mirror of
https://github.com/qemu/qemu.git
synced 2024-12-01 07:43:35 +08:00
tcg: convert tcg/README to rst
Convert tcg/README to rst and move it to docs/devel as a new "TCG Intermediate Representation" page. There are a few minor changes to improve the aesthetic of the final output which are as follows: - Rename the title from "Tiny Code Generator - Fabrice Bellard" to "TCG Intermediate Representation" - Remove the section numbering - Add the missing parameters to the ssadd_vec operations in the "Host vector operations" section - Change the path to the Atomic Operations document to use a proper reference - Replace tcg/README in tcg.rst with a proper reference to the new document Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> Reviewed-by: Fabiano Rosas <farosas@suse.de> Message-Id: <20221130100434.64207-2-mark.cave-ayland@ilande.co.uk> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
cb9c6a8e5a
commit
5e97a28a8b
@ -1,3 +1,5 @@
|
||||
.. _atomics-ref:
|
||||
|
||||
=========================
|
||||
Atomic operations in QEMU
|
||||
=========================
|
||||
|
@ -9,6 +9,7 @@ are only implementing things for HW accelerated hypervisors.
|
||||
:maxdepth: 2
|
||||
|
||||
tcg
|
||||
tcg-ops
|
||||
decodetree
|
||||
multi-thread-tcg
|
||||
tcg-icount
|
||||
|
941
docs/devel/tcg-ops.rst
Normal file
941
docs/devel/tcg-ops.rst
Normal file
@ -0,0 +1,941 @@
|
||||
.. _tcg-ops-ref:
|
||||
|
||||
*******************************
|
||||
TCG Intermediate Representation
|
||||
*******************************
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
TCG (Tiny Code Generator) began as a generic backend for a C
|
||||
compiler. It was simplified to be used in QEMU. It also has its roots
|
||||
in the QOP code generator written by Paul Brook.
|
||||
|
||||
Definitions
|
||||
===========
|
||||
|
||||
TCG receives RISC-like *TCG ops* and performs some optimizations on them,
|
||||
including liveness analysis and trivial constant expression
|
||||
evaluation. TCG ops are then implemented in the host CPU back end,
|
||||
also known as the TCG target.
|
||||
|
||||
The TCG *target* is the architecture for which we generate the
|
||||
code. It is of course not the same as the "target" of QEMU which is
|
||||
the emulated architecture. As TCG started as a generic C backend used
|
||||
for cross compiling, it is assumed that the TCG target is different
|
||||
from the host, although it is never the case for QEMU.
|
||||
|
||||
In this document, we use *guest* to specify what architecture we are
|
||||
emulating; *target* always means the TCG target, the machine on which
|
||||
we are running QEMU.
|
||||
|
||||
A TCG *function* corresponds to a QEMU Translated Block (TB).
|
||||
|
||||
A TCG *temporary* is a variable only live in a basic block. Temporaries are allocated explicitly in each function.
|
||||
|
||||
A TCG *local temporary* is a variable only live in a function. Local temporaries are allocated explicitly in each function.
|
||||
|
||||
A TCG *global* is a variable which is live in all the functions
|
||||
(equivalent of a C global variable). They are defined before the
|
||||
functions defined. A TCG global can be a memory location (e.g. a QEMU
|
||||
CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
|
||||
or a memory location which is stored in a register outside QEMU TBs
|
||||
(not implemented yet).
|
||||
|
||||
A TCG *basic block* corresponds to a list of instructions terminated
|
||||
by a branch instruction.
|
||||
|
||||
An operation with *undefined behavior* may result in a crash.
|
||||
|
||||
An operation with *unspecified behavior* shall not crash. However,
|
||||
the result may be one of several possibilities so may be considered
|
||||
an *undefined result*.
|
||||
|
||||
Intermediate representation
|
||||
===========================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
TCG instructions operate on variables which are temporaries, local
|
||||
temporaries or globals. TCG instructions and variables are strongly
|
||||
typed. Two types are supported: 32 bit integers and 64 bit
|
||||
integers. Pointers are defined as an alias to 32 bit or 64 bit
|
||||
integers depending on the TCG target word size.
|
||||
|
||||
Each instruction has a fixed number of output variable operands, input
|
||||
variable operands and always constant operands.
|
||||
|
||||
The notable exception is the call instruction which has a variable
|
||||
number of outputs and inputs.
|
||||
|
||||
In the textual form, output operands usually come first, followed by
|
||||
input operands, followed by constant operands. The output type is
|
||||
included in the instruction name. Constants are prefixed with a '$'.
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
add_i32 t0, t1, t2 /* (t0 <- t1 + t2) */
|
||||
|
||||
|
||||
Assumptions
|
||||
-----------
|
||||
|
||||
Basic blocks
|
||||
^^^^^^^^^^^^
|
||||
|
||||
* Basic blocks end after branches (e.g. brcond_i32 instruction),
|
||||
goto_tb and exit_tb instructions.
|
||||
|
||||
* Basic blocks start after the end of a previous basic block, or at a
|
||||
set_label instruction.
|
||||
|
||||
After the end of a basic block, the content of temporaries is
|
||||
destroyed, but local temporaries and globals are preserved.
|
||||
|
||||
Floating point types
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
* Floating point types are not supported yet
|
||||
|
||||
Pointers
|
||||
^^^^^^^^
|
||||
|
||||
* Depending on the TCG target, pointer size is 32 bit or 64
|
||||
bit. The type ``TCG_TYPE_PTR`` is an alias to ``TCG_TYPE_I32`` or
|
||||
``TCG_TYPE_I64``.
|
||||
|
||||
Helpers
|
||||
^^^^^^^
|
||||
|
||||
* Using the tcg_gen_helper_x_y it is possible to call any function
|
||||
taking i32, i64 or pointer types. By default, before calling a helper,
|
||||
all globals are stored at their canonical location and it is assumed
|
||||
that the function can modify them. By default, the helper is allowed to
|
||||
modify the CPU state or raise an exception.
|
||||
|
||||
This can be overridden using the following function modifiers:
|
||||
|
||||
- ``TCG_CALL_NO_READ_GLOBALS`` means that the helper does not read globals,
|
||||
either directly or via an exception. They will not be saved to their
|
||||
canonical locations before calling the helper.
|
||||
|
||||
- ``TCG_CALL_NO_WRITE_GLOBALS`` means that the helper does not modify any globals.
|
||||
They will only be saved to their canonical location before calling helpers,
|
||||
but they won't be reloaded afterwards.
|
||||
|
||||
- ``TCG_CALL_NO_SIDE_EFFECTS`` means that the call to the function is removed if
|
||||
the return value is not used.
|
||||
|
||||
Note that ``TCG_CALL_NO_READ_GLOBALS`` implies ``TCG_CALL_NO_WRITE_GLOBALS``.
|
||||
|
||||
On some TCG targets (e.g. x86), several calling conventions are
|
||||
supported.
|
||||
|
||||
Branches
|
||||
^^^^^^^^
|
||||
|
||||
* Use the instruction 'br' to jump to a label.
|
||||
|
||||
Code Optimizations
|
||||
------------------
|
||||
|
||||
When generating instructions, you can count on at least the following
|
||||
optimizations:
|
||||
|
||||
- Single instructions are simplified, e.g.
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
and_i32 t0, t0, $0xffffffff
|
||||
|
||||
is suppressed.
|
||||
|
||||
- A liveness analysis is done at the basic block level. The
|
||||
information is used to suppress moves from a dead variable to
|
||||
another one. It is also used to remove instructions which compute
|
||||
dead results. The later is especially useful for condition code
|
||||
optimization in QEMU.
|
||||
|
||||
In the following example:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
add_i32 t0, t1, t2
|
||||
add_i32 t0, t0, $1
|
||||
mov_i32 t0, $1
|
||||
|
||||
only the last instruction is kept.
|
||||
|
||||
|
||||
Instruction Reference
|
||||
=====================
|
||||
|
||||
Function call
|
||||
-------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - call *<ret>* *<params>* ptr
|
||||
|
||||
- | call function 'ptr' (pointer type)
|
||||
|
|
||||
| *<ret>* optional 32 bit or 64 bit return value
|
||||
| *<params>* optional 32 bit or 64 bit parameters
|
||||
|
||||
Jumps/Labels
|
||||
------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - set_label $label
|
||||
|
||||
- | Define label 'label' at the current program point.
|
||||
|
||||
* - br $label
|
||||
|
||||
- | Jump to label.
