qemu/hw/ide/macio.c

628 lines
17 KiB
C
Raw Normal View History

/*
* QEMU IDE Emulation: MacIO support.
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2006 Openedhand Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/ppc/mac.h"
#include "hw/ppc/mac_dbdma.h"
#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include <hw/ide/internal.h>
/* debug MACIO */
// #define DEBUG_MACIO
#ifdef DEBUG_MACIO
static const int debug_macio = 1;
#else
static const int debug_macio = 0;
#endif
#define MACIO_DPRINTF(fmt, ...) do { \
if (debug_macio) { \
printf(fmt , ## __VA_ARGS__); \
} \
} while (0)
/***********************************************************/
/* MacIO based PowerPC IDE */
#define MACIO_PAGE_SIZE 4096
/*
* Unaligned DMA read/write access functions required for OS X/Darwin which
* don't perform DMA transactions on sector boundaries. These functions are
* modelled on bdrv_co_do_preadv()/bdrv_co_do_pwritev() and so should be
* easy to remove if the unaligned block APIs are ever exposed.
*/
static void pmac_dma_read(BlockBackend *blk,
int64_t offset, unsigned int bytes,
void (*cb)(void *opaque, int ret), void *opaque)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
dma_addr_t dma_addr, dma_len;
void *mem;
int64_t sector_num;
int nsector;
uint64_t align = BDRV_SECTOR_SIZE;
size_t head_bytes, tail_bytes;
qemu_iovec_destroy(&io->iov);
qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1);
sector_num = (offset >> 9);
nsector = (io->len >> 9);
MACIO_DPRINTF("--- DMA read transfer (0x%" HWADDR_PRIx ",0x%x): "
"sector_num: %" PRId64 ", nsector: %d\n", io->addr, io->len,
sector_num, nsector);
dma_addr = io->addr;
dma_len = io->len;
mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len,
DMA_DIRECTION_FROM_DEVICE);
if (offset & (align - 1)) {
head_bytes = offset & (align - 1);
MACIO_DPRINTF("--- DMA unaligned head: sector %" PRId64 ", "
"discarding %zu bytes\n", sector_num, head_bytes);
qemu_iovec_add(&io->iov, &io->head_remainder, head_bytes);
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
qemu_iovec_add(&io->iov, mem, io->len);
if ((offset + bytes) & (align - 1)) {
tail_bytes = (offset + bytes) & (align - 1);
MACIO_DPRINTF("--- DMA unaligned tail: sector %" PRId64 ", "
"discarding bytes %zu\n", sector_num, tail_bytes);
qemu_iovec_add(&io->iov, &io->tail_remainder, align - tail_bytes);
bytes = ROUND_UP(bytes, align);
}
s->io_buffer_size -= io->len;
s->io_buffer_index += io->len;
io->len = 0;
MACIO_DPRINTF("--- Block read transfer - sector_num: %" PRIx64 " "
"nsector: %x\n", (offset >> 9), (bytes >> 9));
m->aiocb = blk_aio_readv(blk, (offset >> 9), &io->iov, (bytes >> 9),
cb, io);
}
static void pmac_dma_write(BlockBackend *blk,
int64_t offset, int bytes,
void (*cb)(void *opaque, int ret), void *opaque)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
dma_addr_t dma_addr, dma_len;
void *mem;
int64_t sector_num;
int nsector;
uint64_t align = BDRV_SECTOR_SIZE;
size_t head_bytes, tail_bytes;
bool unaligned_head = false, unaligned_tail = false;
qemu_iovec_destroy(&io->iov);
qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1);
sector_num = (offset >> 9);
nsector = (io->len >> 9);
MACIO_DPRINTF("--- DMA write transfer (0x%" HWADDR_PRIx ",0x%x): "
"sector_num: %" PRId64 ", nsector: %d\n", io->addr, io->len,
sector_num, nsector);
dma_addr = io->addr;
dma_len = io->len;
mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len,
DMA_DIRECTION_TO_DEVICE);
if (offset & (align - 1)) {
head_bytes = offset & (align - 1);
sector_num = ((offset & ~(align - 1)) >> 9);
MACIO_DPRINTF("--- DMA unaligned head: pre-reading head sector %"
