qemu-doc: convert user-mode emulation to a separate Sphinx manual

The final addition to the set of QEMU manuals is the user-mode emulation
manual, which right now is included in qemu-doc.texi.  Extract it and
convert it to rST, so that qemu-doc.texi covers only full system emulation.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20200228153619.9906-2-peter.maydell@linaro.org
Message-id: 20200226113034.6741-2-pbonzini@redhat.com
[PMM: Fix makefile conflicts; add user manual to
 index.rst and index.html.in; don't specify empty man_pages
 list; fixed a few comments to say 'user' rather than 'system']
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Paolo Bonzini 2020-02-28 15:35:47 +00:00 committed by Peter Maydell
parent 6b02fca713
commit 091479301f
7 changed files with 335 additions and 338 deletions

View File

@ -787,6 +787,7 @@ distclean: clean
$(call clean-manual,specs)
$(call clean-manual,system)
$(call clean-manual,tools)
$(call clean-manual,user)
for d in $(TARGET_DIRS); do \
rm -rf $$d || exit 1 ; \
done
@ -845,6 +846,7 @@ install-sphinxdocs: sphinxdocs
$(call install-manual,specs)
$(call install-manual,system)
$(call install-manual,tools)
$(call install-manual,user)
install-doc: $(DOCS) install-sphinxdocs
$(INSTALL_DIR) "$(DESTDIR)$(qemu_docdir)"
@ -1039,7 +1041,8 @@ sphinxdocs: $(MANUAL_BUILDDIR)/devel/index.html \
$(MANUAL_BUILDDIR)/interop/index.html \
$(MANUAL_BUILDDIR)/specs/index.html \
$(MANUAL_BUILDDIR)/system/index.html \
$(MANUAL_BUILDDIR)/tools/index.html
$(MANUAL_BUILDDIR)/tools/index.html \
$(MANUAL_BUILDDIR)/user/index.html
# Canned command to build a single manual
# Arguments: $1 = manual name, $2 = Sphinx builder ('html' or 'man')
@ -1074,6 +1077,9 @@ $(MANUAL_BUILDDIR)/system/index.html: $(call manual-deps,system)
$(MANUAL_BUILDDIR)/tools/index.html: $(call manual-deps,tools) $(SRC_PATH)/qemu-img-cmds.hx $(SRC_PATH)/docs/qemu-option-trace.rst.inc
$(call build-manual,tools,html)
$(MANUAL_BUILDDIR)/user/index.html: $(call manual-deps,user)
$(call build-manual,user,html)
$(call define-manpage-rule,interop,qemu-ga.8)
$(call define-manpage-rule,system,qemu-block-drivers.7)

View File

@ -14,6 +14,7 @@
<li><a href="specs/index.html">System Emulation Guest Hardware Specifications</a></li>
<li><a href="system/index.html">System Emulation User's Guide</a></li>
<li><a href="tools/index.html">Tools Guide</a></li>
<li><a href="user/index.html">User Mode Emulation User's Guide</a></li>
</ul>
</body>
</html>

View File

@ -15,3 +15,4 @@ Welcome to QEMU's documentation!
specs/index
system/index
tools/index
user/index

15
docs/user/conf.py Normal file
View File

@ -0,0 +1,15 @@
# -*- coding: utf-8 -*-
#
# QEMU documentation build configuration file for the 'user' manual.
#
# This includes the top level conf file and then makes any necessary tweaks.
import sys
import os
qemu_docdir = os.path.abspath("..")
parent_config = os.path.join(qemu_docdir, "conf.py")
exec(compile(open(parent_config, "rb").read(), parent_config, 'exec'))
# This slightly misuses the 'description', but is the best way to get
# the manual title to appear in the sidebar.
html_theme_options['description'] = u'User Mode Emulation User''s Guide'

16
docs/user/index.rst Normal file
View File

@ -0,0 +1,16 @@
.. This is the top level page for the 'user' manual.
QEMU User Mode Emulation User's Guide
=====================================
This manual is the overall guide for users using QEMU
for user-mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU.
Contents:
.. toctree::
:maxdepth: 2
main