|
||||
|
||||
* - brcond_i32/i64 *t0*, *t1*, *cond*, *label*
|
||||
|
||||
- | Conditional jump if *t0* *cond* *t1* is true. *cond* can be:
|
||||
|
|
||||
| ``TCG_COND_EQ``
|
||||
| ``TCG_COND_NE``
|
||||
| ``TCG_COND_LT /* signed */``
|
||||
| ``TCG_COND_GE /* signed */``
|
||||
| ``TCG_COND_LE /* signed */``
|
||||
| ``TCG_COND_GT /* signed */``
|
||||
| ``TCG_COND_LTU /* unsigned */``
|
||||
| ``TCG_COND_GEU /* unsigned */``
|
||||
| ``TCG_COND_LEU /* unsigned */``
|
||||
| ``TCG_COND_GTU /* unsigned */``
|
||||
|
||||
Arithmetic
|
||||
----------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - add_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* + *t2*
|
||||
|
||||
* - sub_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* - *t2*
|
||||
|
||||
* - neg_i32/i64 *t0*, *t1*
|
||||
|
||||
- | *t0* = -*t1* (two's complement)
|
||||
|
||||
* - mul_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* * *t2*
|
||||
|
||||
* - div_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* / *t2* (signed)
|
||||
| Undefined behavior if division by zero or overflow.
|
||||
|
||||
* - divu_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* / *t2* (unsigned)
|
||||
| Undefined behavior if division by zero.
|
||||
|
||||
* - rem_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* % *t2* (signed)
|
||||
| Undefined behavior if division by zero or overflow.
|
||||
|
||||
* - remu_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* % *t2* (unsigned)
|
||||
| Undefined behavior if division by zero.
|
||||
|
||||
|
||||
Logical
|
||||
-------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - and_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* & *t2*
|
||||
|
||||
* - or_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* | *t2*
|
||||
|
||||
* - xor_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* ^ *t2*
|
||||
|
||||
* - not_i32/i64 *t0*, *t1*
|
||||
|
||||
- | *t0* = ~\ *t1*
|
||||
|
||||
* - andc_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* & ~\ *t2*
|
||||
|
||||
* - eqv_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = ~(*t1* ^ *t2*), or equivalently, *t0* = *t1* ^ ~\ *t2*
|
||||
|
||||
* - nand_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = ~(*t1* & *t2*)
|
||||
|
||||
* - nor_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = ~(*t1* | *t2*)
|
||||
|
||||
* - orc_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* | ~\ *t2*
|
||||
|
||||
* - clz_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* ? clz(*t1*) : *t2*
|
||||
|
||||
* - ctz_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* ? ctz(*t1*) : *t2*
|
||||
|
||||
* - ctpop_i32/i64 *t0*, *t1*
|
||||
|
||||
- | *t0* = number of bits set in *t1*
|
||||
|
|
||||
| With *ctpop* short for "count population", matching
|
||||
| the function name used in ``include/qemu/host-utils.h``.
|
||||
|
||||
|
||||
Shifts/Rotates
|
||||
--------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - shl_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* << *t2*
|
||||
| Unspecified behavior if *t2* < 0 or *t2* >= 32 (resp 64)
|
||||
|
||||
* - shr_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* >> *t2* (unsigned)
|
||||
| Unspecified behavior if *t2* < 0 or *t2* >= 32 (resp 64)
|
||||
|
||||
* - sar_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | *t0* = *t1* >> *t2* (signed)
|
||||
| Unspecified behavior if *t2* < 0 or *t2* >= 32 (resp 64)
|
||||
|
||||
* - rotl_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | Rotation of *t2* bits to the left
|
||||
| Unspecified behavior if *t2* < 0 or *t2* >= 32 (resp 64)
|
||||
|
||||
* - rotr_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | Rotation of *t2* bits to the right.
|
||||
| Unspecified behavior if *t2* < 0 or *t2* >= 32 (resp 64)
|
||||
|
||||
|
||||
Misc
|
||||
----
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - mov_i32/i64 *t0*, *t1*
|
||||
|
||||
- | *t0* = *t1*
|
||||
| Move *t1* to *t0* (both operands must have the same type).
|
||||
|
||||
* - ext8s_i32/i64 *t0*, *t1*
|
||||
|
||||
ext8u_i32/i64 *t0*, *t1*
|
||||
|
||||
ext16s_i32/i64 *t0*, *t1*
|
||||
|
||||
ext16u_i32/i64 *t0*, *t1*
|
||||
|
||||
ext32s_i64 *t0*, *t1*
|
||||
|
||||
ext32u_i64 *t0*, *t1*
|
||||
|
||||
- | 8, 16 or 32 bit sign/zero extension (both operands must have the same type)
|
||||
|
||||
* - bswap16_i32/i64 *t0*, *t1*, *flags*
|
||||
|
||||
- | 16 bit byte swap on the low bits of a 32/64 bit input.
|
||||
|
|
||||
| If *flags* & ``TCG_BSWAP_IZ``, then *t1* is known to be zero-extended from bit 15.
|
||||
| If *flags* & ``TCG_BSWAP_OZ``, then *t0* will be zero-extended from bit 15.
|
||||
| If *flags* & ``TCG_BSWAP_OS``, then *t0* will be sign-extended from bit 15.
|
||||
|
|
||||
| If neither ``TCG_BSWAP_OZ`` nor ``TCG_BSWAP_OS`` are set, then the bits of *t0* above bit 15 may contain any value.
|
||||
|
||||
* - bswap32_i64 *t0*, *t1*, *flags*
|
||||
|
||||
- | 32 bit byte swap on a 64-bit value. The flags are the same as for bswap16,
|
||||
except they apply from bit 31 instead of bit 15.
|
||||
|
||||
* - bswap32_i32 *t0*, *t1*, *flags*
|
||||
|
||||
bswap64_i64 *t0*, *t1*, *flags*
|
||||
|
||||
- | 32/64 bit byte swap. The flags are ignored, but still present
|
||||
for consistency with the other bswap opcodes.
|
||||
|
||||
* - discard_i32/i64 *t0*
|
||||
|
||||
- | Indicate that the value of *t0* won't be used later. It is useful to
|
||||
force dead code elimination.
|
||||
|
||||
* - deposit_i32/i64 *dest*, *t1*, *t2*, *pos*, *len*
|
||||
|
||||
- | Deposit *t2* as a bitfield into *t1*, placing the result in *dest*.
|
||||
|
|
||||
| The bitfield is described by *pos*/*len*, which are immediate values:
|
||||
|
|
||||
| *len* - the length of the bitfield
|
||||
| *pos* - the position of the first bit, counting from the LSB
|
||||
|
|
||||
| For example, "deposit_i32 dest, t1, t2, 8, 4" indicates a 4-bit field
|
||||
at bit 8. This operation would be equivalent to
|
||||
|
|
||||
| *dest* = (*t1* & ~0x0f00) | ((*t2* << 8) & 0x0f00)
|
||||
|
||||
* - extract_i32/i64 *dest*, *t1*, *pos*, *len*
|
||||
|
||||
sextract_i32/i64 *dest*, *t1*, *pos*, *len*
|
||||
|
||||
- | Extract a bitfield from *t1*, placing the result in *dest*.
|
||||
|
|
||||
| The bitfield is described by *pos*/*len*, which are immediate values,
|
||||
as above for deposit. For extract_*, the result will be extended
|
||||
to the left with zeros; for sextract_*, the result will be extended
|
||||
to the left with copies of the bitfield sign bit at *pos* + *len* - 1.
|
||||
|
|
||||
| For example, "sextract_i32 dest, t1, 8, 4" indicates a 4-bit field
|
||||
at bit 8. This operation would be equivalent to
|
||||
|
|
||||
| *dest* = (*t1* << 20) >> 28
|
||||
|
|
||||
| (using an arithmetic right shift).
|
||||
|
||||
* - extract2_i32/i64 *dest*, *t1*, *t2*, *pos*
|
||||
|
||||
- | For N = {32,64}, extract an N-bit quantity from the concatenation
|
||||
of *t2*:*t1*, beginning at *pos*. The tcg_gen_extract2_{i32,i64} expander
|
||||
accepts 0 <= *pos* <= N as inputs. The backend code generator will
|
||||
not see either 0 or N as inputs for these opcodes.
|
||||
|
||||
* - extrl_i64_i32 *t0*, *t1*
|
||||
|
||||
- | For 64-bit hosts only, extract the low 32-bits of input *t1* and place it
|
||||
into 32-bit output *t0*. Depending on the host, this may be a simple move,
|
||||
or may require additional canonicalization.
|
||||
|
||||
* - extrh_i64_i32 *t0*, *t1*
|
||||
|
||||
- | For 64-bit hosts only, extract the high 32-bits of input *t1* and place it
|
||||
into 32-bit output *t0*. Depending on the host, this may be a simple shift,
|
||||
or may require additional canonicalization.
|
||||
|
||||
|
||||
Conditional moves
|
||||
-----------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - setcond_i32/i64 *dest*, *t1*, *t2*, *cond*
|
||||
|
||||
- | *dest* = (*t1* *cond* *t2*)
|
||||
|
|
||||
| Set *dest* to 1 if (*t1* *cond* *t2*) is true, otherwise set to 0.
