Merge remote-tracking branch 'qemu-kvm/uq/master' into staging

* qemu-kvm/uq/master:
  pc-bios: update kvmvapic.bin
  kvmvapic: Use optionrom helpers
  optionsrom: Reserve space for checksum
  kvmvapic: Simplify mp/up_set_tpr
  kvmvapic: Introduce TPR access optimization for Windows guests
  kvmvapic: Add option ROM
  target-i386: Add infrastructure for reporting TPR MMIO accesses
  Allow to use pause_all_vcpus from VCPU context
  Process pending work while waiting for initial kick-off in TCG mode
  Remove useless casts from cpu iterators
  kvm: Set cpu_single_env only once
  kvm: Synchronize cpu state in kvm_arch_stop_on_emulation_error()
This commit is contained in:
Anthony Liguori 2012-03-01 15:26:01 -06:00
commit 5918ff68ff
20 changed files with 1468 additions and 30 deletions

1
.gitignore vendored
View File

@ -77,6 +77,7 @@ pc-bios/vgabios-pq/status
pc-bios/optionrom/linuxboot.bin
pc-bios/optionrom/multiboot.bin
pc-bios/optionrom/multiboot.raw
pc-bios/optionrom/kvmvapic.bin
.stgit-*
cscope.*
tags

View File

@ -256,7 +256,7 @@ pxe-e1000.rom pxe-eepro100.rom pxe-ne2k_pci.rom \
pxe-pcnet.rom pxe-rtl8139.rom pxe-virtio.rom \
bamboo.dtb petalogix-s3adsp1800.dtb petalogix-ml605.dtb \
mpc8544ds.dtb \
multiboot.bin linuxboot.bin \
multiboot.bin linuxboot.bin kvmvapic.bin \
s390-zipl.rom \
spapr-rtas.bin slof.bin \
palcode-clipper

View File

@ -237,7 +237,8 @@ obj-y += device-hotplug.o
# Hardware support
obj-i386-y += mc146818rtc.o pc.o
obj-i386-y += sga.o apic_common.o apic.o ioapic_common.o ioapic.o piix_pci.o
obj-i386-y += apic_common.o apic.o kvmvapic.o
obj-i386-y += sga.o ioapic_common.o ioapic.o piix_pci.o
obj-i386-y += vmport.o
obj-i386-y += pci-hotplug.o smbios.o wdt_ib700.o
obj-i386-y += debugcon.o multiboot.o

View File

@ -375,8 +375,9 @@ DECLARE_TLS(CPUState *,cpu_single_env);
#define CPU_INTERRUPT_TGT_INT_0 0x0100
#define CPU_INTERRUPT_TGT_INT_1 0x0400
#define CPU_INTERRUPT_TGT_INT_2 0x0800
#define CPU_INTERRUPT_TGT_INT_3 0x2000
/* First unused bit: 0x2000. */
/* First unused bit: 0x4000. */
/* The set of all bits that should be masked when single-stepping. */
#define CPU_INTERRUPT_SSTEP_MASK \

26
cpus.c
View File

@ -714,6 +714,7 @@ static void *qemu_kvm_cpu_thread_fn(void *arg)
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(env->thread);
env->thread_id = qemu_get_thread_id();
cpu_single_env = env;
r = kvm_init_vcpu(env);
if (r < 0) {
@ -760,6 +761,11 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
/* wait for initial kick-off after machine start */
while (first_cpu->stopped) {
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
/* process any pending work */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
qemu_wait_io_event_common(env);
}
}
while (1) {
@ -852,7 +858,7 @@ static int all_vcpus_paused(void)
if (!penv->stopped) {
return 0;
}
penv = (CPUState *)penv->next_cpu;
penv = penv->next_cpu;
}
return 1;
@ -866,7 +872,19 @@ void pause_all_vcpus(void)
while (penv) {
penv->stop = 1;
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
penv = penv->next_cpu;
}
if (!qemu_thread_is_self(&io_thread)) {
cpu_stop_current();
if (!kvm_enabled()) {
while (penv) {
penv->stop = 0;
penv->stopped = 1;
penv = penv->next_cpu;
}
return;
}
}
while (!all_vcpus_paused()) {
@ -874,7 +892,7 @@ void pause_all_vcpus(void)
penv = first_cpu;
while (penv) {
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
penv = penv->next_cpu;
}
}
}
@ -888,7 +906,7 @@ void resume_all_vcpus(void)
penv->stop = 0;
penv->stopped = 0;
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
penv = penv->next_cpu;
}
}