295
docs/user/main.rst Normal file
View File

@ -0,0 +1,295 @@
QEMU User space emulator
========================
Supported Operating Systems
---------------------------
The following OS are supported in user space emulation:
- Linux (referred as qemu-linux-user)
- BSD (referred as qemu-bsd-user)
Features
--------
QEMU user space emulation has the following notable features:
**System call translation:**
QEMU includes a generic system call translator. This means that the
parameters of the system calls can be converted to fix endianness and
32/64-bit mismatches between hosts and targets. IOCTLs can be
converted too.
**POSIX signal handling:**
QEMU can redirect to the running program all signals coming from the
host (such as ``SIGALRM``), as well as synthesize signals from
virtual CPU exceptions (for example ``SIGFPE`` when the program
executes a division by zero).
QEMU relies on the host kernel to emulate most signal system calls,
for example to emulate the signal mask. On Linux, QEMU supports both
normal and real-time signals.
**Threading:**
On Linux, QEMU can emulate the ``clone`` syscall and create a real
host thread (with a separate virtual CPU) for each emulated thread.
Note that not all targets currently emulate atomic operations
correctly. x86 and ARM use a global lock in order to preserve their
semantics.
QEMU was conceived so that ultimately it can emulate itself. Although it
is not very useful, it is an important test to show the power of the
emulator.
Linux User space emulator
-------------------------
Quick Start
~~~~~~~~~~~
In order to launch a Linux process, QEMU needs the process executable
itself and all the target (x86) dynamic libraries used by it.
- On x86, you can just try to launch any process by using the native
libraries::
qemu-i386 -L / /bin/ls
``-L /`` tells that the x86 dynamic linker must be searched with a
``/`` prefix.
- Since QEMU is also a linux process, you can launch QEMU with QEMU
(NOTE: you can only do that if you compiled QEMU from the sources)::
qemu-i386 -L / qemu-i386 -L / /bin/ls
- On non x86 CPUs, you need first to download at least an x86 glibc
(``qemu-runtime-i386-XXX-.tar.gz`` on the QEMU web page). Ensure that
``LD_LIBRARY_PATH`` is not set::
unset LD_LIBRARY_PATH
Then you can launch the precompiled ``ls`` x86 executable::
qemu-i386 tests/i386/ls
You can look at ``scripts/qemu-binfmt-conf.sh`` so that QEMU is
automatically launched by the Linux kernel when you try to launch x86
executables. It requires the ``binfmt_misc`` module in the Linux
kernel.
- The x86 version of QEMU is also included. You can try weird things
such as::
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
/usr/local/qemu-i386/bin/ls-i386
Wine launch
~~~~~~~~~~~
- Ensure that you have a working QEMU with the x86 glibc distribution
(see previous section). In order to verify it, you must be able to
do::
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
- Download the binary x86 Wine install (``qemu-XXX-i386-wine.tar.gz``
on the QEMU web page).
- Configure Wine on your account. Look at the provided script
``/usr/local/qemu-i386/bin/wine-conf.sh``. Your previous
``${HOME}/.wine`` directory is saved to ``${HOME}/.wine.org``.
- Then you can try the example ``putty.exe``::
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
/usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
Command line options
~~~~~~~~~~~~~~~~~~~~
::
qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
``-h``
Print the help
``-L path``
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
``-s size``
Set the x86 stack size in bytes (default=524288)
``-cpu model``
Select CPU model (-cpu help for list and additional feature
selection)
``-E var=value``
Set environment var to value.
``-U var``
Remove var from the environment.
``-B offset``
Offset guest address by the specified number of bytes. This is useful
when the address region required by guest applications is reserved on
the host. This option is currently only supported on some hosts.
``-R size``
Pre-allocate a guest virtual address space of the given size (in
bytes). \"G\", \"M\", and \"k\" suffixes may be used when specifying
the size.
Debug options:
``-d item1,...``
Activate logging of the specified items (use '-d help' for a list of
log items)
``-p pagesize``
Act as if the host page size was 'pagesize' bytes
``-g port``
Wait gdb connection to port
``-singlestep``
Run the emulation in single step mode.
Environment variables:
QEMU_STRACE
Print system calls and arguments similar to the 'strace' program
(NOTE: the actual 'strace' program will not work because the user
space emulator hasn't implemented ptrace). At the moment this is
incomplete. All system calls that don't have a specific argument
format are printed with information for six arguments. Many
flag-style arguments don't have decoders and will show up as numbers.
Other binaries
~~~~~~~~~~~~~~
user mode (Alpha)
``qemu-alpha`` TODO.
user mode (ARM)
``qemu-armeb`` TODO.
user mode (ARM)
``qemu-arm`` is also capable of running ARM \"Angel\" semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.
user mode (ColdFire)
user mode (M68K)
``qemu-m68k`` is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.
