qemu/hw/arm/virt.c

453 lines
16 KiB
C
Raw Normal View History

/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#define NUM_VIRTIO_TRANSPORTS 32
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 128
#define GIC_FDT_IRQ_TYPE_SPI 0
#define GIC_FDT_IRQ_TYPE_PPI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
#define GIC_FDT_IRQ_PPI_CPU_START 8
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
enum {
VIRT_FLASH,
VIRT_MEM,
VIRT_CPUPERIPHS,
VIRT_GIC_DIST,
VIRT_GIC_CPU,
VIRT_UART,
VIRT_MMIO,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct VirtBoardInfo {
struct arm_boot_info bootinfo;
const char *cpu_model;
const char *qdevname;
const char *gic_compatible;
const MemMapEntry *memmap;
const int *irqmap;
int smp_cpus;
void *fdt;
int fdt_size;
uint32_t clock_phandle;
} VirtBoardInfo;
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
*/
static const MemMapEntry a15memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x8000000 },
[VIRT_CPUPERIPHS] = { 0x8000000, 0x8000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x8001000, 0x1000 },
[VIRT_GIC_CPU] = { 0x8002000, 0x1000 },
[VIRT_UART] = { 0x9000000, 0x1000 },
[VIRT_MMIO] = { 0xa000000, 0x200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
/* 0x10000000 .. 0x40000000 reserved for PCI */
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
};
static VirtBoardInfo machines[] = {
{
.cpu_model = "cortex-a15",
.qdevname = "a15mpcore_priv",
.gic_compatible = "arm,cortex-a15-gic",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "host",
/* We use the A15 private peripheral model to get a V2 GIC */
.qdevname = "a15mpcore_priv",
.gic_compatible = "arm,cortex-a15-gic",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
};
static VirtBoardInfo *find_machine_info(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(machines); i++) {
if (strcmp(cpu, machines[i].cpu_model) == 0) {
return &machines[i];
}
}
return NULL;
}
static void create_fdt(VirtBoardInfo *vbi)
{
void *fdt = create_device_tree(&vbi->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vbi->fdt = fdt;
/* Header */
qemu_devtree_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_devtree_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_devtree_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_devtree_add_subnode(fdt, "/chosen");
qemu_devtree_add_subnode(fdt, "/memory");
qemu_devtree_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vbi->clock_phandle = qemu_devtree_alloc_phandle(fdt);
qemu_devtree_add_subnode(fdt, "/apb-pclk");
qemu_devtree_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_devtree_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_devtree_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_devtree_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_devtree_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
/* No PSCI for TCG yet */
if (kvm_enabled()) {
qemu_devtree_add_subnode(fdt, "/psci");
qemu_devtree_setprop_string(fdt, "/psci", "compatible", "arm,psci");
qemu_devtree_setprop_string(fdt, "/psci", "method", "hvc");
qemu_devtree_setprop_cell(fdt, "/psci", "cpu_suspend",
PSCI_FN_CPU_SUSPEND);
qemu_devtree_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
qemu_devtree_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
qemu_devtree_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
}
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
{
/* Note that on A15 h/w these interrupts are level-triggered,
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
qemu_devtree_add_subnode(vbi->fdt, "/timer");
qemu_devtree_setprop_string(vbi->fdt, "/timer",
"compatible", "arm,armv7-timer");
qemu_devtree_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
}
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
{
int cpu;
qemu_devtree_add_subnode(vbi->fdt, "/cpus");
qemu_devtree_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
qemu_devtree_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_devtree_add_subnode(vbi->fdt, nodename);
qemu_devtree_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
qemu_devtree_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vbi->smp_cpus > 1) {
qemu_devtree_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
qemu_devtree_setprop_cell(vbi->fdt, nodename, "reg", cpu);
g_free(nodename);
}
}
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
{
uint32_t gic_phandle;
gic_phandle = qemu_devtree_alloc_phandle(vbi->fdt);