PRId64 "\n", sector_num);
blk_pread(s->blk, (sector_num << 9), &io->head_remainder, align);
qemu_iovec_add(&io->iov, &io->head_remainder, head_bytes);
qemu_iovec_add(&io->iov, mem, io->len);
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
unaligned_head = true;
}
if ((offset + bytes) & (align - 1)) {
tail_bytes = (offset + bytes) & (align - 1);
sector_num = (((offset + bytes) & ~(align - 1)) >> 9);
MACIO_DPRINTF("--- DMA unaligned tail: pre-reading tail sector %"
PRId64 "\n", sector_num);
blk_pread(s->blk, (sector_num << 9), &io->tail_remainder, align);
if (!unaligned_head) {
qemu_iovec_add(&io->iov, mem, io->len);
}
qemu_iovec_add(&io->iov, &io->tail_remainder + tail_bytes,
align - tail_bytes);
bytes = ROUND_UP(bytes, align);
unaligned_tail = true;
}
if (!unaligned_head && !unaligned_tail) {
qemu_iovec_add(&io->iov, mem, io->len);
}
s->io_buffer_size -= io->len;
s->io_buffer_index += io->len;
io->len = 0;
MACIO_DPRINTF("--- Block write transfer - sector_num: %" PRIx64 " "
"nsector: %x\n", (offset >> 9), (bytes >> 9));
m->aiocb = blk_aio_writev(blk, (offset >> 9), &io->iov, (bytes >> 9),
cb, io);
}
static void pmac_dma_trim(BlockBackend *blk,
int64_t offset, int bytes,
void (*cb)(void *opaque, int ret), void *opaque)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
dma_addr_t dma_addr, dma_len;
void *mem;
qemu_iovec_destroy(&io->iov);
qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1);
dma_addr = io->addr;
dma_len = io->len;
mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len,
DMA_DIRECTION_TO_DEVICE);
qemu_iovec_add(&io->iov, mem, io->len);
s->io_buffer_size -= io->len;
s->io_buffer_index += io->len;
io->len = 0;
m->aiocb = ide_issue_trim(blk, (offset >> 9), &io->iov, (bytes >> 9),
cb, io);
}
static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
int64_t offset;
MACIO_DPRINTF("pmac_ide_atapi_transfer_cb\n");
if (ret < 0) {
MACIO_DPRINTF("DMA error: %d\n", ret);
ide_atapi_io_error(s, ret);
goto done;
}
if (!m->dma_active) {
MACIO_DPRINTF("waiting for data (%#x - %#x - %x)\n",
s->nsector, io->len, s->status);
/* data not ready yet, wait for the channel to get restarted */
io->processing = false;
return;
}
if (s->io_buffer_size <= 0) {
MACIO_DPRINTF("End of IDE transfer\n");
ide_atapi_cmd_ok(s);
m->dma_active = false;
goto done;
}
if (io->len == 0) {
MACIO_DPRINTF("End of DMA transfer\n");
goto done;
}
if (s->lba == -1) {
/* Non-block ATAPI transfer - just copy to RAM */
s->io_buffer_size = MIN(s->io_buffer_size, io->len);
cpu_physical_memory_write(io->addr, s->io_buffer, s->io_buffer_size);
ide_atapi_cmd_ok(s);
m->dma_active = false;
goto done;
}
/* Calculate current offset */
offset = (int64_t)(s->lba << 11) + s->io_buffer_index;
pmac_dma_read(s->blk, offset, io->len, pmac_ide_atapi_transfer_cb, io);
return;
done:
block_acct_done(blk_get_stats(s->blk), &s->acct);
io->dma_end(opaque);
return;
}
static void pmac_ide_transfer_cb(void *opaque, int ret)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
int64_t offset;
MACIO_DPRINTF("pmac_ide_transfer_cb\n");
if (ret < 0) {
MACIO_DPRINTF("DMA error: %d\n", ret);
m->aiocb = NULL;
ide_dma_error(s);
goto done;
}
if (!m->dma_active) {
MACIO_DPRINTF("waiting for data (%#x - %#x - %x)\n",
s->nsector, io->len, s->status);
/* data not ready yet, wait for the channel to get restarted */
io->processing = false;
return;
}
if (s->io_buffer_size <= 0) {
MACIO_DPRINTF("End of IDE transfer\n");
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s->bus);
m->dma_active = false;
goto done;
}
if (io->len == 0) {
MACIO_DPRINTF("End of DMA transfer\n");