|
||||
|
||||
* - movcond_i32/i64 *dest*, *c1*, *c2*, *v1*, *v2*, *cond*
|
||||
|
||||
- | *dest* = (*c1* *cond* *c2* ? *v1* : *v2*)
|
||||
|
|
||||
| Set *dest* to *v1* if (*c1* *cond* *c2*) is true, otherwise set to *v2*.
|
||||
|
||||
|
||||
Type conversions
|
||||
----------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - ext_i32_i64 *t0*, *t1*
|
||||
|
||||
- | Convert *t1* (32 bit) to *t0* (64 bit) and does sign extension
|
||||
|
||||
* - extu_i32_i64 *t0*, *t1*
|
||||
|
||||
- | Convert *t1* (32 bit) to *t0* (64 bit) and does zero extension
|
||||
|
||||
* - trunc_i64_i32 *t0*, *t1*
|
||||
|
||||
- | Truncate *t1* (64 bit) to *t0* (32 bit)
|
||||
|
||||
* - concat_i32_i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | Construct *t0* (64-bit) taking the low half from *t1* (32 bit) and the high half
|
||||
from *t2* (32 bit).
|
||||
|
||||
* - concat32_i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | Construct *t0* (64-bit) taking the low half from *t1* (64 bit) and the high half
|
||||
from *t2* (64 bit).
|
||||
|
||||
|
||||
Load/Store
|
||||
----------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - ld_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
ld8s_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
ld8u_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
ld16s_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
ld16u_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
ld32s_i64 t0, *t1*, *offset*
|
||||
|
||||
ld32u_i64 t0, *t1*, *offset*
|
||||
|
||||
- | *t0* = read(*t1* + *offset*)
|
||||
|
|
||||
| Load 8, 16, 32 or 64 bits with or without sign extension from host memory.
|
||||
*offset* must be a constant.
|
||||
|
||||
* - st_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
st8_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
st16_i32/i64 *t0*, *t1*, *offset*
|
||||
|
||||
st32_i64 *t0*, *t1*, *offset*
|
||||
|
||||
- | write(*t0*, *t1* + *offset*)
|
||||
|
|
||||
| Write 8, 16, 32 or 64 bits to host memory.
|
||||
|
||||
All this opcodes assume that the pointed host memory doesn't correspond
|
||||
to a global. In the latter case the behaviour is unpredictable.
|
||||
|
||||
|
||||
Multiword arithmetic support
|
||||
----------------------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - add2_i32/i64 *t0_low*, *t0_high*, *t1_low*, *t1_high*, *t2_low*, *t2_high*
|
||||
|
||||
sub2_i32/i64 *t0_low*, *t0_high*, *t1_low*, *t1_high*, *t2_low*, *t2_high*
|
||||
|
||||
- | Similar to add/sub, except that the double-word inputs *t1* and *t2* are
|
||||
formed from two single-word arguments, and the double-word output *t0*
|
||||
is returned in two single-word outputs.
|
||||
|
||||
* - mulu2_i32/i64 *t0_low*, *t0_high*, *t1*, *t2*
|
||||
|
||||
- | Similar to mul, except two unsigned inputs *t1* and *t2* yielding the full
|
||||
double-word product *t0*. The latter is returned in two single-word outputs.
|
||||
|
||||
* - muls2_i32/i64 *t0_low*, *t0_high*, *t1*, *t2*
|
||||
|
||||
- | Similar to mulu2, except the two inputs *t1* and *t2* are signed.
|
||||
|
||||
* - mulsh_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
muluh_i32/i64 *t0*, *t1*, *t2*
|
||||
|
||||
- | Provide the high part of a signed or unsigned multiply, respectively.
|
||||
|
|
||||
| If mulu2/muls2 are not provided by the backend, the tcg-op generator
|
||||
can obtain the same results by emitting a pair of opcodes, mul + muluh/mulsh.
|
||||
|
||||
|
||||
Memory Barrier support
|
||||
----------------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - mb *<$arg>*
|
||||
|
||||
- | Generate a target memory barrier instruction to ensure memory ordering
|
||||
as being enforced by a corresponding guest memory barrier instruction.
|
||||
|
|
||||
| The ordering enforced by the backend may be stricter than the ordering
|
||||
required by the guest. It cannot be weaker. This opcode takes a constant
|
||||
argument which is required to generate the appropriate barrier
|
||||
instruction. The backend should take care to emit the target barrier
|
||||
instruction only when necessary i.e., for SMP guests and when MTTCG is
|
||||
enabled.
|
||||
|
|
||||
| The guest translators should generate this opcode for all guest instructions
|
||||
which have ordering side effects.
|
||||
|
|
||||
| Please see :ref:`atomics-ref` for more information on memory barriers.
|
||||
|
||||
|
||||
64-bit guest on 32-bit host support
|
||||
-----------------------------------
|
||||
|
||||
The following opcodes are internal to TCG. Thus they are to be implemented by
|
||||
32-bit host code generators, but are not to be emitted by guest translators.
|
||||
They are emitted as needed by inline functions within ``tcg-op.h``.
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - brcond2_i32 *t0_low*, *t0_high*, *t1_low*, *t1_high*, *cond*, *label*
|
||||
|
||||
- | Similar to brcond, except that the 64-bit values *t0* and *t1*
|
||||
are formed from two 32-bit arguments.
|
||||
|
||||
* - setcond2_i32 *dest*, *t1_low*, *t1_high*, *t2_low*, *t2_high*, *cond*
|
||||
|
||||
- | Similar to setcond, except that the 64-bit values *t1* and *t2* are
|
||||
formed from two 32-bit arguments. The result is a 32-bit value.
|
||||
|
||||
|
||||
QEMU specific operations
|
||||
------------------------
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - exit_tb *t0*
|
||||
|
||||
- | Exit the current TB and return the value *t0* (word type).
|
||||
|
||||
* - goto_tb *index*
|
||||
|
||||
- | Exit the current TB and jump to the TB index *index* (constant) if the
|
||||
current TB was linked to this TB. Otherwise execute the next
|
||||
instructions. Only indices 0 and 1 are valid and tcg_gen_goto_tb may be issued
|
||||
at most once with each slot index per TB.
|
||||
|
||||
* - lookup_and_goto_ptr *tb_addr*
|
||||
|
||||
- | Look up a TB address *tb_addr* and jump to it if valid. If not valid,
|
||||
jump to the TCG epilogue to go back to the exec loop.
|
||||
|
|
||||
| This operation is optional. If the TCG backend does not implement the
|
||||
goto_ptr opcode, emitting this op is equivalent to emitting exit_tb(0).
|
||||
|
||||
* - qemu_ld_i32/i64 *t0*, *t1*, *flags*, *memidx*
|
||||
|
||||
qemu_st_i32/i64 *t0*, *t1*, *flags*, *memidx*
|
||||
|
||||
qemu_st8_i32 *t0*, *t1*, *flags*, *memidx*
|
||||
|
||||
- | Load data at the guest address *t1* into *t0*, or store data in *t0* at guest
|
||||
address *t1*. The _i32/_i64 size applies to the size of the input/output
|
||||
register *t0* only. The address *t1* is always sized according to the guest,
|
||||
and the width of the memory operation is controlled by *flags*.
|
||||
|
|
||||
| Both *t0* and *t1* may be split into little-endian ordered pairs of registers
|
||||
if dealing with 64-bit quantities on a 32-bit host.
|
||||
|
|
||||
| The *memidx* selects the qemu tlb index to use (e.g. user or kernel access).
|
||||
The flags are the MemOp bits, selecting the sign, width, and endianness
|
||||
of the memory access.
|
||||
|
|
||||
| For a 32-bit host, qemu_ld/st_i64 is guaranteed to only be used with a
|
||||
64-bit memory access specified in *flags*.
|
||||
|
|
||||
| For i386, qemu_st8_i32 is exactly like qemu_st_i32, except the size of
|
||||
the memory operation is known to be 8-bit. This allows the backend to
|
||||
provide a different set of register constraints.
|
||||
|
||||
|
||||
Host vector operations
|
||||
----------------------
|
||||
|
||||
All of the vector ops have two parameters, ``TCGOP_VECL`` & ``TCGOP_VECE``.
|
||||
The former specifies the length of the vector in log2 64-bit units; the
|
||||
latter specifies the length of the element (if applicable) in log2 8-bit units.
|
||||
E.g. VECL = 1 -> 64 << 1 -> v128, and VECE = 2 -> 1 << 2 -> i32.