126
hw/apic.c
View File

@ -35,6 +35,10 @@
#define MSI_ADDR_DEST_ID_SHIFT 12
#define MSI_ADDR_DEST_ID_MASK 0x00ffff0
#define SYNC_FROM_VAPIC 0x1
#define SYNC_TO_VAPIC 0x2
#define SYNC_ISR_IRR_TO_VAPIC 0x4
static APICCommonState *local_apics[MAX_APICS + 1];
static void apic_set_irq(APICCommonState *s, int vector_num, int trigger_mode);
@ -78,6 +82,70 @@ static inline int get_bit(uint32_t *tab, int index)
return !!(tab[i] & mask);
}
/* return -1 if no bit is set */
static int get_highest_priority_int(uint32_t *tab)
{
int i;
for (i = 7; i >= 0; i--) {
if (tab[i] != 0) {
return i * 32 + fls_bit(tab[i]);
}
}
return -1;
}
static void apic_sync_vapic(APICCommonState *s, int sync_type)
{
VAPICState vapic_state;
size_t length;
off_t start;
int vector;
if (!s->vapic_paddr) {
return;
}
if (sync_type & SYNC_FROM_VAPIC) {
cpu_physical_memory_rw(s->vapic_paddr, (void *)&vapic_state,
sizeof(vapic_state), 0);
s->tpr = vapic_state.tpr;
}
if (sync_type & (SYNC_TO_VAPIC | SYNC_ISR_IRR_TO_VAPIC)) {
start = offsetof(VAPICState, isr);
length = offsetof(VAPICState, enabled) - offsetof(VAPICState, isr);
if (sync_type & SYNC_TO_VAPIC) {
assert(qemu_cpu_is_self(s->cpu_env));
vapic_state.tpr = s->tpr;
vapic_state.enabled = 1;
start = 0;
length = sizeof(VAPICState);
}
vector = get_highest_priority_int(s->isr);
if (vector < 0) {
vector = 0;
}
vapic_state.isr = vector & 0xf0;
vapic_state.zero = 0;
vector = get_highest_priority_int(s->irr);
if (vector < 0) {
vector = 0;
}
vapic_state.irr = vector & 0xff;
cpu_physical_memory_write_rom(s->vapic_paddr + start,
((void *)&vapic_state) + start, length);
}
}
static void apic_vapic_base_update(APICCommonState *s)
{
apic_sync_vapic(s, SYNC_TO_VAPIC);
}
static void apic_local_deliver(APICCommonState *s, int vector)
{
uint32_t lvt = s->lvt[vector];
@ -239,20 +307,17 @@ static void apic_set_base(APICCommonState *s, uint64_t val)
static void apic_set_tpr(APICCommonState *s, uint8_t val)
{
s->tpr = (val & 0x0f) << 4;
apic_update_irq(s);
/* Updates from cr8 are ignored while the VAPIC is active */
if (!s->vapic_paddr) {
s->tpr = val << 4;
apic_update_irq(s);
}
}
/* return -1 if no bit is set */
static int get_highest_priority_int(uint32_t *tab)
static uint8_t apic_get_tpr(APICCommonState *s)
{
int i;
for(i = 7; i >= 0; i--) {
if (tab[i] != 0) {
return i * 32 + fls_bit(tab[i]);
}
}
return -1;
apic_sync_vapic(s, SYNC_FROM_VAPIC);
return s->tpr >> 4;
}
static int apic_get_ppr(APICCommonState *s)
@ -312,6 +377,14 @@ static void apic_update_irq(APICCommonState *s)
}
}
void apic_poll_irq(DeviceState *d)
{
APICCommonState *s = APIC_COMMON(d);
apic_sync_vapic(s, SYNC_FROM_VAPIC);
apic_update_irq(s);
}
static void apic_set_irq(APICCommonState *s, int vector_num, int trigger_mode)
{
apic_report_irq_delivered(!get_bit(s->irr, vector_num));
@ -321,6 +394,16 @@ static void apic_set_irq(APICCommonState *s, int vector_num, int trigger_mode)
set_bit(s->tmr, vector_num);
else
reset_bit(s->tmr, vector_num);
if (s->vapic_paddr) {
apic_sync_vapic(s, SYNC_ISR_IRR_TO_VAPIC);
/*
* The vcpu thread needs to see the new IRR before we pull its current
* TPR value. That way, if we miss a lowering of the TRP, the guest
* has the chance to notice the new IRR and poll for IRQs on its own.
*/
smp_wmb();
apic_sync_vapic(s, SYNC_FROM_VAPIC);
}
apic_update_irq(s);
}
@ -334,6 +417,7 @@ static void apic_eoi(APICCommonState *s)
if (!(s->spurious_vec & APIC_SV_DIRECTED_IO) && get_bit(s->tmr, isrv)) {
ioapic_eoi_broadcast(isrv);
}
apic_sync_vapic(s, SYNC_FROM_VAPIC | SYNC_TO_VAPIC);
apic_update_irq(s);
}
@ -471,15 +555,19 @@ int apic_get_interrupt(DeviceState *d)
if (!(s->spurious_vec & APIC_SV_ENABLE))
return -1;
apic_sync_vapic(s, SYNC_FROM_VAPIC);
intno = apic_irq_pending(s);
if (intno == 0) {
apic_sync_vapic(s, SYNC_TO_VAPIC);
return -1;
} else if (intno < 0) {
apic_sync_vapic(s, SYNC_TO_VAPIC);
return s->spurious_vec & 0xff;
}
reset_bit(s->irr, intno);
set_bit(s->isr, intno);
apic_sync_vapic(s, SYNC_TO_VAPIC);
apic_update_irq(s);
return intno;
}
@ -576,6 +664,10 @@ static uint32_t apic_mem_readl(void *opaque, target_phys_addr_t addr)
val = 0x11 | ((APIC_LVT_NB - 1) << 16); /* version 0x11 */
break;
case 0x08:
apic_sync_vapic(s, SYNC_FROM_VAPIC);
if (apic_report_tpr_access) {
cpu_report_tpr_access(s->cpu_env, TPR_ACCESS_READ);
}
val = s->tpr;
break;
case 0x09:
@ -675,7 +767,11 @@ static void apic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
case 0x03:
break;
case 0x08:
if (apic_report_tpr_access) {
cpu_report_tpr_access(s->cpu_env, TPR_ACCESS_WRITE);
}
s->tpr = val;
apic_sync_vapic(s, SYNC_TO_VAPIC);
apic_update_irq(s);
break;
case 0x09:
@ -737,6 +833,11 @@ static void apic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
}
}
static void apic_pre_save(APICCommonState *s)
{
apic_sync_vapic(s, SYNC_FROM_VAPIC);
}
static void apic_post_load(APICCommonState *s)
{
if (s->timer_expiry != -1) {
@ -770,7 +871,10 @@ static void apic_class_init(ObjectClass *klass, void *data)
k->init = apic_init;
k->set_base = apic_set_base;
k->set_tpr = apic_set_tpr;
k->get_tpr = apic_get_tpr;
k->vapic_base_update = apic_vapic_base_update;
k->external_nmi = apic_external_nmi;
k->pre_save = apic_pre_save;
k->post_load = apic_post_load;
}

View File

@ -18,6 +18,8 @@ void cpu_set_apic_tpr(DeviceState *s, uint8_t val);
uint8_t cpu_get_apic_tpr(DeviceState *s);
void apic_init_reset(DeviceState *s);
void apic_sipi(DeviceState *s);
void apic_handle_tpr_access_report(DeviceState *d, target_ulong ip,
TPRAccess access);
/* pc.c */
int cpu_is_bsp(CPUState *env);