qemu_devtree_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
qemu_devtree_add_subnode(vbi->fdt, "/intc");
qemu_devtree_setprop_string(vbi->fdt, "/intc", "compatible",
vbi->gic_compatible);
qemu_devtree_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
qemu_devtree_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_devtree_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, vbi->memmap[VIRT_GIC_DIST].base,
2, vbi->memmap[VIRT_GIC_DIST].size,
2, vbi->memmap[VIRT_GIC_CPU].base,
2, vbi->memmap[VIRT_GIC_CPU].size);
qemu_devtree_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
}
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_UART].base;
hwaddr size = vbi->memmap[VIRT_UART].size;
int irq = vbi->irqmap[VIRT_UART];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
sysbus_create_simple("pl011", base, pic[irq]);
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_devtree_add_subnode(vbi->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_devtree_setprop(vbi->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_devtree_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_devtree_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
qemu_devtree_setprop_cells(vbi->fdt, nodename, "clocks",
vbi->clock_phandle, vbi->clock_phandle);
qemu_devtree_setprop(vbi->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
g_free(nodename);
}
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
hwaddr size = vbi->memmap[VIRT_MMIO].size;
/* Note that we have to create the transports in forwards order
* so that command line devices are inserted lowest address first,
* and then add dtb nodes in reverse order so that they appear in
* the finished device tree lowest address first.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_devtree_add_subnode(vbi->fdt, nodename);
qemu_devtree_setprop_string(vbi->fdt, nodename,
"compatible", "virtio,mmio");
qemu_devtree_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_devtree_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
*fdt_size = board->fdt_size;
return board->fdt;
}
static void machvirt_init(QEMUMachineInitArgs *args)
{
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
int n;
MemoryRegion *ram = g_new(MemoryRegion, 1);
DeviceState *dev;
SysBusDevice *busdev;
const char *cpu_model = args->cpu_model;
VirtBoardInfo *vbi;
if (!cpu_model) {
cpu_model = "cortex-a15";
}
vbi = find_machine_info(cpu_model);
if (!vbi) {
error_report("mach-virt: CPU %s not supported", cpu_model);
exit(1);
}
vbi->smp_cpus = smp_cpus;
/*
* Only supported method of starting secondary CPUs is PSCI and
* PSCI is not yet supported with TCG, so limit smp_cpus to 1
* if we're not using KVM.
*/
if (!kvm_enabled() && smp_cpus > 1) {
error_report("mach-virt: must enable KVM to use multiple CPUs");
exit(1);
}
if (args->ram_size > vbi->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
fdt_add_timer_nodes(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
Object *cpuobj;
if (!oc) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
cpuobj = object_new(object_class_get_name(oc));
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
}
object_property_set_bool(cpuobj, true, "realized", NULL);
}
fdt_add_cpu_nodes(vbi);
memory_region_init_ram(ram, NULL, "mach-virt.ram", args->ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
dev = qdev_create(NULL, vbi->qdevname);
qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(dev, "num-irq", NUM_IRQS + 32);
qdev_init_nofail(dev);
busdev = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(busdev, 0, vbi->memmap[VIRT_CPUPERIPHS].base);
fdt_add_gic_node(vbi);
for (n = 0; n < smp_cpus; n++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
}
for (n = 0; n < NUM_IRQS; n++) {
pic[n] = qdev_get_gpio_in(dev, n);
}
create_uart(vbi, pic);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vbi, pic);
vbi->bootinfo.ram_size = args->ram_size;
vbi->bootinfo.kernel_filename = args->kernel_filename;
vbi->bootinfo.kernel_cmdline = args->kernel_cmdline;
vbi->bootinfo.initrd_filename = args->initrd_filename;
vbi->bootinfo.nb_cpus = smp_cpus;
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
vbi->bootinfo.get_dtb = machvirt_dtb;
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
}
static QEMUMachine machvirt_a15_machine = {
.name = "virt",
.desc = "ARM Virtual Machine",
.init = machvirt_init,
.max_cpus = 4,
};
static void machvirt_machine_init(void)
{
qemu_register_machine(&machvirt_a15_machine);
}
machine_init(machvirt_machine_init);