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
|
||||
{ HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
|
||||
};
|
||||
|
||||
struct hvf_sreg_match {
|
||||
int reg;
|
||||
uint32_t key;
|
||||
uint32_t cp_idx;
|
||||
};
|
||||
|
||||
static struct hvf_sreg_match hvf_sreg_match[] = {
|
||||
{ HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
|
||||
|
||||
{ HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
|
||||
{ HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
|
||||
{ HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
|
||||
{ HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
|
||||
|
||||
#ifdef SYNC_NO_RAW_REGS
|
||||
/*
|
||||
* The registers below are manually synced on init because they are
|
||||
* marked as NO_RAW. We still list them to make number space sync easier.
|
||||
*/
|
||||
{ HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
|
||||
{ HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
|
||||
{ HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
|
||||
#endif
|
||||
{ HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
|
||||
{ HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
|
||||
{ HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
|
||||
{ HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
|
||||
{ HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
|
||||
#ifdef SYNC_NO_MMFR0
|
||||
/* We keep the hardware MMFR0 around. HW limits are there anyway */
|
||||
{ HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
|
||||
#endif
|
||||
{ HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
|
||||
{ HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
|
||||
|
||||
{ HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
|
||||
{ HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
|
||||
{ HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
|
||||
{ HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
|
||||
|
||||
{ HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
|
||||
{ HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
|
||||
{ HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
|
||||
{ HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
|
||||
{ HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
|
||||
{ HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
|
||||
{ HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
|
||||
{ HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
|
||||
{ HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
|
||||
{ HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
|
||||
|
||||
{ HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
|
||||
{ HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
|
||||
{ HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
|
||||
{ HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
|
||||
{ HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
|
||||
{ HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
|
||||
{ HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
|
||||
{ HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
|
||||
{ HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
|
||||
{ HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
|
||||
{ HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
|
||||
{ HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
|
||||
{ HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
|
||||
{ HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
|
||||
{ HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
|
||||
{ HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
|
||||
{ HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
|
||||
{ HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
|
||||
};
|
||||
|
||||
int hvf_get_registers(CPUState *cpu)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
hv_return_t ret;
|
||||