View File

@ -20,8 +20,10 @@
#include "apic.h"
#include "apic_internal.h"
#include "trace.h"
#include "kvm.h"
static int apic_irq_delivered;
bool apic_report_tpr_access;
void cpu_set_apic_base(DeviceState *d, uint64_t val)
{
@ -62,10 +64,46 @@ void cpu_set_apic_tpr(DeviceState *d, uint8_t val)
}
uint8_t cpu_get_apic_tpr(DeviceState *d)
{
APICCommonState *s;
APICCommonClass *info;
if (!d) {
return 0;
}
s = APIC_COMMON(d);
info = APIC_COMMON_GET_CLASS(s);
return info->get_tpr(s);
}
void apic_enable_tpr_access_reporting(DeviceState *d, bool enable)
{
APICCommonState *s = DO_UPCAST(APICCommonState, busdev.qdev, d);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
apic_report_tpr_access = enable;
if (info->enable_tpr_reporting) {
info->enable_tpr_reporting(s, enable);
}
}
void apic_enable_vapic(DeviceState *d, target_phys_addr_t paddr)
{
APICCommonState *s = DO_UPCAST(APICCommonState, busdev.qdev, d);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
s->vapic_paddr = paddr;
info->vapic_base_update(s);
}
void apic_handle_tpr_access_report(DeviceState *d, target_ulong ip,
TPRAccess access)
{
APICCommonState *s = DO_UPCAST(APICCommonState, busdev.qdev, d);
return s ? s->tpr >> 4 : 0;
vapic_report_tpr_access(s->vapic, s->cpu_env, ip, access);
}
void apic_report_irq_delivered(int delivered)
@ -166,12 +204,16 @@ void apic_init_reset(DeviceState *d)
static void apic_reset_common(DeviceState *d)
{
APICCommonState *s = DO_UPCAST(APICCommonState, busdev.qdev, d);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
bool bsp;
bsp = cpu_is_bsp(s->cpu_env);
s->apicbase = 0xfee00000 |
(bsp ? MSR_IA32_APICBASE_BSP : 0) | MSR_IA32_APICBASE_ENABLE;
s->vapic_paddr = 0;
info->vapic_base_update(s);
apic_init_reset(d);
if (bsp) {
@ -234,6 +276,7 @@ static int apic_init_common(SysBusDevice *dev)
{
APICCommonState *s = APIC_COMMON(dev);
APICCommonClass *info;
static DeviceState *vapic;
static int apic_no;
if (apic_no >= MAX_APICS) {
@ -244,10 +287,29 @@ static int apic_init_common(SysBusDevice *dev)
info = APIC_COMMON_GET_CLASS(s);
info->init(s);
sysbus_init_mmio(&s->busdev, &s->io_memory);
sysbus_init_mmio(dev, &s->io_memory);
if (!vapic && s->vapic_control & VAPIC_ENABLE_MASK) {
vapic = sysbus_create_simple("kvmvapic", -1, NULL);
}
s->vapic = vapic;
if (apic_report_tpr_access && info->enable_tpr_reporting) {
info->enable_tpr_reporting(s, true);
}
return 0;
}
static void apic_dispatch_pre_save(void *opaque)
{
APICCommonState *s = APIC_COMMON(opaque);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
if (info->pre_save) {
info->pre_save(s);
}
}
static int apic_dispatch_post_load(void *opaque, int version_id)
{
APICCommonState *s = APIC_COMMON(opaque);
@ -265,6 +327,7 @@ static const VMStateDescription vmstate_apic_common = {
.minimum_version_id = 3,
.minimum_version_id_old = 1,
.load_state_old = apic_load_old,
.pre_save = apic_dispatch_pre_save,
.post_load = apic_dispatch_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(apicbase, APICCommonState),
@ -294,6 +357,8 @@ static const VMStateDescription vmstate_apic_common = {
static Property apic_properties_common[] = {
DEFINE_PROP_UINT8("id", APICCommonState, id, -1),
DEFINE_PROP_PTR("cpu_env", APICCommonState, cpu_env),
DEFINE_PROP_BIT("vapic", APICCommonState, vapic_control, VAPIC_ENABLE_BIT,
true),
DEFINE_PROP_END_OF_LIST(),
};

View File

@ -61,6 +61,9 @@
#define APIC_SV_DIRECTED_IO (1<<12)
#define APIC_SV_ENABLE (1<<8)
#define VAPIC_ENABLE_BIT 0
#define VAPIC_ENABLE_MASK (1 << VAPIC_ENABLE_BIT)
#define MAX_APICS 255
#define MSI_SPACE_SIZE 0x100000
@ -82,7 +85,11 @@ typedef struct APICCommonClass
void (*init)(APICCommonState *s);
void (*set_base)(APICCommonState *s, uint64_t val);
void (*set_tpr)(APICCommonState *s, uint8_t val);
uint8_t (*get_tpr)(APICCommonState *s);
void (*enable_tpr_reporting)(APICCommonState *s, bool enable);
void (*vapic_base_update)(APICCommonState *s);
void (*external_nmi)(APICCommonState *s);
void (*pre_save)(APICCommonState *s);
void (*post_load)(APICCommonState *s);
} APICCommonClass;
@ -114,9 +121,29 @@ struct APICCommonState {
int64_t timer_expiry;
int sipi_vector;
int wait_for_sipi;
uint32_t vapic_control;
DeviceState *vapic;
target_phys_addr_t vapic_paddr; /* note: persistence via kvmvapic */
};
typedef struct VAPICState {
uint8_t tpr;
uint8_t isr;
uint8_t zero;
uint8_t irr;
uint8_t enabled;
} QEMU_PACKED VAPICState;
extern bool apic_report_tpr_access;
void apic_report_irq_delivered(int delivered);
bool apic_next_timer(APICCommonState *s, int64_t current_time);
void apic_enable_tpr_access_reporting(DeviceState *d, bool enable);
void apic_enable_vapic(DeviceState *d, target_phys_addr_t paddr);
void apic_poll_irq(DeviceState *d);
void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
TPRAccess access);
#endif /* !QEMU_APIC_INTERNAL_H */

View File

@ -92,6 +92,35 @@ static void kvm_apic_set_tpr(APICCommonState *s, uint8_t val)
s->tpr = (val & 0x0f) << 4;
}
static uint8_t kvm_apic_get_tpr(APICCommonState *s)
{
return s->tpr >> 4;
}
static void kvm_apic_enable_tpr_reporting(APICCommonState *s, bool enable)
{
struct kvm_tpr_access_ctl ctl = {
.enabled = enable
};
kvm_vcpu_ioctl(s->cpu_env, KVM_TPR_ACCESS_REPORTING, &ctl);
}
static void kvm_apic_vapic_base_update(APICCommonState *s)
{
struct kvm_vapic_addr vapid_addr = {
.vapic_addr = s->vapic_paddr,
};
int ret;
ret = kvm_vcpu_ioctl(s->cpu_env, KVM_SET_VAPIC_ADDR, &vapid_addr);
if (ret < 0) {
fprintf(stderr, "KVM: setting VAPIC address failed (%s)\n",
strerror(-ret));
abort();
}
}
static void do_inject_external_nmi(void *data)
{
APICCommonState *s = data;
@ -129,6 +158,9 @@ static void kvm_apic_class_init(ObjectClass *klass, void *data)
k->init = kvm_apic_init;
k->set_base = kvm_apic_set_base;
k->set_tpr = kvm_apic_set_tpr;
k->get_tpr = kvm_apic_get_tpr;
k->enable_tpr_reporting = kvm_apic_enable_tpr_reporting;
k->vapic_base_update = kvm_apic_vapic_base_update;
k->external_nmi = kvm_apic_external_nmi;
}