goto done;
}
/* Calculate number of sectors */
offset = (ide_get_sector(s) << 9) + s->io_buffer_index;
switch (s->dma_cmd) {
case IDE_DMA_READ:
pmac_dma_read(s->blk, offset, io->len, pmac_ide_transfer_cb, io);
break;
case IDE_DMA_WRITE:
pmac_dma_write(s->blk, offset, io->len, pmac_ide_transfer_cb, io);
break;
case IDE_DMA_TRIM:
pmac_dma_trim(s->blk, offset, io->len, pmac_ide_transfer_cb, io);
break;
}
return;
done:
if (s->dma_cmd == IDE_DMA_READ || s->dma_cmd == IDE_DMA_WRITE) {
block_acct_done(blk_get_stats(s->blk), &s->acct);
}
io->dma_end(opaque);
}
static void pmac_ide_transfer(DBDMA_io *io)
{
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
MACIO_DPRINTF("\n");
if (s->drive_kind == IDE_CD) {
block_acct_start(blk_get_stats(s->blk), &s->acct, io->len,
BLOCK_ACCT_READ);
pmac_ide_atapi_transfer_cb(io, 0);
return;
}
switch (s->dma_cmd) {
case IDE_DMA_READ:
block_acct_start(blk_get_stats(s->blk), &s->acct, io->len,
BLOCK_ACCT_READ);
break;
case IDE_DMA_WRITE:
block_acct_start(blk_get_stats(s->blk), &s->acct, io->len,
BLOCK_ACCT_WRITE);
break;
default:
break;
}
pmac_ide_transfer_cb(io, 0);
}
static void pmac_ide_flush(DBDMA_io *io)
{
MACIOIDEState *m = io->opaque;
if (m->aiocb) {
blk_drain_all();
}
}
/* PowerMac IDE memory IO */
static void pmac_ide_writeb (void *opaque,
hwaddr addr, uint32_t val)
{
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
switch (addr) {
case 1 ... 7:
ide_ioport_write(&d->bus, addr, val);
break;
case 8:
case 22:
ide_cmd_write(&d->bus, 0, val);
break;
default:
break;
}
}
static uint32_t pmac_ide_readb (void *opaque,hwaddr addr)
{
uint8_t retval;
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
switch (addr) {
case 1 ... 7:
retval = ide_ioport_read(&d->bus, addr);
break;
case 8:
case 22:
retval = ide_status_read(&d->bus, 0);
break;
default:
retval = 0xFF;
break;
}
return retval;
}
static void pmac_ide_writew (void *opaque,
hwaddr addr, uint32_t val)
{
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
val = bswap16(val);
if (addr == 0) {
ide_data_writew(&d->bus, 0, val);
}
}
static uint32_t pmac_ide_readw (void *opaque,hwaddr addr)
{
uint16_t retval;
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
if (addr == 0) {
retval = ide_data_readw(&d->bus, 0);
} else {
retval = 0xFFFF;
}
retval = bswap16(retval);
return retval;
}
static void pmac_ide_writel (void *opaque,
hwaddr addr, uint32_t val)
{
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
val = bswap32(val);
if (addr == 0) {
ide_data_writel(&d->bus, 0, val);
}
}
static uint32_t pmac_ide_readl (void *opaque,hwaddr addr)
{
uint32_t retval;
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
if (addr == 0) {
retval = ide_data_readl(&d->bus, 0);
} else {
retval = 0xFFFFFFFF;
}
retval = bswap32(retval);
return retval;
}
static const MemoryRegionOps pmac_ide_ops = {
.old_mmio = {
.write = {
pmac_ide_writeb,
pmac_ide_writew,
pmac_ide_writel,
},
.read = {
pmac_ide_readb,
pmac_ide_readw,
pmac_ide_readl,
},
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_pmac = {
.name = "ide",
.version_id = 3,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_IDE_BUS(bus, MACIOIDEState),
VMSTATE_IDE_DRIVES(bus.ifs, MACIOIDEState),
VMSTATE_END_OF_LIST()
}
};
static void macio_ide_reset(DeviceState *dev)
{
MACIOIDEState *d = MACIO_IDE(dev);
ide_bus_reset(&d->bus);
}
static int ide_nop_int(IDEDMA *dma, int x)
{
return 0;
}
2015-07-04 14:06:04 +08:00
static int32_t ide_nop_int32(IDEDMA *dma, int32_t l)