uint64_t val;
|
||||
hv_simd_fp_uchar16_t fpval;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
|
||||
ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
|
||||
*(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
|
||||
assert_hvf_ok(ret);
|
||||
}
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
|
||||
ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
|
||||
&fpval);
|
||||
memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
|
||||
assert_hvf_ok(ret);
|
||||
}
|
||||
|
||||
val = 0;
|
||||
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
|
||||
assert_hvf_ok(ret);
|
||||
vfp_set_fpcr(env, val);
|
||||
|
||||
val = 0;
|
||||
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
|
||||
assert_hvf_ok(ret);
|
||||
vfp_set_fpsr(env, val);
|
||||
|
||||
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
|
||||
assert_hvf_ok(ret);
|
||||
pstate_write(env, val);
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
|
||||
if (hvf_sreg_match[i].cp_idx == -1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
|
||||
}
|
||||
assert(write_list_to_cpustate(arm_cpu));
|
||||
|
||||
aarch64_restore_sp(env, arm_current_el(env));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int hvf_put_registers(CPUState *cpu)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
hv_return_t ret;
|
||||
uint64_t val;
|
||||
hv_simd_fp_uchar16_t fpval;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
|
||||
val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
|
||||
ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
|
||||
assert_hvf_ok(ret);
|
||||
}
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
|
||||
memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
|
||||
ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
|
||||
fpval);
|
||||
assert_hvf_ok(ret);
|
||||
}
|
||||
|
||||
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
aarch64_save_sp(env, arm_current_el(env));
|
||||
|
||||
assert(write_cpustate_to_list(arm_cpu, false));
|
||||
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
|
||||
if (hvf_sreg_match[i].cp_idx == -1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
|
||||
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
|
||||
assert_hvf_ok(ret);
|
||||
}
|
||||
|
||||
ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void flush_cpu_state(CPUState *cpu)
|
||||
{
|
||||
if (cpu->vcpu_dirty) {
|
||||
hvf_put_registers(cpu);
|
||||
cpu->vcpu_dirty = false;
|
||||
}
|
||||
}
|
||||
|
||||
static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
|
||||
{
|
||||
hv_return_t r;
|
||||
|
||||
flush_cpu_state(cpu);
|
||||
|
||||
if (rt < 31) {
|
||||
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
|
||||
assert_hvf_ok(r);
|
||||
}
|
||||
}
|
||||
|
||||
static uint64_t hvf_get_reg(CPUState *cpu, int rt)
|
||||
{
|
||||
uint64_t val = 0;
|
||||
hv_return_t r;
|
||||
|
||||
flush_cpu_state(cpu);
|
||||
|
||||
if (rt < 31) {
|
||||
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
|
||||
assert_hvf_ok(r);
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
void hvf_arch_vcpu_destroy(CPUState *cpu)
|
||||
{
|
||||
}
|
||||
|
||||
int hvf_arch_init_vcpu(CPUState *cpu)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
|
||||
uint32_t sregs_cnt = 0;
|
||||
uint64_t pfr;
|
||||
hv_return_t ret;
|
||||
int i;
|
||||
|
||||
env->aarch64 = 1;
|
||||
asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
|
||||
|
||||
/* Allocate enough space for our sysreg sync */
|
||||
arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
|
||||
sregs_match_len);
|
||||
arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
|
||||
sregs_match_len);
|
||||
arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
|
||||
arm_cpu->cpreg_vmstate_indexes,
|
||||
sregs_match_len);
|
||||
arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
|
||||
arm_cpu->cpreg_vmstate_values,