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - mov_vec *v0*, *v1*
|
||||
ld_vec *v0*, *t1*
|
||||
st_vec *v0*, *t1*
|
||||
|
||||
- | Move, load and store.
|
||||
|
||||
* - dup_vec *v0*, *r1*
|
||||
|
||||
- | Duplicate the low N bits of *r1* into VECL/VECE copies across *v0*.
|
||||
|
||||
* - dupi_vec *v0*, *c*
|
||||
|
||||
- | Similarly, for a constant.
|
||||
| Smaller values will be replicated to host register size by the expanders.
|
||||
|
||||
* - dup2_vec *v0*, *r1*, *r2*
|
||||
|
||||
- | Duplicate *r2*:*r1* into VECL/64 copies across *v0*. This opcode is
|
||||
only present for 32-bit hosts.
|
||||
|
||||
* - add_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | *v0* = *v1* + *v2*, in elements across the vector.
|
||||
|
||||
* - sub_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Similarly, *v0* = *v1* - *v2*.
|
||||
|
||||
* - mul_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Similarly, *v0* = *v1* * *v2*.
|
||||
|
||||
* - neg_vec *v0*, *v1*
|
||||
|
||||
- | Similarly, *v0* = -*v1*.
|
||||
|
||||
* - abs_vec *v0*, *v1*
|
||||
|
||||
- | Similarly, *v0* = *v1* < 0 ? -*v1* : *v1*, in elements across the vector.
|
||||
|
||||
* - smin_vec *v0*, *v1*, *v2*
|
||||
|
||||
umin_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Similarly, *v0* = MIN(*v1*, *v2*), for signed and unsigned element types.
|
||||
|
||||
* - smax_vec *v0*, *v1*, *v2*
|
||||
|
||||
umax_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Similarly, *v0* = MAX(*v1*, *v2*), for signed and unsigned element types.
|
||||
|
||||
* - ssadd_vec *v0*, *v1*, *v2*
|
||||
|
||||
sssub_vec *v0*, *v1*, *v2*
|
||||
|
||||
usadd_vec *v0*, *v1*, *v2*
|
||||
|
||||
ussub_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Signed and unsigned saturating addition and subtraction.
|
||||
|
|
||||
| If the true result is not representable within the element type, the
|
||||
element is set to the minimum or maximum value for the type.
|
||||
|
||||
* - and_vec *v0*, *v1*, *v2*
|
||||
|
||||
or_vec *v0*, *v1*, *v2*
|
||||
|
||||
xor_vec *v0*, *v1*, *v2*
|
||||
|
||||
andc_vec *v0*, *v1*, *v2*
|
||||
|
||||
orc_vec *v0*, *v1*, *v2*
|
||||
|
||||
not_vec *v0*, *v1*
|
||||
|
||||
- | Similarly, logical operations with and without complement.
|
||||
|
|
||||
| Note that VECE is unused.
|
||||
|
||||
* - shli_vec *v0*, *v1*, *i2*
|
||||
|
||||
shls_vec *v0*, *v1*, *s2*
|
||||
|
||||
- | Shift all elements from v1 by a scalar *i2*/*s2*. I.e.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (i = 0; i < VECL/VECE; ++i) {
|
||||
v0[i] = v1[i] << s2;
|
||||
}
|
||||
|
||||
* - shri_vec *v0*, *v1*, *i2*
|
||||
|
||||
sari_vec *v0*, *v1*, *i2*
|
||||
|
||||
rotli_vec *v0*, *v1*, *i2*
|
||||
|
||||
shrs_vec *v0*, *v1*, *s2*
|
||||
|
||||
sars_vec *v0*, *v1*, *s2*
|
||||
|
||||
- | Similarly for logical and arithmetic right shift, and left rotate.
|
||||
|
||||
* - shlv_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Shift elements from *v1* by elements from *v2*. I.e.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (i = 0; i < VECL/VECE; ++i) {
|
||||
v0[i] = v1[i] << v2[i];
|
||||
}
|
||||
|
||||
* - shrv_vec *v0*, *v1*, *v2*
|
||||
|
||||
sarv_vec *v0*, *v1*, *v2*
|
||||
|
||||
rotlv_vec *v0*, *v1*, *v2*
|
||||
|
||||
rotrv_vec *v0*, *v1*, *v2*
|
||||
|
||||
- | Similarly for logical and arithmetic right shift, and rotates.
|
||||
|
||||
* - cmp_vec *v0*, *v1*, *v2*, *cond*
|
||||
|
||||
- | Compare vectors by element, storing -1 for true and 0 for false.
|
||||
|
||||
* - bitsel_vec *v0*, *v1*, *v2*, *v3*
|
||||
|
||||
- | Bitwise select, *v0* = (*v2* & *v1*) | (*v3* & ~\ *v1*), across the entire vector.
|
||||
|
||||
* - cmpsel_vec *v0*, *c1*, *c2*, *v3*, *v4*, *cond*
|
||||
|
||||
- | Select elements based on comparison results:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
v0[i] = (c1[i] cond c2[i]) ? v3[i] : v4[i].
|
||||
}
|
||||
|
||||
**Note 1**: Some shortcuts are defined when the last operand is known to be
|
||||
a constant (e.g. addi for add, movi for mov).
|
||||
|
||||
**Note 2**: When using TCG, the opcodes must never be generated directly
|
||||
as some of them may not be available as "real" opcodes. Always use the
|
||||
function tcg_gen_xxx(args).
|
||||
|
||||
|
||||
Backend
|
||||
=======
|
||||
|
||||
``tcg-target.h`` contains the target specific definitions. ``tcg-target.c.inc``
|
||||
contains the target specific code; it is #included by ``tcg/tcg.c``, rather
|
||||
than being a standalone C file.
|
||||
|
||||
Assumptions
|
||||
-----------
|
||||
|
||||
The target word size (``TCG_TARGET_REG_BITS``) is expected to be 32 bit or
|
||||
64 bit. It is expected that the pointer has the same size as the word.
|
||||
|
||||
On a 32 bit target, all 64 bit operations are converted to 32 bits. A
|
||||
few specific operations must be implemented to allow it (see add2_i32,
|
||||
sub2_i32, brcond2_i32).
|
||||
|
||||
On a 64 bit target, the values are transferred between 32 and 64-bit
|
||||
registers using the following ops:
|
||||
|
||||
- trunc_shr_i64_i32
|
||||
- ext_i32_i64
|
||||
- extu_i32_i64
|
||||
|
||||
They ensure that the values are correctly truncated or extended when
|
||||
moved from a 32-bit to a 64-bit register or vice-versa. Note that the
|
||||
trunc_shr_i64_i32 is an optional op. It is not necessary to implement
|
||||
it if all the following conditions are met:
|
||||
|
||||
- 64-bit registers can hold 32-bit values
|
||||
- 32-bit values in a 64-bit register do not need to stay zero or
|
||||
sign extended
|
||||
- all 32-bit TCG ops ignore the high part of 64-bit registers
|
||||
|
||||
Floating point operations are not supported in this version. A
|
||||
previous incarnation of the code generator had full support of them,
|
||||
but it is better to concentrate on integer operations first.
|
||||
|
||||
Constraints
|
||||
----------------
|
||||
|
||||
GCC like constraints are used to define the constraints of every
|
||||
instruction. Memory constraints are not supported in this
|
||||
version. Aliases are specified in the input operands as for GCC.
|
||||
|
||||
The same register may be used for both an input and an output, even when
|
||||
they are not explicitly aliased. If an op expands to multiple target
|
||||
instructions then care must be taken to avoid clobbering input values.
|
||||
GCC style "early clobber" outputs are supported, with '``&``'.
|
||||
|
||||
A target can define specific register or constant constraints. If an
|
||||
operation uses a constant input constraint which does not allow all
|
||||
constants, it must also accept registers in order to have a fallback.
|
||||
The constraint '``i``' is defined generically to accept any constant.
|
||||
The constraint '``r``' is not defined generically, but is consistently
|
||||
used by each backend to indicate all registers.
|
||||
|
||||
The movi_i32 and movi_i64 operations must accept any constants.
|
||||
|
||||
The mov_i32 and mov_i64 operations must accept any registers of the
|
||||
same type.
|
||||
|
||||
The ld/st/sti instructions must accept signed 32 bit constant offsets.
|
||||
This can be implemented by reserving a specific register in which to
|
||||
compute the address if the offset is too big.
|
||||
|
||||
The ld/st instructions must accept any destination (ld) or source (st)
|
||||
register.
|
||||
|
||||
The sti instruction may fail if it cannot store the given constant.
|
||||
|
||||
Function call assumptions
|
||||
-------------------------
|
||||
|
||||
- The only supported types for parameters and return value are: 32 and
|
||||
64 bit integers and pointer.
|
||||
- The stack grows downwards.
|
||||
- The first N parameters are passed in registers.
|
||||
- The next parameters are passed on the stack by storing them as words.
|
||||
- Some registers are clobbered during the call.
|
||||
- The function can return 0 or 1 value in registers. On a 32 bit
|
||||
target, functions must be able to return 2 values in registers for
|
||||
64 bit return type.
