qemu/hw/apb_pci.c

320 lines
9.0 KiB
C
Raw Normal View History

/*
* QEMU Ultrasparc APB PCI host
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* XXX This file and most of its contents are somewhat misnamed. The
Ultrasparc PCI host is called the PCI Bus Module (PBM). The APB is
the secondary PCI bridge. */
#include "sysbus.h"
#include "pci.h"
/* debug APB */
//#define DEBUG_APB
#ifdef DEBUG_APB
#define APB_DPRINTF(fmt, ...) \
do { printf("APB: " fmt , ## __VA_ARGS__); } while (0)
#else
#define APB_DPRINTF(fmt, ...)
#endif
typedef target_phys_addr_t pci_addr_t;
#include "pci_host.h"
typedef struct APBState {
SysBusDevice busdev;
PCIHostState host_state;
} APBState;
static void pci_apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
APBState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
APB_DPRINTF("config_writel addr " TARGET_FMT_plx " val %x\n", addr,
val);
s->host_state.config_reg = val;
}
static uint32_t pci_apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
APBState *s = opaque;
uint32_t val;
val = s->host_state.config_reg;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
APB_DPRINTF("config_readl addr " TARGET_FMT_plx " val %x\n", addr,
val);
return val;
}
static CPUWriteMemoryFunc * const pci_apb_config_write[] = {
&pci_apb_config_writel,
&pci_apb_config_writel,
&pci_apb_config_writel,
};
static CPUReadMemoryFunc * const pci_apb_config_read[] = {
&pci_apb_config_readl,
&pci_apb_config_readl,
&pci_apb_config_readl,
};
static void apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
//PCIBus *s = opaque;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
break;
}
}
static uint32_t apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
//PCIBus *s = opaque;
uint32_t val;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
val = 0;
break;
}
return val;
}
static CPUWriteMemoryFunc * const apb_config_write[] = {
&apb_config_writel,
&apb_config_writel,
&apb_config_writel,
};
static CPUReadMemoryFunc * const apb_config_read[] = {
&apb_config_readl,
&apb_config_readl,
&apb_config_readl,
};
static CPUWriteMemoryFunc * const pci_apb_write[] = {
&pci_host_data_writeb,
&pci_host_data_writew,
&pci_host_data_writel,
};
static CPUReadMemoryFunc * const pci_apb_read[] = {
&pci_host_data_readb,
&pci_host_data_readw,
&pci_host_data_readl,
};
static void pci_apb_iowriteb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outb(addr & IOPORTS_MASK, val);
}
static void pci_apb_iowritew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outw(addr & IOPORTS_MASK, val);
}
static void pci_apb_iowritel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outl(addr & IOPORTS_MASK, val);
}
static uint32_t pci_apb_ioreadb (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inb(addr & IOPORTS_MASK);
return val;
}
static uint32_t pci_apb_ioreadw (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inw(addr & IOPORTS_MASK);
return val;
}
static uint32_t pci_apb_ioreadl (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inl(addr & IOPORTS_MASK);
return val;
}
static CPUWriteMemoryFunc * const pci_apb_iowrite[] = {
&pci_apb_iowriteb,
&pci_apb_iowritew,
&pci_apb_iowritel,
};
static CPUReadMemoryFunc * const pci_apb_ioread[] = {
&pci_apb_ioreadb,
&pci_apb_ioreadw,
&pci_apb_ioreadl,
};
/* The APB host has an IRQ line for each IRQ line of each slot. */
static int pci_apb_map_irq(PCIDevice *pci_dev, int irq_num)
{
return ((pci_dev->devfn & 0x18) >> 1) + irq_num;
}
static int pci_pbm_map_irq(PCIDevice *pci_dev, int irq_num)
{
int bus_offset;
if (pci_dev->devfn & 1)
bus_offset = 16;
else
bus_offset = 0;
return bus_offset + irq_num;
}
static void pci_apb_set_irq(void *opaque, int irq_num, int level)
{
qemu_irq *pic = opaque;
/* PCI IRQ map onto the first 32 INO. */
qemu_set_irq(pic[irq_num], level);
}
PCIBus *pci_apb_init(target_phys_addr_t special_base,
target_phys_addr_t mem_base,
qemu_irq *pic, PCIBus **bus2, PCIBus **bus3)
{
DeviceState *dev;
SysBusDevice *s;
APBState *d;
/* Ultrasparc PBM main bus */
dev = qdev_create(NULL, "pbm");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
/* apb_config */
sysbus_mmio_map(s, 0, special_base + 0x2000ULL);
/* pci_ioport */
sysbus_mmio_map(s, 1, special_base + 0x2000000ULL);
/* mem_config: XXX size should be 4G-prom */
sysbus_mmio_map(s, 2, special_base + 0x1000000ULL);
/* mem_data */
sysbus_mmio_map(s, 3, mem_base);
d = FROM_SYSBUS(APBState, s);
d->host_state.bus = pci_register_bus(&d->busdev.qdev, "pci",
pci_apb_set_irq, pci_pbm_map_irq, pic,
0, 32);
pci_create_simple(d->host_state.bus, 0, "pbm");
/* APB secondary busses */
*bus2 = pci_bridge_init(d->host_state.bus, 8, PCI_VENDOR_ID_SUN,
PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq,
"Advanced PCI Bus secondary bridge 1");
*bus3 = pci_bridge_init(d->host_state.bus, 9, PCI_VENDOR_ID_SUN,
PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq,
"Advanced PCI Bus secondary bridge 2");
return d->host_state.bus;
}
static int pci_pbm_init_device(SysBusDevice *dev)
{
APBState *s;
int pci_mem_config, pci_mem_data, apb_config, pci_ioport;
s = FROM_SYSBUS(APBState, dev);
/* apb_config */
apb_config = cpu_register_io_memory(apb_config_read,
apb_config_write, s);
sysbus_init_mmio(dev, 0x40ULL, apb_config);
/* pci_ioport */
pci_ioport = cpu_register_io_memory(pci_apb_ioread,
pci_apb_iowrite, s);
sysbus_init_mmio(dev, 0x10000ULL, pci_ioport);
/* mem_config */
pci_mem_config = cpu_register_io_memory(pci_apb_config_read,
pci_apb_config_write, s);
sysbus_init_mmio(dev, 0x10ULL, pci_mem_config);
/* mem_data */
pci_mem_data = cpu_register_io_memory(pci_apb_read,
pci_apb_write, &s->host_state);
sysbus_init_mmio(dev, 0x10000000ULL, pci_mem_data);
return 0;
}
static int pbm_pci_host_init(PCIDevice *d)
{
pci_config_set_vendor_id(d->config, PCI_VENDOR_ID_SUN);
pci_config_set_device_id(d->config, PCI_DEVICE_ID_SUN_SABRE);
d->config[0x04] = 0x06; // command = bus master, pci mem
d->config[0x05] = 0x00;
d->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
d->config[0x07] = 0x03; // status = medium devsel
d->config[0x08] = 0x00; // revision
d->config[0x09] = 0x00; // programming i/f
pci_config_set_class(d->config, PCI_CLASS_BRIDGE_HOST);
d->config[0x0D] = 0x10; // latency_timer
d->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
return 0;
}
static PCIDeviceInfo pbm_pci_host_info = {
.qdev.name = "pbm",
.qdev.size = sizeof(PCIDevice),
.init = pbm_pci_host_init,
};
static void pbm_register_devices(void)
{
sysbus_register_dev("pbm", sizeof(APBState), pci_pbm_init_device);
pci_qdev_register(&pbm_pci_host_info);
}
device_init(pbm_register_devices)