docs/system/arm: Split fby35 out from aspeed.rst

The fby35 machine is not implemented in hw/arm/aspeed.c,
but its documentation is currently stuck at the end of aspeed.rst,
formatted in a way that it gets its own heading in the top-level
list of boards in target-arm.html.

We don't have any other boards that we document like this; split it
out into its own rst file. This improves consistency with other
board docs and means we can have the entry in the target-arm
list be in the correct alphabetical order.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Message-id: 20241018141332.942844-4-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2024-10-29 12:54:44 +00:00
parent 23a26bfeea
commit 6a98e614e5
4 changed files with 49 additions and 48 deletions

View File

@ -1123,6 +1123,7 @@ F: include/hw/*/*aspeed*
F: hw/net/ftgmac100.c
F: include/hw/net/ftgmac100.h
F: docs/system/arm/aspeed.rst
F: docs/system/arm/fby35.rst
F: tests/*/*aspeed*
F: tests/*/*ast2700*
F: hw/arm/fby35.c

View File

@ -257,51 +257,3 @@ To boot a kernel directly from a Zephyr build tree:
$ qemu-system-arm -M ast1030-evb -nographic \
-kernel zephyr.elf
Facebook Yosemite v3.5 Platform and CraterLake Server (``fby35``)
==================================================================
Facebook has a series of multi-node compute server designs named
Yosemite. The most recent version released was
`Yosemite v3 <https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-specification-1v16-pdf>`__.
Yosemite v3.5 is an iteration on this design, and is very similar: there's a
baseboard with a BMC, and 4 server slots. The new server board design termed
"CraterLake" includes a Bridge IC (BIC), with room for expansion boards to
include various compute accelerators (video, inferencing, etc). At the moment,
only the first server slot's BIC is included.
Yosemite v3.5 is itself a sled which fits into a 40U chassis, and 3 sleds
can be fit into a chassis. See `here <https://www.opencompute.org/products/423/wiwynn-yosemite-v3-server>`__
for an example.
In this generation, the BMC is an AST2600 and each BIC is an AST1030. The BMC
runs `OpenBMC <https://github.com/facebook/openbmc>`__, and the BIC runs
`OpenBIC <https://github.com/facebook/openbic>`__.
Firmware images can be retrieved from the Github releases or built from the
source code, see the README's for instructions on that. This image uses the
"fby35" machine recipe from OpenBMC, and the "yv35-cl" target from OpenBIC.
Some reference images can also be found here:
.. code-block:: bash
$ wget https://github.com/facebook/openbmc/releases/download/openbmc-e2294ff5d31d/fby35.mtd
$ wget https://github.com/peterdelevoryas/OpenBIC/releases/download/oby35-cl-2022.13.01/Y35BCL.elf
Since this machine has multiple SoC's, each with their own serial console, the
recommended way to run it is to allocate a pseudoterminal for each serial
console and let the monitor use stdio. Also, starting in a paused state is
useful because it allows you to attach to the pseudoterminals before the boot
process starts.
.. code-block:: bash
$ qemu-system-arm -machine fby35 \
-drive file=fby35.mtd,format=raw,if=mtd \
-device loader,file=Y35BCL.elf,addr=0,cpu-num=2 \
-serial pty -serial pty -serial mon:stdio \
-display none -S
$ screen /dev/tty0 # In a separate TMUX pane, terminal window, etc.
$ screen /dev/tty1
$ (qemu) c # Start the boot process once screen is setup.

47
docs/system/arm/fby35.rst Normal file
View File

@ -0,0 +1,47 @@
Facebook Yosemite v3.5 Platform and CraterLake Server (``fby35``)
==================================================================
Facebook has a series of multi-node compute server designs named
Yosemite. The most recent version released was
`Yosemite v3 <https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-specification-1v16-pdf>`__.
Yosemite v3.5 is an iteration on this design, and is very similar: there's a
baseboard with a BMC, and 4 server slots. The new server board design termed
"CraterLake" includes a Bridge IC (BIC), with room for expansion boards to
include various compute accelerators (video, inferencing, etc). At the moment,
only the first server slot's BIC is included.
Yosemite v3.5 is itself a sled which fits into a 40U chassis, and 3 sleds
can be fit into a chassis. See `here <https://www.opencompute.org/products/423/wiwynn-yosemite-v3-server>`__
for an example.
In this generation, the BMC is an AST2600 and each BIC is an AST1030. The BMC
runs `OpenBMC <https://github.com/facebook/openbmc>`__, and the BIC runs
`OpenBIC <https://github.com/facebook/openbic>`__.
Firmware images can be retrieved from the Github releases or built from the
source code, see the README's for instructions on that. This image uses the
"fby35" machine recipe from OpenBMC, and the "yv35-cl" target from OpenBIC.
Some reference images can also be found here:
.. code-block:: bash
$ wget https://github.com/facebook/openbmc/releases/download/openbmc-e2294ff5d31d/fby35.mtd
$ wget https://github.com/peterdelevoryas/OpenBIC/releases/download/oby35-cl-2022.13.01/Y35BCL.elf
Since this machine has multiple SoC's, each with their own serial console, the
recommended way to run it is to allocate a pseudoterminal for each serial
console and let the monitor use stdio. Also, starting in a paused state is
useful because it allows you to attach to the pseudoterminals before the boot
process starts.
.. code-block:: bash
$ qemu-system-arm -machine fby35 \
-drive file=fby35.mtd,format=raw,if=mtd \
-device loader,file=Y35BCL.elf,addr=0,cpu-num=2 \
-serial pty -serial pty -serial mon:stdio \
-display none -S
$ screen /dev/tty0 # In a separate TMUX pane, terminal window, etc.
$ screen /dev/tty1
$ (qemu) c # Start the boot process once screen is setup.

View File

@ -90,6 +90,7 @@ undocumented; you can get a complete list by running
arm/digic
arm/cubieboard
arm/emcraft-sf2
arm/fby35
arm/musicpal
arm/kzm
arm/nrf