ETRAX timers: Improve the support for timer1 and let the board-setup choose irq nr.

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4301 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
edgar_igl 2008-05-02 22:32:02 +00:00
parent f062058fa1
commit 602372237d

View File

@ -48,27 +48,23 @@ struct fs_timer_t {
QEMUBH *bh;
ptimer_state *ptimer;
unsigned int limit;
int scale;
uint32_t mask;
struct timeval last;
/* Control registers. */
uint32_t rw_tmr0_div;
uint32_t r_tmr0_data;
uint32_t rw_tmr0_ctrl;
uint32_t rw_tmr1_div;
uint32_t r_tmr1_data;
uint32_t rw_tmr1_ctrl;
uint32_t rw_intr_mask;
uint32_t rw_ack_intr;
uint32_t r_intr;
uint32_t r_masked_intr;
};
/* diff two timevals. Return a single int in us. */
int diff_timeval_us(struct timeval *a, struct timeval *b)
{
int diff;
/* assume these values are signed. */
diff = (a->tv_sec - b->tv_sec) * 1000 * 1000;
diff += (a->tv_usec - b->tv_usec);
return diff;
}
static uint32_t timer_rinvalid (void *opaque, target_phys_addr_t addr)
{
struct fs_timer_t *t = opaque;
@ -93,19 +89,8 @@ static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
D(printf ("R_TMR1_DATA\n"));
break;
case R_TIME:
{
struct timeval now;
gettimeofday(&now, NULL);
if (!(t->last.tv_sec == 0
&& t->last.tv_usec == 0)) {
r = diff_timeval_us(&now, &t->last);
r *= 1000; /* convert to ns. */
r++; /* make sure we increase for each call. */
}
t->last = now;
r = qemu_get_clock(vm_clock) * 10;
break;
}
case RW_INTR_MASK:
r = t->rw_intr_mask;
break;
@ -128,14 +113,16 @@ timer_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
addr, env->pc);
}
static void write_ctrl(struct fs_timer_t *t, uint32_t v)
#define TIMER_SLOWDOWN 4
static void update_ctrl(struct fs_timer_t *t)
{
int op;
int freq;
int freq_hz;
unsigned int op;
unsigned int freq;
unsigned int freq_hz;
unsigned int div;
op = v & 3;
freq = v >> 2;
op = t->rw_tmr0_ctrl & 3;
freq = t->rw_tmr0_ctrl >> 2;
freq_hz = 32000000;
switch (freq)
@ -153,25 +140,26 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
break;
}
D(printf ("freq_hz=%d limit=%d\n", freq_hz, t->limit));
t->scale = 0;
if (t->limit > 2048)
{
t->scale = 2048;
ptimer_set_period(t->ptimer, freq_hz / t->scale);
}
D(printf ("freq_hz=%d div=%d\n", freq_hz, t->rw_tmr0_div));
div = t->rw_tmr0_div * TIMER_SLOWDOWN;
div >>= 15;
freq_hz >>= 15;
ptimer_set_freq(t->ptimer, freq_hz);
ptimer_set_limit(t->ptimer, div, 0);
switch (op)
{
case 0:
D(printf ("limit=%d %d\n",
t->limit, t->limit/t->scale));
ptimer_set_limit(t->ptimer, t->limit / t->scale, 1);
/* Load. */
ptimer_set_limit(t->ptimer, div, 1);
ptimer_run(t->ptimer, 1);
break;
case 1:
/* Hold. */
ptimer_stop(t->ptimer);
break;
case 2:
/* Run. */
ptimer_run(t->ptimer, 0);
break;
default:
@ -180,34 +168,44 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
}
}
static void timer_ack_irq(struct fs_timer_t *t)
static void timer_update_irq(struct fs_timer_t *t)
{
if (!(t->r_intr & t->mask & t->rw_intr_mask))
t->r_intr &= ~(t->rw_ack_intr);
t->r_masked_intr = t->r_intr & t->rw_intr_mask;
D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
if (t->r_masked_intr & 1)
qemu_irq_raise(t->irq[0]);
else
qemu_irq_lower(t->irq[0]);
}
static void timer_hit(struct fs_timer_t *t)
{
t->r_intr |= 1;
timer_update_irq(t);
}
static void
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct fs_timer_t *t = opaque;
CPUState *env = t->env;
D(printf ("%s %x %x pc=%x\n",
__func__, addr, value, env->pc));
/* Make addr relative to this instances base. */
addr -= t->base;
switch (addr)
{
case RW_TMR0_DIV:
D(printf ("RW_TMR0_DIV=%x\n", value));
t->limit = value;
t->rw_tmr0_div = value;
break;
case RW_TMR0_CTRL:
D(printf ("RW_TMR0_CTRL=%x\n", value));
write_ctrl(t, value);
t->rw_tmr0_ctrl = value;
update_ctrl(t);
break;
case RW_TMR1_DIV:
D(printf ("RW_TMR1_DIV=%x\n", value));
t->rw_tmr1_div = value;
break;
case RW_TMR1_CTRL:
D(printf ("RW_TMR1_CTRL=%x\n", value));
@ -215,13 +213,15 @@ timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
case RW_INTR_MASK:
D(printf ("RW_INTR_MASK=%x\n", value));
t->rw_intr_mask = value;
timer_update_irq(t);
break;
case RW_WD_CTRL:
D(printf ("RW_WD_CTRL=%x\n", value));
break;
case RW_ACK_INTR:
t->r_intr &= ~value;
timer_ack_irq(t);
t->rw_ack_intr = value;
timer_update_irq(t);
t->rw_ack_intr = 0;
break;
default:
printf ("%s %x %x pc=%x\n",
@ -242,16 +242,6 @@ static CPUWriteMemoryFunc *timer_write[] = {
&timer_writel,
};
static void timer_irq(void *opaque)
{
struct fs_timer_t *t = opaque;
t->r_intr |= t->mask;
if (t->mask & t->rw_intr_mask) {
D(printf("%s raise\n", __func__));
qemu_irq_raise(t->irq[0]);
}
}
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs,
target_phys_addr_t base)
{
@ -262,10 +252,9 @@ void etraxfs_timer_init(CPUState *env, qemu_irq *irqs,
if (!t)
return;
t->bh = qemu_bh_new(timer_irq, t);
t->bh = qemu_bh_new(timer_hit, t);
t->ptimer = ptimer_init(t->bh);
t->irq = irqs + 26;
t->mask = 1;
t->irq = irqs;
t->env = env;
t->base = base;