805
hw/kvmvapic.c Normal file
View File

@ -0,0 +1,805 @@
/*
* TPR optimization for 32-bit Windows guests (XP and Server 2003)
*
* Copyright (C) 2007-2008 Qumranet Technologies
* Copyright (C) 2012 Jan Kiszka, Siemens AG
*
* This work is licensed under the terms of the GNU GPL version 2, or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "sysemu.h"
#include "cpus.h"
#include "kvm.h"
#include "apic_internal.h"
#define APIC_DEFAULT_ADDRESS 0xfee00000
#define VAPIC_IO_PORT 0x7e
#define VAPIC_CPU_SHIFT 7
#define ROM_BLOCK_SIZE 512
#define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
typedef enum VAPICMode {
VAPIC_INACTIVE = 0,
VAPIC_ACTIVE = 1,
VAPIC_STANDBY = 2,
} VAPICMode;
typedef struct VAPICHandlers {
uint32_t set_tpr;
uint32_t set_tpr_eax;
uint32_t get_tpr[8];
uint32_t get_tpr_stack;
} QEMU_PACKED VAPICHandlers;
typedef struct GuestROMState {
char signature[8];
uint32_t vaddr;
uint32_t fixup_start;
uint32_t fixup_end;
uint32_t vapic_vaddr;
uint32_t vapic_size;
uint32_t vcpu_shift;
uint32_t real_tpr_addr;
VAPICHandlers up;
VAPICHandlers mp;
} QEMU_PACKED GuestROMState;
typedef struct VAPICROMState {
SysBusDevice busdev;
MemoryRegion io;
MemoryRegion rom;
uint32_t state;
uint32_t rom_state_paddr;
uint32_t rom_state_vaddr;
uint32_t vapic_paddr;
uint32_t real_tpr_addr;
GuestROMState rom_state;
size_t rom_size;
bool rom_mapped_writable;
} VAPICROMState;
#define TPR_INSTR_ABS_MODRM 0x1
#define TPR_INSTR_MATCH_MODRM_REG 0x2
typedef struct TPRInstruction {
uint8_t opcode;
uint8_t modrm_reg;
unsigned int flags;
TPRAccess access;
size_t length;
off_t addr_offset;
} TPRInstruction;
/* must be sorted by length, shortest first */
static const TPRInstruction tpr_instr[] = {
{ /* mov abs to eax */
.opcode = 0xa1,
.access = TPR_ACCESS_READ,
.length = 5,
.addr_offset = 1,
},
{ /* mov eax to abs */
.opcode = 0xa3,
.access = TPR_ACCESS_WRITE,
.length = 5,
.addr_offset = 1,
},
{ /* mov r32 to r/m32 */
.opcode = 0x89,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_WRITE,
.length = 6,
.addr_offset = 2,
},
{ /* mov r/m32 to r32 */
.opcode = 0x8b,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* push r/m32 */
.opcode = 0xff,
.modrm_reg = 6,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* mov imm32, r/m32 (c7/0) */
.opcode = 0xc7,
.modrm_reg = 0,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_WRITE,
.length = 10,
.addr_offset = 2,
},
};
static void read_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
sizeof(GuestROMState), 0);
}
static void write_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
sizeof(GuestROMState), 1);
}
static void update_guest_rom_state(VAPICROMState *s)
{
read_guest_rom_state(s);
s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
write_guest_rom_state(s);
}
static int find_real_tpr_addr(VAPICROMState *s, CPUState *env)
{
target_phys_addr_t paddr;
target_ulong addr;
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/*
* If there is no prior TPR access instruction we could analyze (which is
* the case after resume from hibernation), we need to scan the possible
* virtual address space for the APIC mapping.
*/
for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
paddr = cpu_get_phys_page_debug(env, addr);
if (paddr != APIC_DEFAULT_ADDRESS) {
continue;
}
s->real_tpr_addr = addr + 0x80;
update_guest_rom_state(s);
return 0;
}
return -1;
}
static uint8_t modrm_reg(uint8_t modrm)
{
return (modrm >> 3) & 7;
}
static bool is_abs_modrm(uint8_t modrm)
{
return (modrm & 0xc7) == 0x05;
}
static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
{
return opcode[0] == instr->opcode &&
(!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
(!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
modrm_reg(opcode[1]) == instr->modrm_reg);
}
static int evaluate_tpr_instruction(VAPICROMState *s, CPUState *env,
target_ulong *pip, TPRAccess access)
{
const TPRInstruction *instr;
target_ulong ip = *pip;
uint8_t opcode[2];
uint32_t real_tpr_addr;
int i;
if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
(ip & 0xf0000000ULL) != 0xe0000000ULL) {
return -1;
}
/*
* Early Windows 2003 SMP initialization contains a
*
* mov imm32, r/m32
*
* instruction that is patched by TPR optimization. The problem is that
* RSP, used by the patched instruction, is zero, so the guest gets a
* double fault and dies.
*/
if (env->regs[R_ESP] == 0) {
return -1;
}
if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
/*
* KVM without kernel-based TPR access reporting will pass an IP that
* points after the accessing instruction. So we need to look backward
* to find the reason.
*/
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (instr->access != access) {
continue;
}
if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
sizeof(opcode), 0) < 0) {
return -1;
}
if (opcode_matches(opcode, instr)) {
ip -= instr->length;
goto instruction_ok;
}
}
return -1;
} else {
if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
return -1;
}
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (opcode_matches(opcode, instr)) {
goto instruction_ok;
}
}
return -1;
}
instruction_ok:
/*
* Grab the virtual TPR address from the instruction
* and update the cached values.
*/
if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
(void *)&real_tpr_addr,
sizeof(real_tpr_addr), 0) < 0) {
return -1;
}
real_tpr_addr = le32_to_cpu(real_tpr_addr);
if ((real_tpr_addr & 0xfff) != 0x80) {
return -1;
}
s->real_tpr_addr = real_tpr_addr;
update_guest_rom_state(s);
*pip = ip;
return 0;
}
static int update_rom_mapping(VAPICROMState *s, CPUState *env, target_ulong ip)
{
target_phys_addr_t paddr;
uint32_t rom_state_vaddr;
uint32_t pos, patch, offset;
/* nothing to do if already activated */
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/* bail out if ROM init code was not executed (missing ROM?) */