|
||||
|
||||
|
||||
Recommended coding rules for best performance
|
||||
=============================================
|
||||
|
||||
- Use globals to represent the parts of the QEMU CPU state which are
|
||||
often modified, e.g. the integer registers and the condition
|
||||
codes. TCG will be able to use host registers to store them.
|
||||
|
||||
- Avoid globals stored in fixed registers. They must be used only to
|
||||
store the pointer to the CPU state and possibly to store a pointer
|
||||
to a register window.
|
||||
|
||||
- Use temporaries. Use local temporaries only when really needed,
|
||||
e.g. when you need to use a value after a jump. Local temporaries
|
||||
introduce a performance hit in the current TCG implementation: their
|
||||
content is saved to memory at end of each basic block.
|
||||
|
||||
- Free temporaries and local temporaries when they are no longer used
|
||||
(tcg_temp_free). Since tcg_const_x() also creates a temporary, you
|
||||
should free it after it is used. Freeing temporaries does not yield
|
||||
a better generated code, but it reduces the memory usage of TCG and
|
||||
the speed of the translation.
|
||||
|
||||
- Don't hesitate to use helpers for complicated or seldom used guest
|
||||
instructions. There is little performance advantage in using TCG to
|
||||
implement guest instructions taking more than about twenty TCG
|
||||
instructions. Note that this rule of thumb is more applicable to
|
||||
helpers doing complex logic or arithmetic, where the C compiler has
|
||||
scope to do a good job of optimisation; it is less relevant where
|
||||
the instruction is mostly doing loads and stores, and in those cases
|
||||
inline TCG may still be faster for longer sequences.
|
||||
|
||||
- The hard limit on the number of TCG instructions you can generate
|
||||
per guest instruction is set by ``MAX_OP_PER_INSTR`` in ``exec-all.h`` --
|
||||
you cannot exceed this without risking a buffer overrun.
|
||||
|
||||
- Use the 'discard' instruction if you know that TCG won't be able to
|
||||
prove that a given global is "dead" at a given program point. The
|
||||
x86 guest uses it to improve the condition codes optimisation.
|
@ -9,7 +9,7 @@ which make it relatively easily portable and simple while achieving good
|
||||
performances.
|
||||
|
||||
QEMU's dynamic translation backend is called TCG, for "Tiny Code
|
||||
Generator". For more information, please take a look at ``tcg/README``.
|
||||
Generator". For more information, please take a look at :ref:`tcg-ops-ref`.
|
||||
|
||||
The following sections outline some notable features and implementation
|
||||
details of QEMU's dynamic translator.
|
||||
|
784
tcg/README
784
tcg/README
@ -1,784 +0,0 @@
|
||||
Tiny Code Generator - Fabrice Bellard.
|
||||
|
||||
1) Introduction
|
||||
|
||||
TCG (Tiny Code Generator) began as a generic backend for a C
|
||||
compiler. It was simplified to be used in QEMU. It also has its roots
|
||||
in the QOP code generator written by Paul Brook.
|
||||
|
||||
2) Definitions
|
||||
|
||||
TCG receives RISC-like "TCG ops" and performs some optimizations on them,
|
||||
including liveness analysis and trivial constant expression
|
||||
evaluation. TCG ops are then implemented in the host CPU back end,
|
||||
also known as the TCG "target".
|
||||
|
||||
The TCG "target" is the architecture for which we generate the
|
||||
code. It is of course not the same as the "target" of QEMU which is
|
||||
the emulated architecture. As TCG started as a generic C backend used
|
||||
for cross compiling, it is assumed that the TCG target is different
|
||||
from the host, although it is never the case for QEMU.
|
||||
|
||||
In this document, we use "guest" to specify what architecture we are
|
||||
emulating; "target" always means the TCG target, the machine on which
|
||||
we are running QEMU.
|
||||
|
||||
A TCG "function" corresponds to a QEMU Translated Block (TB).
|
||||
|
||||
A TCG "temporary" is a variable only live in a basic
|
||||
block. Temporaries are allocated explicitly in each function.
|
||||
|
||||
A TCG "local temporary" is a variable only live in a function. Local
|
||||
temporaries are allocated explicitly in each function.
|
||||
|
||||
A TCG "global" is a variable which is live in all the functions
|
||||
(equivalent of a C global variable). They are defined before the
|
||||
functions defined. A TCG global can be a memory location (e.g. a QEMU
|
||||
CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
|
||||
or a memory location which is stored in a register outside QEMU TBs
|
||||
(not implemented yet).
|
||||
|
||||
A TCG "basic block" corresponds to a list of instructions terminated
|
||||
by a branch instruction.
|
||||
|
||||
An operation with "undefined behavior" may result in a crash.
|
||||
|
||||
An operation with "unspecified behavior" shall not crash. However,
|
||||
the result may be one of several possibilities so may be considered
|
||||
an "undefined result".
|
||||
|
||||
3) Intermediate representation
|
||||
|
||||
3.1) Introduction
|
||||
|
||||
TCG instructions operate on variables which are temporaries, local
|
||||
temporaries or globals. TCG instructions and variables are strongly
|
||||
typed. Two types are supported: 32 bit integers and 64 bit
|
||||
integers. Pointers are defined as an alias to 32 bit or 64 bit
|
||||
integers depending on the TCG target word size.
|
||||
|
||||
Each instruction has a fixed number of output variable operands, input
|
||||
variable operands and always constant operands.
|
||||
|
||||
The notable exception is the call instruction which has a variable
|
||||
number of outputs and inputs.
|
||||
|
||||
In the textual form, output operands usually come first, followed by
|
||||
input operands, followed by constant operands. The output type is
|
||||
included in the instruction name. Constants are prefixed with a '$'.
|
||||
|
||||
add_i32 t0, t1, t2 (t0 <- t1 + t2)
|
||||
|
||||
3.2) Assumptions
|
||||
|
||||
* Basic blocks
|
||||
|
||||
- Basic blocks end after branches (e.g. brcond_i32 instruction),
|
||||
goto_tb and exit_tb instructions.
|
||||
- Basic blocks start after the end of a previous basic block, or at a
|
||||
set_label instruction.
|
||||
|
||||
After the end of a basic block, the content of temporaries is
|
||||
destroyed, but local temporaries and globals are preserved.
|
||||
|
||||
* Floating point types are not supported yet
|
||||
|
||||
* Pointers: depending on the TCG target, pointer size is 32 bit or 64
|
||||
bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or
|
||||
TCG_TYPE_I64.
|
||||
|
||||
* Helpers:
|
||||
|
||||
Using the tcg_gen_helper_x_y it is possible to call any function
|
||||
taking i32, i64 or pointer types. By default, before calling a helper,
|
||||
all globals are stored at their canonical location and it is assumed
|
||||
that the function can modify them. By default, the helper is allowed to
|
||||
modify the CPU state or raise an exception.
|
||||
|
||||
This can be overridden using the following function modifiers:
|
||||
- TCG_CALL_NO_READ_GLOBALS means that the helper does not read globals,
|
||||
either directly or via an exception. They will not be saved to their
|
||||
canonical locations before calling the helper.
|
||||
- TCG_CALL_NO_WRITE_GLOBALS means that the helper does not modify any globals.
|
||||
They will only be saved to their canonical location before calling helpers,
|
||||
but they won't be reloaded afterwards.
|
||||
- TCG_CALL_NO_SIDE_EFFECTS means that the call to the function is removed if
|
||||
the return value is not used.
|
||||
|
||||
Note that TCG_CALL_NO_READ_GLOBALS implies TCG_CALL_NO_WRITE_GLOBALS.
|
||||
|
||||
On some TCG targets (e.g. x86), several calling conventions are
|
||||
supported.
|
||||
|
||||
* Branches:
|
||||
|
||||
Use the instruction 'br' to jump to a label.
|
||||
|
||||
3.3) Code Optimizations
|
||||
|
||||
When generating instructions, you can count on at least the following
|
||||
optimizations:
|
||||
|
||||
- Single instructions are simplified, e.g.
|
||||
|
||||
and_i32 t0, t0, $0xffffffff
|
||||
|
||||
is suppressed.
|
||||
|
||||
- A liveness analysis is done at the basic block level. The
|
||||
information is used to suppress moves from a dead variable to
|
||||
another one. It is also used to remove instructions which compute
|
||||
dead results. The later is especially useful for condition code
|
||||
optimization in QEMU.
|
||||
|
||||
In the following example:
|
||||
|
||||
add_i32 t0, t1, t2
|
||||
add_i32 t0, t0, $1
|
||||
mov_i32 t0, $1
|
||||
|
||||
only the last instruction is kept.