ide: Correct handling of malformed/short PRDTs This impacts both BMDMA and AHCI HBA interfaces for IDE. Currently, we confuse the difference between a PRDT having "0 bytes" and a PRDT having "0 complete sectors." When we receive an incomplete sector, inconsistent error checking leads to an infinite loop wherein the call succeeds, but it didn't give us enough bytes -- leading us to re-call the DMA chain over and over again. This leads to, in the BMDMA case, leaked memory for short PRDTs, and infinite loops and resource usage in the AHCI case. The .prepare_buf() callback is reworked to return the number of bytes that it successfully prepared. 0 is a valid, non-error answer that means the table was empty and described no bytes. -1 indicates an error. Our current implementation uses the io_buffer in IDEState to ultimately describe the size of a prepared scatter-gather list. Even though the AHCI PRDT/SGList can be as large as 256GiB, the AHCI command header limits transactions to just 4GiB. ATA8-ACS3, however, defines the largest transaction to be an LBA48 command that transfers 65,536 sectors. With a 512 byte sector size, this is just 32MiB. Since our current state structures use the int type to describe the size of the buffer, and this state is migrated as int32, we are limited to describing 2GiB buffer sizes unless we change the migration protocol. For this reason, this patch begins to unify the assertions in the IDE pathways that the scatter-gather list provided by either the AHCI PRDT or the PCI BMDMA PRDs can only describe, at a maximum, 2GiB. This should be resilient enough unless we need a sector size that exceeds 32KiB. Further, the likelihood of any guest operating system actually attempting to transfer this much data in a single operation is very slim. To this end, the IDEState variables have been updated to more explicitly clarify our maximum supported size. Callers to the prepare_buf callback have been reworked to understand the new return code, and all versions of the prepare_buf callback have been adjusted accordingly. Lastly, the ahci_populate_sglist helper, relied upon by the AHCI implementation of .prepare_buf() as well as the PCI implementation of the callback have had overflow assertions added to help make clear the reasonings behind the various type changes. [Added %d -> %"PRId64" fix John sent because off_pos changed from int to int64_t. --Stefan] Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1414785819-26209-4-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-11-01 04:03:39 +08:00
{
return 0;
}
static void ide_dbdma_start(IDEDMA *dma, IDEState *s,
BlockCompletionFunc *cb)
{
MACIOIDEState *m = container_of(dma, MACIOIDEState, dma);
s->io_buffer_index = 0;
if (s->drive_kind == IDE_CD) {
s->io_buffer_size = s->packet_transfer_size;
} else {
s->io_buffer_size = s->nsector * BDRV_SECTOR_SIZE;
}
MACIO_DPRINTF("\n\n------------ IDE transfer\n");
MACIO_DPRINTF("buffer_size: %x buffer_index: %x\n",
s->io_buffer_size, s->io_buffer_index);
MACIO_DPRINTF("lba: %x size: %x\n", s->lba, s->io_buffer_size);
MACIO_DPRINTF("-------------------------\n");
m->dma_active = true;
DBDMA_kick(m->dbdma);
}
static const IDEDMAOps dbdma_ops = {
.start_dma = ide_dbdma_start,