if (s->state == VAPIC_INACTIVE) {
return -1;
}
/* find out virtual address of the ROM */
rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
if (paddr == -1) {
return -1;
}
paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
if (paddr != s->rom_state_paddr) {
return -1;
}
read_guest_rom_state(s);
if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
return -1;
}
s->rom_state_vaddr = rom_state_vaddr;
/* fixup addresses in ROM if needed */
if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
return 0;
}
for (pos = le32_to_cpu(s->rom_state.fixup_start);
pos < le32_to_cpu(s->rom_state.fixup_end);
pos += 4) {
cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
(void *)&offset, sizeof(offset), 0);
offset = le32_to_cpu(offset);
cpu_physical_memory_rw(paddr + offset, (void *)&patch,
sizeof(patch), 0);
patch = le32_to_cpu(patch);
patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
patch = cpu_to_le32(patch);
cpu_physical_memory_rw(paddr + offset, (void *)&patch,
sizeof(patch), 1);
}
read_guest_rom_state(s);
s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
le32_to_cpu(s->rom_state.vaddr);
return 0;
}
/*
* Tries to read the unique processor number from the Kernel Processor Control
* Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
* cannot be accessed or is considered invalid. This also ensures that we are
* not patching the wrong guest.
*/
static int get_kpcr_number(CPUState *env)
{
struct kpcr {
uint8_t fill1[0x1c];
uint32_t self;
uint8_t fill2[0x31];
uint8_t number;
} QEMU_PACKED kpcr;
if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
(void *)&kpcr, sizeof(kpcr), 0) < 0 ||
kpcr.self != env->segs[R_FS].base) {
return -1;
}
return kpcr.number;
}
static int vapic_enable(VAPICROMState *s, CPUState *env)
{
int cpu_number = get_kpcr_number(env);
target_phys_addr_t vapic_paddr;
static const uint8_t enabled = 1;
if (cpu_number < 0) {
return -1;
}
vapic_paddr = s->vapic_paddr +
(((target_phys_addr_t)cpu_number) << VAPIC_CPU_SHIFT);
cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
(void *)&enabled, sizeof(enabled), 1);
apic_enable_vapic(env->apic_state, vapic_paddr);
s->state = VAPIC_ACTIVE;
return 0;
}
static void patch_byte(CPUState *env, target_ulong addr, uint8_t byte)
{
cpu_memory_rw_debug(env, addr, &byte, 1, 1);
}
static void patch_call(VAPICROMState *s, CPUState *env, target_ulong ip,
uint32_t target)
{
uint32_t offset;
offset = cpu_to_le32(target - ip - 5);
patch_byte(env, ip, 0xe8); /* call near */
cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
}
static void patch_instruction(VAPICROMState *s, CPUState *env, target_ulong ip)
{
target_phys_addr_t paddr;
VAPICHandlers *handlers;
uint8_t opcode[2];
uint32_t imm32;
if (smp_cpus == 1) {
handlers = &s->rom_state.up;
} else {
handlers = &s->rom_state.mp;
}
pause_all_vcpus();
cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
switch (opcode[0]) {
case 0x89: /* mov r32 to r/m32 */
patch_byte(env, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
patch_call(s, env, ip + 1, handlers->set_tpr);
break;
case 0x8b: /* mov r/m32 to r32 */
patch_byte(env, ip, 0x90);
patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
break;
case 0xa1: /* mov abs to eax */
patch_call(s, env, ip, handlers->get_tpr[0]);
break;
case 0xa3: /* mov eax to abs */
patch_call(s, env, ip, handlers->set_tpr_eax);
break;
case 0xc7: /* mov imm32, r/m32 (c7/0) */
patch_byte(env, ip, 0x68); /* push imm32 */
cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
patch_call(s, env, ip + 5, handlers->set_tpr);
break;
case 0xff: /* push r/m32 */
patch_byte(env, ip, 0x50); /* push eax */
patch_call(s, env, ip + 1, handlers->get_tpr_stack);
break;
default:
abort();
}
resume_all_vcpus();
paddr = cpu_get_phys_page_debug(env, ip);
paddr += ip & ~TARGET_PAGE_MASK;
tb_invalidate_phys_page_range(paddr, paddr + 1, 1);
}
void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
TPRAccess access)
{
VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
CPUState *env = cpu;
cpu_synchronize_state(env);
if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
if (s->state == VAPIC_ACTIVE) {
vapic_enable(s, env);
}
return;
}
if (update_rom_mapping(s, env, ip) < 0) {
return;
}
if (vapic_enable(s, env) < 0) {
return;
}
patch_instruction(s, env, ip);
}
typedef struct VAPICEnableTPRReporting {
DeviceState *apic;
bool enable;
} VAPICEnableTPRReporting;
static void vapic_do_enable_tpr_reporting(void *data)
{
VAPICEnableTPRReporting *info = data;
apic_enable_tpr_access_reporting(info->apic, info->enable);
}
static void vapic_enable_tpr_reporting(bool enable)
{
VAPICEnableTPRReporting info = {
.enable = enable,
};
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
info.apic = env->apic_state;
run_on_cpu(env, vapic_do_enable_tpr_reporting, &info);
}
}
static void vapic_reset(DeviceState *dev)
{
VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
if (s->state == VAPIC_ACTIVE) {
s->state = VAPIC_STANDBY;
}
vapic_enable_tpr_reporting(false);
}
/*
* Set the IRQ polling hypercalls to the supported variant:
* - vmcall if using KVM in-kernel irqchip
* - 32-bit VAPIC port write otherwise
*/
static int patch_hypercalls(VAPICROMState *s)
{
target_phys_addr_t rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
static const uint8_t vmcall_pattern[] = { /* vmcall */
0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
};
static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
};
uint8_t alternates[2];
const uint8_t *pattern;
const uint8_t *patch;
int patches = 0;
off_t pos;
uint8_t *rom;
rom = g_malloc(s->rom_size);
cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
if (kvm_irqchip_in_kernel()) {
pattern = outl_pattern;
alternates[0] = outl_pattern[7];
alternates[1] = outl_pattern[7];
patch = &vmcall_pattern[5];