|
||||
|
||||
3.4) Instruction Reference
|
||||
|
||||
********* Function call
|
||||
|
||||
* call <ret> <params> ptr
|
||||
|
||||
call function 'ptr' (pointer type)
|
||||
|
||||
<ret> optional 32 bit or 64 bit return value
|
||||
<params> optional 32 bit or 64 bit parameters
|
||||
|
||||
********* Jumps/Labels
|
||||
|
||||
* set_label $label
|
||||
|
||||
Define label 'label' at the current program point.
|
||||
|
||||
* br $label
|
||||
|
||||
Jump to label.
|
||||
|
||||
* brcond_i32/i64 t0, t1, cond, label
|
||||
|
||||
Conditional jump if t0 cond t1 is true. cond can be:
|
||||
TCG_COND_EQ
|
||||
TCG_COND_NE
|
||||
TCG_COND_LT /* signed */
|
||||
TCG_COND_GE /* signed */
|
||||
TCG_COND_LE /* signed */
|
||||
TCG_COND_GT /* signed */
|
||||
TCG_COND_LTU /* unsigned */
|
||||
TCG_COND_GEU /* unsigned */
|
||||
TCG_COND_LEU /* unsigned */
|
||||
TCG_COND_GTU /* unsigned */
|
||||
|
||||
********* Arithmetic
|
||||
|
||||
* add_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1+t2
|
||||
|
||||
* sub_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1-t2
|
||||
|
||||
* neg_i32/i64 t0, t1
|
||||
|
||||
t0=-t1 (two's complement)
|
||||
|
||||
* mul_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1*t2
|
||||
|
||||
* div_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1/t2 (signed). Undefined behavior if division by zero or overflow.
|
||||
|
||||
* divu_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1/t2 (unsigned). Undefined behavior if division by zero.
|
||||
|
||||
* rem_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1%t2 (signed). Undefined behavior if division by zero or overflow.
|
||||
|
||||
* remu_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1%t2 (unsigned). Undefined behavior if division by zero.
|
||||
|
||||
********* Logical
|
||||
|
||||
* and_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1&t2
|
||||
|
||||
* or_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1|t2
|
||||
|
||||
* xor_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1^t2
|
||||
|
||||
* not_i32/i64 t0, t1
|
||||
|
||||
t0=~t1
|
||||
|
||||
* andc_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1&~t2
|
||||
|
||||
* eqv_i32/i64 t0, t1, t2
|
||||
|
||||
t0=~(t1^t2), or equivalently, t0=t1^~t2
|
||||
|
||||
* nand_i32/i64 t0, t1, t2
|
||||
|
||||
t0=~(t1&t2)
|
||||
|
||||
* nor_i32/i64 t0, t1, t2
|
||||
|
||||
t0=~(t1|t2)
|
||||
|
||||
* orc_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1|~t2
|
||||
|
||||
* clz_i32/i64 t0, t1, t2
|
||||
|
||||
t0 = t1 ? clz(t1) : t2
|
||||
|
||||
* ctz_i32/i64 t0, t1, t2
|
||||
|
||||
t0 = t1 ? ctz(t1) : t2
|
||||
|
||||
* ctpop_i32/i64 t0, t1
|
||||
|
||||
t0 = number of bits set in t1
|
||||
With "ctpop" short for "count population", matching
|
||||
the function name used in include/qemu/host-utils.h.
|
||||
|
||||
********* Shifts/Rotates
|
||||
|
||||
* shl_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1 << t2. Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64)
|
||||
|
||||
* shr_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1 >> t2 (unsigned). Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64)
|
||||
|
||||
* sar_i32/i64 t0, t1, t2
|
||||
|
||||
t0=t1 >> t2 (signed). Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64)
|
||||
|
||||
* rotl_i32/i64 t0, t1, t2
|
||||
|
||||
Rotation of t2 bits to the left.
|
||||
Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64)
|
||||
|
||||
* rotr_i32/i64 t0, t1, t2
|
||||
|
||||
Rotation of t2 bits to the right.
|
||||
Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64)
|
||||
|
||||
********* Misc
|
||||
|
||||
* mov_i32/i64 t0, t1
|
||||
|
||||
t0 = t1
|
||||
|
||||
Move t1 to t0 (both operands must have the same type).
|
||||
|
||||
* ext8s_i32/i64 t0, t1
|
||||
ext8u_i32/i64 t0, t1
|
||||
ext16s_i32/i64 t0, t1
|
||||
ext16u_i32/i64 t0, t1
|
||||
ext32s_i64 t0, t1
|
||||
ext32u_i64 t0, t1
|
||||
|
||||
8, 16 or 32 bit sign/zero extension (both operands must have the same type)
|
||||
|
||||
* bswap16_i32/i64 t0, t1, flags
|
||||
|
||||
16 bit byte swap on the low bits of a 32/64 bit input.
|
||||
If flags & TCG_BSWAP_IZ, then t1 is known to be zero-extended from bit 15.
|
||||
If flags & TCG_BSWAP_OZ, then t0 will be zero-extended from bit 15.
|
||||
If flags & TCG_BSWAP_OS, then t0 will be sign-extended from bit 15.
|
||||
If neither TCG_BSWAP_OZ nor TCG_BSWAP_OS are set, then the bits of
|
||||
t0 above bit 15 may contain any value.
|
||||
|
||||
* bswap32_i64 t0, t1, flags
|
||||
|
||||
32 bit byte swap on a 64-bit value. The flags are the same as for bswap16,
|
||||
except they apply from bit 31 instead of bit 15.
|
||||
|
||||
* bswap32_i32 t0, t1, flags
|
||||
* bswap64_i64 t0, t1, flags
|
||||
|
||||
32/64 bit byte swap. The flags are ignored, but still present
|
||||
for consistency with the other bswap opcodes.
|
||||
|
||||
* discard_i32/i64 t0
|
||||
|
||||
Indicate that the value of t0 won't be used later. It is useful to
|
||||
force dead code elimination.
|
||||
|
||||
* deposit_i32/i64 dest, t1, t2, pos, len
|
||||
|
||||
Deposit T2 as a bitfield into T1, placing the result in DEST.
|
||||
The bitfield is described by POS/LEN, which are immediate values:
|
||||
|
||||
LEN - the length of the bitfield
|
||||
POS - the position of the first bit, counting from the LSB
|
||||
|
||||
For example, "deposit_i32 dest, t1, t2, 8, 4" indicates a 4-bit field
|
||||
at bit 8. This operation would be equivalent to
|
||||
|
||||
dest = (t1 & ~0x0f00) | ((t2 << 8) & 0x0f00)
|
||||
|
||||
* extract_i32/i64 dest, t1, pos, len
|
||||
* sextract_i32/i64 dest, t1, pos, len
|
||||
|
||||
Extract a bitfield from T1, placing the result in DEST.
|
||||
The bitfield is described by POS/LEN, which are immediate values,
|
||||
as above for deposit. For extract_*, the result will be extended
|
||||
to the left with zeros; for sextract_*, the result will be extended
|
||||
to the left with copies of the bitfield sign bit at pos + len - 1.
|
||||
|
||||
For example, "sextract_i32 dest, t1, 8, 4" indicates a 4-bit field
|
||||
at bit 8. This operation would be equivalent to
|
||||
|
||||
dest = (t1 << 20) >> 28
|
||||
|
||||
(using an arithmetic right shift).
|
||||
|
||||
* extract2_i32/i64 dest, t1, t2, pos
|
||||
|
||||
For N = {32,64}, extract an N-bit quantity from the concatenation
|
||||
of t2:t1, beginning at pos. The tcg_gen_extract2_{i32,i64} expander
|
||||
accepts 0 <= pos <= N as inputs. The backend code generator will
|
||||
not see either 0 or N as inputs for these opcodes.
|
||||
|
||||
* extrl_i64_i32 t0, t1
|
||||
|
||||
For 64-bit hosts only, extract the low 32-bits of input T1 and place it
|
||||
into 32-bit output T0. Depending on the host, this may be a simple move,
|
||||
or may require additional canonicalization.
|
||||
|
||||
* extrh_i64_i32 t0, t1
|
||||
|
||||
For 64-bit hosts only, extract the high 32-bits of input T1 and place it
|
||||
into 32-bit output T0. Depending on the host, this may be a simple shift,
|
||||
or may require additional canonicalization.
|
||||
|
||||
********* Conditional moves
|
||||
|
||||
* setcond_i32/i64 dest, t1, t2, cond
|
||||
|
||||
dest = (t1 cond t2)
|
||||
|
||||
Set DEST to 1 if (T1 cond T2) is true, otherwise set to 0.
|
||||
|
||||
* movcond_i32/i64 dest, c1, c2, v1, v2, cond
|
||||
|
||||
dest = (c1 cond c2 ? v1 : v2)
|
||||
|
||||
Set DEST to V1 if (C1 cond C2) is true, otherwise set to V2.