|
||||
sregs_match_len);
|
||||
|
||||
memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
|
||||
|
||||
/* Populate cp list for all known sysregs */
|
||||
for (i = 0; i < sregs_match_len; i++) {
|
||||
const ARMCPRegInfo *ri;
|
||||
uint32_t key = hvf_sreg_match[i].key;
|
||||
|
||||
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
|
||||
if (ri) {
|
||||
assert(!(ri->type & ARM_CP_NO_RAW));
|
||||
hvf_sreg_match[i].cp_idx = sregs_cnt;
|
||||
arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
|
||||
} else {
|
||||
hvf_sreg_match[i].cp_idx = -1;
|
||||
}
|
||||
}
|
||||
arm_cpu->cpreg_array_len = sregs_cnt;
|
||||
arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
|
||||
|
||||
assert(write_cpustate_to_list(arm_cpu, false));
|
||||
|
||||
/* Set CP_NO_RAW system registers on init */
|
||||
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
|
||||
arm_cpu->midr);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
|
||||
arm_cpu->mp_affinity);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
|
||||
assert_hvf_ok(ret);
|
||||
pfr |= env->gicv3state ? (1 << 24) : 0;
|
||||
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
/* We're limited to underlying hardware caps, override internal versions */
|
||||
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
|
||||
&arm_cpu->isar.id_aa64mmfr0);
|
||||
assert_hvf_ok(ret);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void hvf_kick_vcpu_thread(CPUState *cpu)
|
||||
{
|
||||
hv_vcpus_exit(&cpu->hvf->fd, 1);
|
||||
}
|
||||
|
||||
static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
|
||||
uint32_t syndrome)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
|
||||
cpu->exception_index = excp;
|
||||
env->exception.target_el = 1;
|
||||
env->exception.syndrome = syndrome;
|
||||
|
||||
arm_cpu_do_interrupt(cpu);
|
||||
}
|
||||
|
||||
static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
uint64_t val = 0;
|
||||
|
||||
switch (reg) {
|
||||
case SYSREG_CNTPCT_EL0:
|
||||
val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
|
||||
gt_cntfrq_period_ns(arm_cpu);
|
||||
break;
|
||||
case SYSREG_OSLSR_EL1:
|
||||
val = env->cp15.oslsr_el1;
|
||||
break;
|
||||
case SYSREG_OSDLR_EL1:
|
||||
/* Dummy register */
|
||||
break;
|
||||
default:
|
||||
cpu_synchronize_state(cpu);
|
||||
trace_hvf_unhandled_sysreg_read(env->pc, reg,
|
||||
(reg >> 20) & 0x3,
|
||||
(reg >> 14) & 0x7,
|
||||
(reg >> 10) & 0xf,
|
||||
(reg >> 1) & 0xf,
|
||||
(reg >> 17) & 0x7);
|
||||
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
||||
return 1;
|
||||
}
|
||||
|
||||
trace_hvf_sysreg_read(reg,
|
||||
(reg >> 20) & 0x3,
|
||||
(reg >> 14) & 0x7,
|
||||
(reg >> 10) & 0xf,
|
||||
(reg >> 1) & 0xf,
|
||||
(reg >> 17) & 0x7,
|
||||
val);
|
||||
hvf_set_reg(cpu, rt, val);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
|
||||
trace_hvf_sysreg_write(reg,
|
||||
(reg >> 20) & 0x3,
|
||||
(reg >> 14) & 0x7,
|
||||
(reg >> 10) & 0xf,
|
||||
(reg >> 1) & 0xf,
|
||||
(reg >> 17) & 0x7,
|
||||
val);
|
||||
|
||||
switch (reg) {
|
||||
case SYSREG_OSLAR_EL1:
|
||||
env->cp15.oslsr_el1 = val & 1;
|
||||
break;
|
||||
case SYSREG_OSDLR_EL1:
|
||||
/* Dummy register */
|
||||
break;
|
||||
default:
|
||||
cpu_synchronize_state(cpu);
|
||||
trace_hvf_unhandled_sysreg_write(env->pc, reg,
|
||||
(reg >> 20) & 0x3,
|
||||
(reg >> 14) & 0x7,
|
||||
(reg >> 10) & 0xf,
|
||||
(reg >> 1) & 0xf,
|
||||
(reg >> 17) & 0x7);
|
||||
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int hvf_inject_interrupts(CPUState *cpu)
|
||||
{
|
||||
if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
|
||||
trace_hvf_inject_fiq();
|
||||
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
|
||||
true);
|
||||
}
|
||||
|
||||
if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
|
||||
trace_hvf_inject_irq();
|
||||
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