} else {
pattern = vmcall_pattern;
alternates[0] = vmcall_pattern[7];
alternates[1] = 0xd9; /* AMD's VMMCALL */
patch = &outl_pattern[5];
}
if (memcmp(rom + pos, pattern, 7) == 0 &&
(rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
3, 1);
/*
* Don't flush the tb here. Under ordinary conditions, the patched
* calls are miles away from the current IP. Under malicious
* conditions, the guest could trick us to crash.
*/
}
}
g_free(rom);
if (patches != 0 && patches != 2) {
return -1;
}
return 0;
}
/*
* For TCG mode or the time KVM honors read-only memory regions, we need to
* enable write access to the option ROM so that variables can be updated by
* the guest.
*/
static void vapic_map_rom_writable(VAPICROMState *s)
{
target_phys_addr_t rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
MemoryRegionSection section;
MemoryRegion *as;
size_t rom_size;
uint8_t *ram;
as = sysbus_address_space(&s->busdev);
if (s->rom_mapped_writable) {
memory_region_del_subregion(as, &s->rom);
memory_region_destroy(&s->rom);
}
/* grab RAM memory region (region @rom_paddr may still be pc.rom) */
section = memory_region_find(as, 0, 1);
/* read ROM size from RAM region */
ram = memory_region_get_ram_ptr(section.mr);
rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
s->rom_size = rom_size;
/* We need to round up to avoid creating subpages
* from which we cannot run code. */
rom_size = TARGET_PAGE_ALIGN(rom_size);
memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
rom_size);
memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
s->rom_mapped_writable = true;
}
static int vapic_prepare(VAPICROMState *s)
{
vapic_map_rom_writable(s);
if (patch_hypercalls(s) < 0) {
return -1;
}
vapic_enable_tpr_reporting(true);
return 0;
}
static void vapic_write(void *opaque, target_phys_addr_t addr, uint64_t data,
unsigned int size)
{
CPUState *env = cpu_single_env;
target_phys_addr_t rom_paddr;
VAPICROMState *s = opaque;
cpu_synchronize_state(env);
/*
* The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
* o 16-bit write access:
* Reports the option ROM initialization to the hypervisor. Written
* value is the offset of the state structure in the ROM.
* o 8-bit write access:
* Reactivates the VAPIC after a guest hibernation, i.e. after the
* option ROM content has been re-initialized by a guest power cycle.
* o 32-bit write access:
* Poll for pending IRQs, considering the current VAPIC state.
*/
switch (size) {
case 2:
if (s->state == VAPIC_INACTIVE) {
rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
s->rom_state_paddr = rom_paddr + data;
s->state = VAPIC_STANDBY;
}
if (vapic_prepare(s) < 0) {
s->state = VAPIC_INACTIVE;
break;
}
break;
case 1:
if (kvm_enabled()) {
/*
* Disable triggering instruction in ROM by writing a NOP.
*
* We cannot do this in TCG mode as the reported IP is not
* accurate.
*/
pause_all_vcpus();
patch_byte(env, env->eip - 2, 0x66);
patch_byte(env, env->eip - 1, 0x90);
resume_all_vcpus();
}
if (s->state == VAPIC_ACTIVE) {
break;
}
if (update_rom_mapping(s, env, env->eip) < 0) {
break;
}
if (find_real_tpr_addr(s, env) < 0) {
break;
}
vapic_enable(s, env);
break;
default:
case 4:
if (!kvm_irqchip_in_kernel()) {
apic_poll_irq(env->apic_state);
}
break;
}
}
static const MemoryRegionOps vapic_ops = {
.write = vapic_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int vapic_init(SysBusDevice *dev)
{
VAPICROMState *s = FROM_SYSBUS(VAPICROMState, dev);
memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
option_rom[nb_option_roms].name = "kvmvapic.bin";
option_rom[nb_option_roms].bootindex = -1;
nb_option_roms++;
return 0;
}
static void do_vapic_enable(void *data)
{
VAPICROMState *s = data;
vapic_enable(s, first_cpu);
}
static int vapic_post_load(void *opaque, int version_id)
{
VAPICROMState *s = opaque;
uint8_t *zero;
/*
* The old implementation of qemu-kvm did not provide the state
* VAPIC_STANDBY. Reconstruct it.
*/
if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
s->state = VAPIC_STANDBY;
}
if (s->state != VAPIC_INACTIVE) {
if (vapic_prepare(s) < 0) {
return -1;
}
}
if (s->state == VAPIC_ACTIVE) {
if (smp_cpus == 1) {
run_on_cpu(first_cpu, do_vapic_enable, s);
} else {
zero = g_malloc0(s->rom_state.vapic_size);
cpu_physical_memory_rw(s->vapic_paddr, zero,
s->rom_state.vapic_size, 1);
g_free(zero);
}
}
return 0;
}
static const VMStateDescription vmstate_handlers = {
.name = "kvmvapic-handlers",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(set_tpr, VAPICHandlers),
VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_guest_rom = {
.name = "kvmvapic-guest-rom",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(8), /* signature */
VMSTATE_UINT32(vaddr, GuestROMState),
VMSTATE_UINT32(fixup_start, GuestROMState),
VMSTATE_UINT32(fixup_end, GuestROMState),
VMSTATE_UINT32(vapic_vaddr, GuestROMState),
VMSTATE_UINT32(vapic_size, GuestROMState),
VMSTATE_UINT32(vcpu_shift, GuestROMState),
VMSTATE_UINT32(real_tpr_addr, GuestROMState),
VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vapic = {
.name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = vapic_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
GuestROMState),
VMSTATE_UINT32(state, VAPICROMState),
VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
VMSTATE_UINT32(vapic_paddr, VAPICROMState),
VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
VMSTATE_END_OF_LIST()
}
};
static void vapic_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->no_user = 1;
dc->reset = vapic_reset;
dc->vmsd = &vmstate_vapic;
sc->init = vapic_init;
}
static TypeInfo vapic_type = {
.name = "kvmvapic",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(VAPICROMState),
.class_init = vapic_class_init,
};
static void vapic_register(void)
{
type_register_static(&vapic_type);
}
type_init(vapic_register);