|
||||
|
||||
********* Type conversions
|
||||
|
||||
* ext_i32_i64 t0, t1
|
||||
Convert t1 (32 bit) to t0 (64 bit) and does sign extension
|
||||
|
||||
* extu_i32_i64 t0, t1
|
||||
Convert t1 (32 bit) to t0 (64 bit) and does zero extension
|
||||
|
||||
* trunc_i64_i32 t0, t1
|
||||
Truncate t1 (64 bit) to t0 (32 bit)
|
||||
|
||||
* concat_i32_i64 t0, t1, t2
|
||||
Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half
|
||||
from t2 (32 bit).
|
||||
|
||||
* concat32_i64 t0, t1, t2
|
||||
Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half
|
||||
from t2 (64 bit).
|
||||
|
||||
********* Load/Store
|
||||
|
||||
* ld_i32/i64 t0, t1, offset
|
||||
ld8s_i32/i64 t0, t1, offset
|
||||
ld8u_i32/i64 t0, t1, offset
|
||||
ld16s_i32/i64 t0, t1, offset
|
||||
ld16u_i32/i64 t0, t1, offset
|
||||
ld32s_i64 t0, t1, offset
|
||||
ld32u_i64 t0, t1, offset
|
||||
|
||||
t0 = read(t1 + offset)
|
||||
Load 8, 16, 32 or 64 bits with or without sign extension from host memory.
|
||||
offset must be a constant.
|
||||
|
||||
* st_i32/i64 t0, t1, offset
|
||||
st8_i32/i64 t0, t1, offset
|
||||
st16_i32/i64 t0, t1, offset
|
||||
st32_i64 t0, t1, offset
|
||||
|
||||
write(t0, t1 + offset)
|
||||
Write 8, 16, 32 or 64 bits to host memory.
|
||||
|
||||
All this opcodes assume that the pointed host memory doesn't correspond
|
||||
to a global. In the latter case the behaviour is unpredictable.
|
||||
|
||||
********* Multiword arithmetic support
|
||||
|
||||
* add2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
|
||||
* sub2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
|
||||
|
||||
Similar to add/sub, except that the double-word inputs T1 and T2 are
|
||||
formed from two single-word arguments, and the double-word output T0
|
||||
is returned in two single-word outputs.
|
||||
|
||||
* mulu2_i32/i64 t0_low, t0_high, t1, t2
|
||||
|
||||
Similar to mul, except two unsigned inputs T1 and T2 yielding the full
|
||||
double-word product T0. The later is returned in two single-word outputs.
|
||||
|
||||
* muls2_i32/i64 t0_low, t0_high, t1, t2
|
||||
|
||||
Similar to mulu2, except the two inputs T1 and T2 are signed.
|
||||
|
||||
* mulsh_i32/i64 t0, t1, t2
|
||||
* muluh_i32/i64 t0, t1, t2
|
||||
|
||||
Provide the high part of a signed or unsigned multiply, respectively.
|
||||
If mulu2/muls2 are not provided by the backend, the tcg-op generator
|
||||
can obtain the same results can be obtained by emitting a pair of
|
||||
opcodes, mul+muluh/mulsh.
|
||||
|
||||
********* Memory Barrier support
|
||||
|
||||
* mb <$arg>
|
||||
|
||||
Generate a target memory barrier instruction to ensure memory ordering as being
|
||||
enforced by a corresponding guest memory barrier instruction. The ordering
|
||||
enforced by the backend may be stricter than the ordering required by the guest.
|
||||
It cannot be weaker. This opcode takes a constant argument which is required to
|
||||
generate the appropriate barrier instruction. The backend should take care to
|
||||
emit the target barrier instruction only when necessary i.e., for SMP guests and
|
||||
when MTTCG is enabled.
|
||||
|
||||
The guest translators should generate this opcode for all guest instructions
|
||||
which have ordering side effects.
|
||||
|
||||
Please see docs/devel/atomics.rst for more information on memory barriers.
|
||||
|
||||
********* 64-bit guest on 32-bit host support
|
||||
|
||||
The following opcodes are internal to TCG. Thus they are to be implemented by
|
||||
32-bit host code generators, but are not to be emitted by guest translators.
|
||||
They are emitted as needed by inline functions within "tcg-op.h".
|
||||
|
||||
* brcond2_i32 t0_low, t0_high, t1_low, t1_high, cond, label
|
||||
|
||||
Similar to brcond, except that the 64-bit values T0 and T1
|
||||
are formed from two 32-bit arguments.
|
||||
|
||||
* setcond2_i32 dest, t1_low, t1_high, t2_low, t2_high, cond
|
||||
|
||||
Similar to setcond, except that the 64-bit values T1 and T2 are
|
||||
formed from two 32-bit arguments. The result is a 32-bit value.
|
||||
|
||||
********* QEMU specific operations
|
||||
|
||||
* exit_tb t0
|
||||
|
||||
Exit the current TB and return the value t0 (word type).
|
||||
|
||||
* goto_tb index
|
||||
|
||||
Exit the current TB and jump to the TB index 'index' (constant) if the
|
||||
current TB was linked to this TB. Otherwise execute the next
|
||||
instructions. Only indices 0 and 1 are valid and tcg_gen_goto_tb may be issued
|
||||
at most once with each slot index per TB.
|
||||
|
||||
* lookup_and_goto_ptr tb_addr
|
||||
|
||||
Look up a TB address ('tb_addr') and jump to it if valid. If not valid,
|
||||
jump to the TCG epilogue to go back to the exec loop.
|
||||
|
||||
This operation is optional. If the TCG backend does not implement the
|
||||
goto_ptr opcode, emitting this op is equivalent to emitting exit_tb(0).
|
||||
|
||||
* qemu_ld_i32/i64 t0, t1, flags, memidx
|
||||
* qemu_st_i32/i64 t0, t1, flags, memidx
|
||||
* qemu_st8_i32 t0, t1, flags, memidx
|
||||
|
||||
Load data at the guest address t1 into t0, or store data in t0 at guest
|
||||
address t1. The _i32/_i64 size applies to the size of the input/output
|
||||
register t0 only. The address t1 is always sized according to the guest,
|
||||
and the width of the memory operation is controlled by flags.
|
||||
|
||||
Both t0 and t1 may be split into little-endian ordered pairs of registers
|
||||
if dealing with 64-bit quantities on a 32-bit host.
|
||||
|
||||
The memidx selects the qemu tlb index to use (e.g. user or kernel access).
|
||||
The flags are the MemOp bits, selecting the sign, width, and endianness
|
||||
of the memory access.
|
||||
|
||||
For a 32-bit host, qemu_ld/st_i64 is guaranteed to only be used with a
|
||||
64-bit memory access specified in flags.
|
||||
|
||||
For i386, qemu_st8_i32 is exactly like qemu_st_i32, except the size of
|
||||
the memory operation is known to be 8-bit. This allows the backend to
|
||||
provide a different set of register constraints.
|
||||
|
||||
********* Host vector operations
|
||||
|
||||
All of the vector ops have two parameters, TCGOP_VECL & TCGOP_VECE.
|
||||
The former specifies the length of the vector in log2 64-bit units; the
|
||||
later specifies the length of the element (if applicable) in log2 8-bit units.
|
||||
E.g. VECL=1 -> 64 << 1 -> v128, and VECE=2 -> 1 << 2 -> i32.
|
||||
|
||||
* mov_vec v0, v1
|
||||
* ld_vec v0, t1
|
||||
* st_vec v0, t1
|
||||
|
||||
Move, load and store.
|
||||
|
||||
* dup_vec v0, r1
|
||||
|
||||
Duplicate the low N bits of R1 into VECL/VECE copies across V0.
|
||||
|
||||
* dupi_vec v0, c
|
||||
|
||||
Similarly, for a constant.
|
||||
Smaller values will be replicated to host register size by the expanders.
|
||||
|
||||
* dup2_vec v0, r1, r2
|
||||
|
||||
Duplicate r2:r1 into VECL/64 copies across V0. This opcode is
|
||||
only present for 32-bit hosts.
|
||||
|
||||
* add_vec v0, v1, v2
|
||||
|
||||
v0 = v1 + v2, in elements across the vector.
|
||||
|
||||
* sub_vec v0, v1, v2
|
||||
|
||||
Similarly, v0 = v1 - v2.
|
||||
|
||||
* mul_vec v0, v1, v2
|
||||
|
||||
Similarly, v0 = v1 * v2.
|
||||
|
||||
* neg_vec v0, v1
|
||||
|
||||
Similarly, v0 = -v1.
|
||||
|
||||
* abs_vec v0, v1
|
||||
|
||||
Similarly, v0 = v1 < 0 ? -v1 : v1, in elements across the vector.
|
||||
|
||||
* smin_vec:
|
||||
* umin_vec:
|
||||
|
||||
Similarly, v0 = MIN(v1, v2), for signed and unsigned element types.