|
||||
true);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint64_t hvf_vtimer_val_raw(void)
|
||||
{
|
||||
/*
|
||||
* mach_absolute_time() returns the vtimer value without the VM
|
||||
* offset that we define. Add our own offset on top.
|
||||
*/
|
||||
return mach_absolute_time() - hvf_state->vtimer_offset;
|
||||
}
|
||||
|
||||
static void hvf_sync_vtimer(CPUState *cpu)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
hv_return_t r;
|
||||
uint64_t ctl;
|
||||
bool irq_state;
|
||||
|
||||
if (!cpu->hvf->vtimer_masked) {
|
||||
/* We will get notified on vtimer changes by hvf, nothing to do */
|
||||
return;
|
||||
}
|
||||
|
||||
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
|
||||
assert_hvf_ok(r);
|
||||
|
||||
irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
|
||||
(TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
|
||||
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
|
||||
|
||||
if (!irq_state) {
|
||||
/* Timer no longer asserting, we can unmask it */
|
||||
hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
|
||||
cpu->hvf->vtimer_masked = false;
|
||||
}
|
||||
}
|
||||
|
||||
int hvf_vcpu_exec(CPUState *cpu)
|
||||
{
|
||||
ARMCPU *arm_cpu = ARM_CPU(cpu);
|
||||
CPUARMState *env = &arm_cpu->env;
|
||||
hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
|
||||
hv_return_t r;
|
||||
bool advance_pc = false;
|
||||
|
||||
if (hvf_inject_interrupts(cpu)) {
|
||||
return EXCP_INTERRUPT;
|
||||
}
|
||||
|
||||
if (cpu->halted) {
|
||||
return EXCP_HLT;
|
||||
}
|
||||
|
||||
flush_cpu_state(cpu);
|
||||
|
||||
qemu_mutex_unlock_iothread();
|
||||
assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
|
||||
|
||||
/* handle VMEXIT */
|
||||
uint64_t exit_reason = hvf_exit->reason;
|
||||
uint64_t syndrome = hvf_exit->exception.syndrome;
|
||||
uint32_t ec = syn_get_ec(syndrome);
|
||||
|
||||
qemu_mutex_lock_iothread();
|
||||
switch (exit_reason) {
|
||||
case HV_EXIT_REASON_EXCEPTION:
|
||||
/* This is the main one, handle below. */
|
||||
break;
|
||||
case HV_EXIT_REASON_VTIMER_ACTIVATED:
|
||||
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
|
||||
cpu->hvf->vtimer_masked = true;
|
||||
return 0;
|
||||
case HV_EXIT_REASON_CANCELED:
|
||||
/* we got kicked, no exit to process */
|
||||
return 0;
|
||||
default:
|
||||
assert(0);
|
||||
}
|
||||
|
||||
hvf_sync_vtimer(cpu);
|
||||
|
||||
switch (ec) {
|
||||
case EC_DATAABORT: {
|
||||
bool isv = syndrome & ARM_EL_ISV;
|
||||
bool iswrite = (syndrome >> 6) & 1;
|
||||
bool s1ptw = (syndrome >> 7) & 1;
|
||||
uint32_t sas = (syndrome >> 22) & 3;
|
||||
uint32_t len = 1 << sas;
|
||||
uint32_t srt = (syndrome >> 16) & 0x1f;
|
||||
uint64_t val = 0;
|
||||
|
||||
trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
|
||||
hvf_exit->exception.physical_address, isv,
|
||||
iswrite, s1ptw, len, srt);
|
||||
|
||||
assert(isv);
|
||||
|
||||
if (iswrite) {
|
||||
val = hvf_get_reg(cpu, srt);
|
||||
address_space_write(&address_space_memory,
|
||||
hvf_exit->exception.physical_address,
|
||||
MEMTXATTRS_UNSPECIFIED, &val, len);
|
||||
} else {
|
||||
address_space_read(&address_space_memory,
|
||||
hvf_exit->exception.physical_address,
|
||||
MEMTXATTRS_UNSPECIFIED, &val, len);
|
||||
hvf_set_reg(cpu, srt, val);
|
||||
}
|
||||
|
||||
advance_pc = true;
|
||||
break;
|
||||
}
|
||||
case EC_SYSTEMREGISTERTRAP: {
|
||||
bool isread = (syndrome >> 0) & 1;
|
||||
uint32_t rt = (syndrome >> 5) & 0x1f;
|
||||
uint32_t reg = syndrome & SYSREG_MASK;
|
||||
uint64_t val;
|
||||
int ret = 0;
|
||||
|
||||
if (isread) {
|
||||
ret = hvf_sysreg_read(cpu, reg, rt);
|
||||
} else {
|
||||
val = hvf_get_reg(cpu, rt);
|
||||
ret = hvf_sysreg_write(cpu, reg, val);
|
||||
}
|
||||
|
||||
advance_pc = !ret;
|
||||
break;
|
||||
}
|
||||
case EC_WFX_TRAP:
|
||||
advance_pc = true;
|
||||
break;
|
||||
case EC_AA64_HVC:
|
||||
cpu_synchronize_state(cpu);
|
||||
trace_hvf_unknown_hvc(env->xregs[0]);
|
||||
/* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
|
||||
env->xregs[0] = -1;
|
||||
break;
|
||||
case EC_AA64_SMC:
|
||||
cpu_synchronize_state(cpu);
|
||||
trace_hvf_unknown_smc(env->xregs[0]);
|
||||
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
|
||||
break;
|
||||
default:
|
||||
cpu_synchronize_state(cpu);
|
||||
trace_hvf_exit(syndrome, ec, env->pc);
|
||||
error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
|
||||
}
|
||||
|
||||
if (advance_pc) {
|
||||
uint64_t pc;
|
||||
|
||||
flush_cpu_state(cpu);
|
||||
|
||||
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
|
||||
assert_hvf_ok(r);
|
||||
pc += 4;
|
||||
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
|
||||
assert_hvf_ok(r);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const VMStateDescription vmstate_hvf_vtimer = {
|
||||
.name = "hvf-vtimer",
|
||||
.version_id = 1,
|
||||
.minimum_version_id = 1,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_UINT64(vtimer_val, HVFVTimer),
|
||||
VMSTATE_END_OF_LIST()
|
||||
},
|
||||
};
|
||||
|
||||
static void hvf_vm_state_change(void *opaque, bool running, RunState state)
|
||||
{
|
||||
HVFVTimer *s = opaque;
|
||||
|
||||
if (running) {
|
||||
/* Update vtimer offset on all CPUs */
|
||||
hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
|
||||
cpu_synchronize_all_states();
|
||||
} else {
|
||||
/* Remember vtimer value on every pause */
|
||||
s->vtimer_val = hvf_vtimer_val_raw();
|
||||
}
|
||||
}
|
||||
|
||||
int hvf_arch_init(void)
|
||||
{
|
||||
hvf_state->vtimer_offset = mach_absolute_time();
|
||||
vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
|
||||
qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
|
||||
return 0;
|
||||
}
|
10
target/arm/hvf/trace-events
Normal file
10
target/arm/hvf/trace-events
Normal file
@ -0,0 +1,10 @@
|
||||
hvf_unhandled_sysreg_read(uint64_t pc, uint32_t reg, uint32_t op0, uint32_t op1, uint32_t crn, uint32_t crm, uint32_t op2) "unhandled sysreg read at pc=0x%"PRIx64": 0x%08x (op0=%d op1=%d crn=%d crm=%d op2=%d)"
|
||||
hvf_unhandled_sysreg_write(uint64_t pc, uint32_t reg, uint32_t op0, uint32_t op1, uint32_t crn, uint32_t crm, uint32_t op2) "unhandled sysreg write at pc=0x%"PRIx64": 0x%08x (op0=%d op1=%d crn=%d crm=%d op2=%d)"
|
||||
hvf_inject_fiq(void) "injecting FIQ"
|
||||
hvf_inject_irq(void) "injecting IRQ"
|
||||
hvf_data_abort(uint64_t pc, uint64_t va, uint64_t pa, bool isv, bool iswrite, bool s1ptw, uint32_t len, uint32_t srt) "data abort: [pc=0x%"PRIx64" va=0x%016"PRIx64" pa=0x%016"PRIx64" isv=%d iswrite=%d s1ptw=%d len=%d srt=%d]"
|
||||
hvf_sysreg_read(uint32_t reg, uint32_t op0, uint32_t op1, uint32_t crn, uint32_t crm, uint32_t op2, uint64_t val) "sysreg read 0x%08x (op0=%d op1=%d crn=%d crm=%d op2=%d) = 0x%016"PRIx64
|
||||
hvf_sysreg_write(uint32_t reg, uint32_t op0, uint32_t op1, uint32_t crn, uint32_t crm, uint32_t op2, uint64_t val) "sysreg write 0x%08x (op0=%d op1=%d crn=%d crm=%d op2=%d, val=0x%016"PRIx64")"
|
||||
hvf_unknown_hvc(uint64_t x0) "unknown HVC! 0x%016"PRIx64
|
||||
hvf_unknown_smc(uint64_t x0) "unknown SMC! 0x%016"PRIx64
|
||||
hvf_exit(uint64_t syndrome, uint32_t ec, uint64_t pc) "exit: 0x%"PRIx64" [ec=0x%x pc=0x%"PRIx64"]"
|
@ -53,6 +53,7 @@
|
||||
#include "sysemu/hvf.h"
|
||||
#include "sysemu/hvf_int.h"
|
||||
#include "sysemu/runstate.h"
|
||||
#include "sysemu/cpus.h"
|
||||
#include "hvf-i386.h"
|
||||
#include "vmcs.h"
|
||||
#include "vmx.h"
|
||||
@ -206,6 +207,11 @@ static inline bool apic_bus_freq_is_known(CPUX86State *env)
|
||||
return env->apic_bus_freq != 0;
|
||||
}
|
||||
|
||||
void hvf_kick_vcpu_thread(CPUState *cpu)
|
||||
{
|
||||
cpus_kick_thread(cpu);
|
||||
}
|
||||
|
||||
int hvf_arch_init(void)
|
||||
{
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user