ide: Correct handling of malformed/short PRDTs This impacts both BMDMA and AHCI HBA interfaces for IDE. Currently, we confuse the difference between a PRDT having "0 bytes" and a PRDT having "0 complete sectors." When we receive an incomplete sector, inconsistent error checking leads to an infinite loop wherein the call succeeds, but it didn't give us enough bytes -- leading us to re-call the DMA chain over and over again. This leads to, in the BMDMA case, leaked memory for short PRDTs, and infinite loops and resource usage in the AHCI case. The .prepare_buf() callback is reworked to return the number of bytes that it successfully prepared. 0 is a valid, non-error answer that means the table was empty and described no bytes. -1 indicates an error. Our current implementation uses the io_buffer in IDEState to ultimately describe the size of a prepared scatter-gather list. Even though the AHCI PRDT/SGList can be as large as 256GiB, the AHCI command header limits transactions to just 4GiB. ATA8-ACS3, however, defines the largest transaction to be an LBA48 command that transfers 65,536 sectors. With a 512 byte sector size, this is just 32MiB. Since our current state structures use the int type to describe the size of the buffer, and this state is migrated as int32, we are limited to describing 2GiB buffer sizes unless we change the migration protocol. For this reason, this patch begins to unify the assertions in the IDE pathways that the scatter-gather list provided by either the AHCI PRDT or the PCI BMDMA PRDs can only describe, at a maximum, 2GiB. This should be resilient enough unless we need a sector size that exceeds 32KiB. Further, the likelihood of any guest operating system actually attempting to transfer this much data in a single operation is very slim. To this end, the IDEState variables have been updated to more explicitly clarify our maximum supported size. Callers to the prepare_buf callback have been reworked to understand the new return code, and all versions of the prepare_buf callback have been adjusted accordingly. Lastly, the ahci_populate_sglist helper, relied upon by the AHCI implementation of .prepare_buf() as well as the PCI implementation of the callback have had overflow assertions added to help make clear the reasonings behind the various type changes. [Added %d -> %"PRId64" fix John sent because off_pos changed from int to int64_t. --Stefan] Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1414785819-26209-4-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-11-01 04:03:39 +08:00
.prepare_buf = ide_nop_int32,
.rw_buf = ide_nop_int,
};
static void macio_ide_realizefn(DeviceState *dev, Error **errp)
{
MACIOIDEState *s = MACIO_IDE(dev);
ide_init2(&s->bus, s->irq);
/* Register DMA callbacks */
s->dma.ops = &dbdma_ops;
s->bus.dma = &s->dma;
}
static void macio_ide_initfn(Object *obj)
{
SysBusDevice *d = SYS_BUS_DEVICE(obj);
MACIOIDEState *s = MACIO_IDE(obj);
ide_bus_new(&s->bus, sizeof(s->bus), DEVICE(obj), 0, 2);
memory_region_init_io(&s->mem, obj, &pmac_ide_ops, s, "pmac-ide", 0x1000);
sysbus_init_mmio(d, &s->mem);
sysbus_init_irq(d, &s->irq);
sysbus_init_irq(d, &s->dma_irq);
}
static void macio_ide_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = macio_ide_realizefn;
dc->reset = macio_ide_reset;
dc->vmsd = &vmstate_pmac;
}
static const TypeInfo macio_ide_type_info = {
.name = TYPE_MACIO_IDE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MACIOIDEState),
.instance_init = macio_ide_initfn,
.class_init = macio_ide_class_init,
};
static void macio_ide_register_types(void)
{
type_register_static(&macio_ide_type_info);
}
/* hd_table must contain 2 block drivers */
void macio_ide_init_drives(MACIOIDEState *s, DriveInfo **hd_table)
{
int i;
for (i = 0; i < 2; i++) {
if (hd_table[i]) {
ide_create_drive(&s->bus, i, hd_table[i]);
}
}
}
void macio_ide_register_dma(MACIOIDEState *s, void *dbdma, int channel)
{
s->dbdma = dbdma;
DBDMA_register_channel(dbdma, channel, s->dma_irq,
pmac_ide_transfer, pmac_ide_flush, s);
}
type_init(macio_ide_register_types)