The binary format is detected automatically.
user mode (Cris)
``qemu-cris`` TODO.
user mode (i386)
``qemu-i386`` TODO. ``qemu-x86_64`` TODO.
user mode (Microblaze)
``qemu-microblaze`` TODO.
user mode (MIPS)
``qemu-mips`` executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
``qemu-mipsel`` executes 32-bit little endian MIPS binaries (MIPS O32
ABI).
``qemu-mips64`` executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
``qemu-mips64el`` executes 64-bit little endian MIPS binaries (MIPS N64
ABI).
``qemu-mipsn32`` executes 32-bit big endian MIPS binaries (MIPS N32
ABI).
``qemu-mipsn32el`` executes 32-bit little endian MIPS binaries (MIPS N32
ABI).
user mode (NiosII)
``qemu-nios2`` TODO.
user mode (PowerPC)
``qemu-ppc64abi32`` TODO. ``qemu-ppc64`` TODO. ``qemu-ppc`` TODO.
user mode (SH4)
``qemu-sh4eb`` TODO. ``qemu-sh4`` TODO.
user mode (SPARC)
``qemu-sparc`` can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
``qemu-sparc32plus`` can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).
``qemu-sparc64`` can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
BSD User space emulator
-----------------------
BSD Status
~~~~~~~~~~
- target Sparc64 on Sparc64: Some trivial programs work.
Quick Start
~~~~~~~~~~~
In order to launch a BSD process, QEMU needs the process executable
itself and all the target dynamic libraries used by it.
- On Sparc64, you can just try to launch any process by using the
native libraries::
qemu-sparc64 /bin/ls
Command line options
~~~~~~~~~~~~~~~~~~~~
::
qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
``-h``
Print the help
``-L path``
Set the library root path (default=/)
``-s size``
Set the stack size in bytes (default=524288)
``-ignore-environment``
Start with an empty environment. Without this option, the initial
environment is a copy of the caller's environment.
``-E var=value``
Set environment var to value.
``-U var``
Remove var from the environment.
``-bsd type``
Set the type of the emulated BSD Operating system. Valid values are
FreeBSD, NetBSD and OpenBSD (default).
Debug options:
``-d item1,...``
Activate logging of the specified items (use '-d help' for a list of
log items)
``-p pagesize``
Act as if the host page size was 'pagesize' bytes
``-singlestep``
Run the emulation in single step mode.

View File

@ -38,7 +38,6 @@
* Introduction::
* QEMU PC System emulator::
* QEMU System emulator for non PC targets::
* QEMU User space emulator::
* System requirements::
* Security::
* Implementation notes::
@ -2487,342 +2486,6 @@ so should only be used with trusted guest OS.
@c man end
@node QEMU User space emulator
@chapter QEMU User space emulator
@menu
* Supported Operating Systems ::
* Features::
* Linux User space emulator::
* BSD User space emulator ::
@end menu
@node Supported Operating Systems
@section Supported Operating Systems
The following OS are supported in user space emulation:
@itemize @minus
@item
Linux (referred as qemu-linux-user)
@item
BSD (referred as qemu-bsd-user)
@end itemize
@node Features
@section Features
QEMU user space emulation has the following notable features:
@table @strong
@item System call translation:
QEMU includes a generic system call translator. This means that
the parameters of the system calls can be converted to fix
endianness and 32/64-bit mismatches between hosts and targets.
IOCTLs can be converted too.
@item POSIX signal handling:
QEMU can redirect to the running program all signals coming from
the host (such as @code{SIGALRM}), as well as synthesize signals from
virtual CPU exceptions (for example @code{SIGFPE} when the program
executes a division by zero).
QEMU relies on the host kernel to emulate most signal system
calls, for example to emulate the signal mask. On Linux, QEMU
supports both normal and real-time signals.
@item Threading:
On Linux, QEMU can emulate the @code{clone} syscall and create a real
host thread (with a separate virtual CPU) for each emulated thread.
Note that not all targets currently emulate atomic operations correctly.
x86 and ARM use a global lock in order to preserve their semantics.
@end table
QEMU was conceived so that ultimately it can emulate itself. Although
it is not very useful, it is an important test to show the power of the
emulator.
@node Linux User space emulator
@section Linux User space emulator
@menu
* Quick Start::
* Wine launch::
* Command line options::
* Other binaries::
@end menu
@node Quick Start
@subsection Quick Start
In order to launch a Linux process, QEMU needs the process executable
itself and all the target (x86) dynamic libraries used by it.
@itemize
@item On x86, you can just try to launch any process by using the native
libraries:
@example
qemu-i386 -L / /bin/ls
@end example
@code{-L /} tells that the x86 dynamic linker must be searched with a
@file{/} prefix.
@item Since QEMU is also a linux process, you can launch QEMU with
QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
@example
qemu-i386 -L / qemu-i386 -L / /bin/ls
@end example
@item On non x86 CPUs, you need first to download at least an x86 glibc
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
@code{LD_LIBRARY_PATH} is not set:
@example
unset LD_LIBRARY_PATH
@end example
Then you can launch the precompiled @file{ls} x86 executable:
@example
qemu-i386 tests/i386/ls
@end example
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
QEMU is automatically launched by the Linux kernel when you try to
launch x86 executables. It requires the @code{binfmt_misc} module in the
Linux kernel.
@item The x86 version of QEMU is also included. You can try weird things such as:
@example
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
/usr/local/qemu-i386/bin/ls-i386
@end example
@end itemize
@node Wine launch
@subsection Wine launch
@itemize
@item Ensure that you have a working QEMU with the x86 glibc
distribution (see previous section). In order to verify it, you must be
able to do:
@example
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
@end example
@item Download the binary x86 Wine install
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
@item Configure Wine on your account. Look at the provided script
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
@item Then you can try the example @file{putty.exe}:
@example
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
/usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
@end example
@end itemize
@node Command line options
@subsection Command line options
@example
@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
@end example
@table @option
@item -h
Print the help
@item -L path
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
@item -s size
Set the x86 stack size in bytes (default=524288)
@item -cpu model
Select CPU model (-cpu help for list and additional feature selection)
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
@item -B offset
Offset guest address by the specified number of bytes. This is useful when
the address region required by guest applications is reserved on the host.
This option is currently only supported on some hosts.
@item -R size
Pre-allocate a guest virtual address space of the given size (in bytes).
"G", "M", and "k" suffixes may be used when specifying the size.
@end table
Debug options:
@table @option
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
@item -g port
Wait gdb connection to port
@item -singlestep
Run the emulation in single step mode.
@end table
Environment variables:
@table @env
@item QEMU_STRACE
Print system calls and arguments similar to the 'strace' program
(NOTE: the actual 'strace' program will not work because the user
space emulator hasn't implemented ptrace). At the moment this is
incomplete. All system calls that don't have a specific argument
format are printed with information for six arguments. Many
flag-style arguments don't have decoders and will show up as numbers.
@end table
@node Other binaries
@subsection Other binaries
@cindex user mode (Alpha)
@command{qemu-alpha} TODO.
@cindex user mode (ARM)
@command{qemu-armeb} TODO.
@cindex user mode (ARM)
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.
@cindex user mode (ColdFire)
@cindex user mode (M68K)
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.
The binary format is detected automatically.
@cindex user mode (Cris)
@command{qemu-cris} TODO.
@cindex user mode (i386)
@command{qemu-i386} TODO.
@command{qemu-x86_64} TODO.
@cindex user mode (Microblaze)
@command{qemu-microblaze} TODO.
@cindex user mode (MIPS)
@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
@cindex user mode (NiosII)
@command{qemu-nios2} TODO.
@cindex user mode (PowerPC)
@command{qemu-ppc64abi32} TODO.
@command{qemu-ppc64} TODO.
@command{qemu-ppc} TODO.
@cindex user mode (SH4)
@command{qemu-sh4eb} TODO.
@command{qemu-sh4} TODO.
@cindex user mode (SPARC)
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
@node BSD User space emulator
@section BSD User space emulator
@menu
* BSD Status::
* BSD Quick Start::
* BSD Command line options::
@end menu
@node BSD Status
@subsection BSD Status
@itemize @minus
@item
target Sparc64 on Sparc64: Some trivial programs work.
@end itemize
@node BSD Quick Start
@subsection Quick Start
In order to launch a BSD process, QEMU needs the process executable
itself and all the target dynamic libraries used by it.
@itemize
@item On Sparc64, you can just try to launch any process by using the native
libraries:
@example
qemu-sparc64 /bin/ls
@end example
@end itemize
@node BSD Command line options
@subsection Command line options
@example
@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
@end example
@table @option
@item -h
Print the help
@item -L path
Set the library root path (default=/)
@item -s size
Set the stack size in bytes (default=524288)
@item -ignore-environment
Start with an empty environment. Without this option,
the initial environment is a copy of the caller's environment.
@item -E @var{var}=@var{value}
Set environment @var{var} to @var{value}.
@item -U @var{var}
Remove @var{var} from the environment.
@item -bsd type
Set the type of the emulated BSD Operating system. Valid values are
FreeBSD, NetBSD and OpenBSD (default).
@end table
Debug options:
@table @option
@item -d item1,...
Activate logging of the specified items (use '-d help' for a list of log items)
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
@item -singlestep
Run the emulation in single step mode.
@end table
@node System requirements
@chapter System requirements