|
||||
|
||||
* smax_vec:
|
||||
* umax_vec:
|
||||
|
||||
Similarly, v0 = MAX(v1, v2), for signed and unsigned element types.
|
||||
|
||||
* ssadd_vec:
|
||||
* sssub_vec:
|
||||
* usadd_vec:
|
||||
* ussub_vec:
|
||||
|
||||
Signed and unsigned saturating addition and subtraction. If the true
|
||||
result is not representable within the element type, the element is
|
||||
set to the minimum or maximum value for the type.
|
||||
|
||||
* and_vec v0, v1, v2
|
||||
* or_vec v0, v1, v2
|
||||
* xor_vec v0, v1, v2
|
||||
* andc_vec v0, v1, v2
|
||||
* orc_vec v0, v1, v2
|
||||
* not_vec v0, v1
|
||||
|
||||
Similarly, logical operations with and without complement.
|
||||
Note that VECE is unused.
|
||||
|
||||
* shli_vec v0, v1, i2
|
||||
* shls_vec v0, v1, s2
|
||||
|
||||
Shift all elements from v1 by a scalar i2/s2. I.e.
|
||||
|
||||
for (i = 0; i < VECL/VECE; ++i) {
|
||||
v0[i] = v1[i] << s2;
|
||||
}
|
||||
|
||||
* shri_vec v0, v1, i2
|
||||
* sari_vec v0, v1, i2
|
||||
* rotli_vec v0, v1, i2
|
||||
* shrs_vec v0, v1, s2
|
||||
* sars_vec v0, v1, s2
|
||||
|
||||
Similarly for logical and arithmetic right shift, and left rotate.
|
||||
|
||||
* shlv_vec v0, v1, v2
|
||||
|
||||
Shift elements from v1 by elements from v2. I.e.
|
||||
|
||||
for (i = 0; i < VECL/VECE; ++i) {
|
||||
v0[i] = v1[i] << v2[i];
|
||||
}
|
||||
|
||||
* shrv_vec v0, v1, v2
|
||||
* sarv_vec v0, v1, v2
|
||||
* rotlv_vec v0, v1, v2
|
||||
* rotrv_vec v0, v1, v2
|
||||
|
||||
Similarly for logical and arithmetic right shift, and rotates.
|
||||
|
||||
* cmp_vec v0, v1, v2, cond
|
||||
|
||||
Compare vectors by element, storing -1 for true and 0 for false.
|
||||
|
||||
* bitsel_vec v0, v1, v2, v3
|
||||
|
||||
Bitwise select, v0 = (v2 & v1) | (v3 & ~v1), across the entire vector.
|
||||
|
||||
* cmpsel_vec v0, c1, c2, v3, v4, cond
|
||||
|
||||
Select elements based on comparison results:
|
||||
for (i = 0; i < n; ++i) {
|
||||
v0[i] = (c1[i] cond c2[i]) ? v3[i] : v4[i].
|
||||
}
|
||||
|
||||
*********
|
||||
|
||||
Note 1: Some shortcuts are defined when the last operand is known to be
|
||||
a constant (e.g. addi for add, movi for mov).
|
||||
|
||||
Note 2: When using TCG, the opcodes must never be generated directly
|
||||
as some of them may not be available as "real" opcodes. Always use the
|
||||
function tcg_gen_xxx(args).
|
||||
|
||||
4) Backend
|
||||
|
||||
tcg-target.h contains the target specific definitions. tcg-target.c.inc
|
||||
contains the target specific code; it is #included by tcg/tcg.c, rather
|
||||
than being a standalone C file.
|
||||
|
||||
4.1) Assumptions
|
||||
|
||||
The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or
|
||||
64 bit. It is expected that the pointer has the same size as the word.
|
||||
|
||||
On a 32 bit target, all 64 bit operations are converted to 32 bits. A
|
||||
few specific operations must be implemented to allow it (see add2_i32,
|
||||
sub2_i32, brcond2_i32).
|
||||
|
||||
On a 64 bit target, the values are transferred between 32 and 64-bit
|
||||
registers using the following ops:
|
||||
- trunc_shr_i64_i32
|
||||
- ext_i32_i64
|
||||
- extu_i32_i64
|
||||
|
||||
They ensure that the values are correctly truncated or extended when
|
||||
moved from a 32-bit to a 64-bit register or vice-versa. Note that the
|
||||
trunc_shr_i64_i32 is an optional op. It is not necessary to implement
|
||||
it if all the following conditions are met:
|
||||
- 64-bit registers can hold 32-bit values
|
||||
- 32-bit values in a 64-bit register do not need to stay zero or
|
||||
sign extended
|
||||
- all 32-bit TCG ops ignore the high part of 64-bit registers
|
||||
|
||||
Floating point operations are not supported in this version. A
|
||||
previous incarnation of the code generator had full support of them,
|
||||
but it is better to concentrate on integer operations first.
|
||||
|
||||
4.2) Constraints
|
||||
|
||||
GCC like constraints are used to define the constraints of every
|
||||
instruction. Memory constraints are not supported in this
|
||||
version. Aliases are specified in the input operands as for GCC.
|
||||
|
||||
The same register may be used for both an input and an output, even when
|
||||
they are not explicitly aliased. If an op expands to multiple target
|
||||
instructions then care must be taken to avoid clobbering input values.
|
||||
GCC style "early clobber" outputs are supported, with '&'.
|
||||
|
||||
A target can define specific register or constant constraints. If an
|
||||
operation uses a constant input constraint which does not allow all
|
||||
constants, it must also accept registers in order to have a fallback.
|
||||
The constraint 'i' is defined generically to accept any constant.
|
||||
The constraint 'r' is not defined generically, but is consistently
|
||||
used by each backend to indicate all registers.
|
||||
|
||||
The movi_i32 and movi_i64 operations must accept any constants.
|
||||
|
||||
The mov_i32 and mov_i64 operations must accept any registers of the
|
||||
same type.
|
||||
|
||||
The ld/st/sti instructions must accept signed 32 bit constant offsets.
|
||||
This can be implemented by reserving a specific register in which to
|
||||
compute the address if the offset is too big.
|
||||
|
||||
The ld/st instructions must accept any destination (ld) or source (st)
|
||||
register.
|
||||
|
||||
The sti instruction may fail if it cannot store the given constant.
|
||||
|
||||
4.3) Function call assumptions
|
||||
|
||||
- The only supported types for parameters and return value are: 32 and
|
||||
64 bit integers and pointer.
|
||||
- The stack grows downwards.
|
||||
- The first N parameters are passed in registers.
|
||||
- The next parameters are passed on the stack by storing them as words.
|
||||
- Some registers are clobbered during the call.
|
||||
- The function can return 0 or 1 value in registers. On a 32 bit
|
||||
target, functions must be able to return 2 values in registers for
|
||||
64 bit return type.
|
||||
|
||||
5) Recommended coding rules for best performance
|
||||
|
||||
- Use globals to represent the parts of the QEMU CPU state which are
|
||||
often modified, e.g. the integer registers and the condition
|
||||
codes. TCG will be able to use host registers to store them.
|
||||
|
||||
- Avoid globals stored in fixed registers. They must be used only to
|
||||
store the pointer to the CPU state and possibly to store a pointer
|
||||
to a register window.
|
||||
|
||||
- Use temporaries. Use local temporaries only when really needed,
|
||||
e.g. when you need to use a value after a jump. Local temporaries
|
||||
introduce a performance hit in the current TCG implementation: their
|
||||
content is saved to memory at end of each basic block.
|
||||
|
||||
- Free temporaries and local temporaries when they are no longer used
|
||||
(tcg_temp_free). Since tcg_const_x() also creates a temporary, you
|
||||
should free it after it is used. Freeing temporaries does not yield
|
||||
a better generated code, but it reduces the memory usage of TCG and
|
||||
the speed of the translation.
|
||||
|
||||
- Don't hesitate to use helpers for complicated or seldom used guest
|
||||
instructions. There is little performance advantage in using TCG to
|
||||
implement guest instructions taking more than about twenty TCG
|
||||
instructions. Note that this rule of thumb is more applicable to
|
||||
helpers doing complex logic or arithmetic, where the C compiler has
|
||||
scope to do a good job of optimisation; it is less relevant where
|
||||
the instruction is mostly doing loads and stores, and in those cases
|
||||
inline TCG may still be faster for longer sequences.
|
||||
|
||||
- The hard limit on the number of TCG instructions you can generate
|
||||
per guest instruction is set by MAX_OP_PER_INSTR in exec-all.h --
|
||||
you cannot exceed this without risking a buffer overrun.
|
||||
|
||||
- Use the 'discard' instruction if you know that TCG won't be able to
|
||||
prove that a given global is "dead" at a given program point. The
|
||||
x86 guest uses it to improve the condition codes optimisation.
|
Loading…
Reference in New Issue
Block a user