View File

@ -25,10 +25,13 @@
#include "qemu-timer.h"
#include "sysemu.h"
#include "pc.h"
#include "apic.h"
#include "isa.h"
#include "mc146818rtc.h"
#ifdef TARGET_I386
#include "apic.h"
#endif
//#define DEBUG_CMOS
//#define DEBUG_COALESCED

View File

@ -1118,8 +1118,6 @@ int kvm_cpu_exec(CPUState *env)
return EXCP_HLT;
}
cpu_single_env = env;
do {
if (env->kvm_vcpu_dirty) {
kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
@ -1136,13 +1134,11 @@ int kvm_cpu_exec(CPUState *env)
*/
qemu_cpu_kick_self();
}
cpu_single_env = NULL;
qemu_mutex_unlock_iothread();
run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
qemu_mutex_lock_iothread();
cpu_single_env = env;
kvm_arch_post_run(env, run);
kvm_flush_coalesced_mmio_buffer();
@ -1206,7 +1202,6 @@ int kvm_cpu_exec(CPUState *env)
}
env->exit_request = 0;
cpu_single_env = NULL;
return ret;
}

BIN
pc-bios/kvmvapic.bin Executable file

Binary file not shown.

View File

@ -14,7 +14,7 @@ CFLAGS += -I$(SRC_PATH)
CFLAGS += $(call cc-option, $(CFLAGS), -fno-stack-protector)
QEMU_CFLAGS = $(CFLAGS)
build-all: multiboot.bin linuxboot.bin
build-all: multiboot.bin linuxboot.bin kvmvapic.bin
# suppress auto-removal of intermediate files
.SECONDARY:

View File

@ -0,0 +1,335 @@
#
# Local APIC acceleration for Windows XP and related guests
#
# Copyright 2011 Red Hat, Inc. and/or its affiliates
#
# Author: Avi Kivity <avi@redhat.com>
#
# This work is licensed under the terms of the GNU GPL, version 2, or (at your
# option) any later version. See the COPYING file in the top-level directory.
#
#include "optionrom.h"
OPTION_ROM_START
# clear vapic area: firmware load using rep insb may cause
# stale tpr/isr/irr data to corrupt the vapic area.
push %es
push %cs
pop %es
xor %ax, %ax
mov $vapic_size/2, %cx
lea vapic, %di
cld
rep stosw
pop %es
# announce presence to the hypervisor
mov $vapic_base, %ax
out %ax, $0x7e
lret
.code32
vapic_size = 2*4096
.macro fixup delta=-4
777:
.text 1
.long 777b + \delta - vapic_base
.text 0
.endm
.macro reenable_vtpr
out %al, $0x7e
.endm
.text 1
fixup_start = .
.text 0
.align 16
vapic_base:
.ascii "kvm aPiC"
/* relocation data */
.long vapic_base ; fixup
.long fixup_start ; fixup
.long fixup_end ; fixup
.long vapic ; fixup
.long vapic_size
vcpu_shift:
.long 0
real_tpr:
.long 0
.long up_set_tpr ; fixup
.long up_set_tpr_eax ; fixup
.long up_get_tpr_eax ; fixup
.long up_get_tpr_ecx ; fixup
.long up_get_tpr_edx ; fixup
.long up_get_tpr_ebx ; fixup
.long 0 /* esp. won't work. */
.long up_get_tpr_ebp ; fixup
.long up_get_tpr_esi ; fixup
.long up_get_tpr_edi ; fixup
.long up_get_tpr_stack ; fixup
.long mp_set_tpr ; fixup
.long mp_set_tpr_eax ; fixup
.long mp_get_tpr_eax ; fixup
.long mp_get_tpr_ecx ; fixup
.long mp_get_tpr_edx ; fixup
.long mp_get_tpr_ebx ; fixup
.long 0 /* esp. won't work. */
.long mp_get_tpr_ebp ; fixup
.long mp_get_tpr_esi ; fixup
.long mp_get_tpr_edi ; fixup
.long mp_get_tpr_stack ; fixup
.macro kvm_hypercall
.byte 0x0f, 0x01, 0xc1
.endm
kvm_hypercall_vapic_poll_irq = 1
pcr_cpu = 0x51
.align 64
mp_get_tpr_eax:
pushf
cli
reenable_vtpr
push %ecx
fs/movzbl pcr_cpu, %eax
mov vcpu_shift, %ecx ; fixup
shl %cl, %eax
testb $1, vapic+4(%eax) ; fixup delta=-5
jz mp_get_tpr_bad
movzbl vapic(%eax), %eax ; fixup
mp_get_tpr_out:
pop %ecx
popf
ret
mp_get_tpr_bad:
mov real_tpr, %eax ; fixup
mov (%eax), %eax
jmp mp_get_tpr_out
mp_get_tpr_ebx:
mov %eax, %ebx
call mp_get_tpr_eax
xchg %eax, %ebx
ret
mp_get_tpr_ecx:
mov %eax, %ecx
call mp_get_tpr_eax
xchg %eax, %ecx
ret
mp_get_tpr_edx:
mov %eax, %edx
call mp_get_tpr_eax
xchg %eax, %edx
ret
mp_get_tpr_esi:
mov %eax, %esi
call mp_get_tpr_eax
xchg %eax, %esi
ret
mp_get_tpr_edi:
mov %eax, %edi
call mp_get_tpr_edi
xchg %eax, %edi
ret
mp_get_tpr_ebp:
mov %eax, %ebp
call mp_get_tpr_eax
xchg %eax, %ebp
ret
mp_get_tpr_stack:
call mp_get_tpr_eax
xchg %eax, 4(%esp)
ret
mp_set_tpr_eax:
push %eax
call mp_set_tpr
ret
mp_set_tpr:
pushf
push %eax
push %ecx
push %edx
push %ebx
cli
reenable_vtpr
mp_set_tpr_failed:
fs/movzbl pcr_cpu, %edx
mov vcpu_shift, %ecx ; fixup
shl %cl, %edx
testb $1, vapic+4(%edx) ; fixup delta=-5
jz mp_set_tpr_bad
mov vapic(%edx), %eax ; fixup
mov %eax, %ebx
mov 24(%esp), %bl
/* %ebx = new vapic (%bl = tpr, %bh = isr, %b3 = irr) */
lock cmpxchg %ebx, vapic(%edx) ; fixup
jnz mp_set_tpr_failed
/* compute ppr */
cmp %bh, %bl
jae mp_tpr_is_bigger
mp_isr_is_bigger:
mov %bh, %bl
mp_tpr_is_bigger:
/* %bl = ppr */
rol $8, %ebx
/* now: %bl = irr, %bh = ppr */
cmp %bh, %bl
ja mp_set_tpr_poll_irq
mp_set_tpr_out:
pop %ebx
pop %edx
pop %ecx
pop %eax
popf
ret $4
mp_set_tpr_poll_irq:
mov $kvm_hypercall_vapic_poll_irq, %eax
kvm_hypercall
jmp mp_set_tpr_out
mp_set_tpr_bad:
mov 24(%esp), %ecx
mov real_tpr, %eax ; fixup
mov %ecx, (%eax)
jmp mp_set_tpr_out
up_get_tpr_eax:
reenable_vtpr
movzbl vapic, %eax ; fixup
ret
up_get_tpr_ebx:
reenable_vtpr
movzbl vapic, %ebx ; fixup
ret
up_get_tpr_ecx:
reenable_vtpr
movzbl vapic, %ecx ; fixup
ret
up_get_tpr_edx:
reenable_vtpr
movzbl vapic, %edx ; fixup
ret
up_get_tpr_esi:
reenable_vtpr
movzbl vapic, %esi ; fixup
ret
up_get_tpr_edi:
reenable_vtpr
movzbl vapic, %edi ; fixup
ret
up_get_tpr_ebp:
reenable_vtpr
movzbl vapic, %ebp ; fixup
ret
up_get_tpr_stack:
reenable_vtpr
movzbl vapic, %eax ; fixup
xchg %eax, 4(%esp)
ret
up_set_tpr_eax:
push %eax
call up_set_tpr
ret
up_set_tpr:
pushf
push %eax
push %ebx
reenable_vtpr
up_set_tpr_failed:
mov vapic, %eax ; fixup
mov %eax, %ebx
mov 16(%esp), %bl
/* %ebx = new vapic (%bl = tpr, %bh = isr, %b3 = irr) */
lock cmpxchg %ebx, vapic ; fixup
jnz up_set_tpr_failed
/* compute ppr */
cmp %bh, %bl
jae up_tpr_is_bigger
up_isr_is_bigger:
mov %bh, %bl
up_tpr_is_bigger:
/* %bl = ppr */
rol $8, %ebx
/* now: %bl = irr, %bh = ppr */
cmp %bh, %bl
ja up_set_tpr_poll_irq
up_set_tpr_out:
pop %ebx
pop %eax
popf
ret $4
up_set_tpr_poll_irq:
mov $kvm_hypercall_vapic_poll_irq, %eax
kvm_hypercall
jmp up_set_tpr_out
.text 1
fixup_end = .
.text 0
/*
* vapic format:
* per-vcpu records of size 2^vcpu shift.
* byte 0: tpr (r/w)
* byte 1: highest in-service interrupt (isr) (r/o); bits 3:0 are zero
* byte 2: zero (r/o)
* byte 3: highest pending interrupt (irr) (r/o)
*/
.text 2
.align 128
vapic:
. = . + vapic_size
OPTION_ROM_END

View File

@ -124,7 +124,8 @@
movw %ax, %ds;
#define OPTION_ROM_END \
.align 512, 0; \
.byte 0; \
.align 512, 0; \
_end:
#define BOOT_ROM_END \

View File

@ -482,6 +482,7 @@
#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_INT_0
#define CPU_INTERRUPT_INIT CPU_INTERRUPT_TGT_INT_1
#define CPU_INTERRUPT_SIPI CPU_INTERRUPT_TGT_INT_2
#define CPU_INTERRUPT_TPR CPU_INTERRUPT_TGT_INT_3
enum {
@ -613,6 +614,11 @@ typedef struct {
#define NB_MMU_MODES 2
typedef enum TPRAccess {
TPR_ACCESS_READ,
TPR_ACCESS_WRITE,
} TPRAccess;
typedef struct CPUX86State {
/* standard registers */
target_ulong regs[CPU_NB_REGS];
@ -772,6 +778,8 @@ typedef struct CPUX86State {
XMMReg ymmh_regs[CPU_NB_REGS];
uint64_t xcr0;
TPRAccess tpr_access_type;
} CPUX86State;
CPUX86State *cpu_x86_init(const char *cpu_model);
@ -1064,4 +1072,6 @@ void svm_check_intercept(CPUState *env1, uint32_t type);
uint32_t cpu_cc_compute_all(CPUState *env1, int op);
void cpu_report_tpr_access(CPUState *env, TPRAccess access);
#endif /* CPU_I386_H */

View File

@ -1189,6 +1189,22 @@ void cpu_x86_inject_mce(Monitor *mon, CPUState *cenv, int bank,
}
}
}
void cpu_report_tpr_access(CPUState *env, TPRAccess access)
{
TranslationBlock *tb;
if (kvm_enabled()) {
env->tpr_access_type = access;
cpu_interrupt(env, CPU_INTERRUPT_TPR);
} else {
tb = tb_find_pc(env->mem_io_pc);
cpu_restore_state(tb, env, env->mem_io_pc);
apic_handle_tpr_access_report(env->apic_state, env->eip, access);
}
}
#endif /* !CONFIG_USER_ONLY */
static void mce_init(CPUX86State *cenv)

View File

@ -1635,8 +1635,10 @@ void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
}
if (!kvm_irqchip_in_kernel()) {
/* Force the VCPU out of its inner loop to process the INIT request */
if (env->interrupt_request & CPU_INTERRUPT_INIT) {
/* Force the VCPU out of its inner loop to process any INIT requests
* or pending TPR access reports. */
if (env->interrupt_request &
(CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
env->exit_request = 1;
}
@ -1730,6 +1732,12 @@ int kvm_arch_process_async_events(CPUState *env)
kvm_cpu_synchronize_state(env);
do_cpu_sipi(env);
}
if (env->interrupt_request & CPU_INTERRUPT_TPR) {
env->interrupt_request &= ~CPU_INTERRUPT_TPR;
kvm_cpu_synchronize_state(env);
apic_handle_tpr_access_report(env->apic_state, env->eip,
env->tpr_access_type);
}
return env->halted;
}
@ -1746,6 +1754,16 @@ static int kvm_handle_halt(CPUState *env)
return 0;
}
static int kvm_handle_tpr_access(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
run->tpr_access.is_write ? TPR_ACCESS_WRITE
: TPR_ACCESS_READ);
return 1;
}
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
static const uint8_t int3 = 0xcc;
@ -1950,6 +1968,9 @@ int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
case KVM_EXIT_SET_TPR:
ret = 0;
break;
case KVM_EXIT_TPR_ACCESS:
ret = kvm_handle_tpr_access(env);
break;
case KVM_EXIT_FAIL_ENTRY:
code = run->fail_entry.hardware_entry_failure_reason;
fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
@ -1987,6 +2008,7 @@ int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
bool kvm_arch_stop_on_emulation_error(CPUState *env)
{
kvm_cpu_synchronize_state(env);
return !(env->cr[0] & CR0_PE_MASK) ||
((env->segs[R_CS].selector & 3) != 3);
}