qemu/net/eth.c

567 lines
16 KiB
C
Raw Normal View History

/*
* QEMU network structures definitions and helper functions
*
* Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
*
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Tamir Shomer <tamirs@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "net/eth.h"
#include "net/checksum.h"
#include "net/tap.h"
void eth_setup_vlan_headers_ex(struct eth_header *ehdr, uint16_t vlan_tag,
uint16_t vlan_ethtype, bool *is_new)
{
struct vlan_header *vhdr = PKT_GET_VLAN_HDR(ehdr);
switch (be16_to_cpu(ehdr->h_proto)) {
case ETH_P_VLAN:
case ETH_P_DVLAN:
/* vlan hdr exists */
*is_new = false;
break;
default:
/* No VLAN header, put a new one */
vhdr->h_proto = ehdr->h_proto;
ehdr->h_proto = cpu_to_be16(vlan_ethtype);
*is_new = true;
break;
}
vhdr->h_tci = cpu_to_be16(vlan_tag);
}
uint8_t
eth_get_gso_type(uint16_t l3_proto, uint8_t *l3_hdr, uint8_t l4proto)
{
uint8_t ecn_state = 0;
if (l3_proto == ETH_P_IP) {
struct ip_header *iphdr = (struct ip_header *) l3_hdr;
if (IP_HEADER_VERSION(iphdr) == IP_HEADER_VERSION_4) {
if (IPTOS_ECN(iphdr->ip_tos) == IPTOS_ECN_CE) {
ecn_state = VIRTIO_NET_HDR_GSO_ECN;
}
if (l4proto == IP_PROTO_TCP) {
return VIRTIO_NET_HDR_GSO_TCPV4 | ecn_state;
} else if (l4proto == IP_PROTO_UDP) {
return VIRTIO_NET_HDR_GSO_UDP | ecn_state;
}
}
} else if (l3_proto == ETH_P_IPV6) {
struct ip6_header *ip6hdr = (struct ip6_header *) l3_hdr;
if (IP6_ECN(ip6hdr->ip6_ecn_acc) == IP6_ECN_CE) {
ecn_state = VIRTIO_NET_HDR_GSO_ECN;
}
if (l4proto == IP_PROTO_TCP) {
return VIRTIO_NET_HDR_GSO_TCPV6 | ecn_state;
}
}
qemu_log_mask(LOG_UNIMP, "%s: probably not GSO frame, "
"unknown L3 protocol: 0x%04"PRIx16"\n", __func__, l3_proto);
return VIRTIO_NET_HDR_GSO_NONE | ecn_state;
}
uint16_t
eth_get_l3_proto(const struct iovec *l2hdr_iov, int iovcnt, size_t l2hdr_len)
{
uint16_t proto;
size_t copied;
size_t size = iov_size(l2hdr_iov, iovcnt);
size_t proto_offset = l2hdr_len - sizeof(proto);
if (size < proto_offset) {
return ETH_P_UNKNOWN;
}
copied = iov_to_buf(l2hdr_iov, iovcnt, proto_offset,
&proto, sizeof(proto));
return (copied == sizeof(proto)) ? be16_to_cpu(proto) : ETH_P_UNKNOWN;
}
static bool
_eth_copy_chunk(size_t input_size,
const struct iovec *iov, int iovcnt,
size_t offset, size_t length,
void *buffer)
{
size_t copied;
if (input_size < offset) {
return false;
}
copied = iov_to_buf(iov, iovcnt, offset, buffer, length);
if (copied < length) {
return false;
}
return true;
}
static bool
_eth_tcp_has_data(bool is_ip4,
const struct ip_header *ip4_hdr,
const struct ip6_header *ip6_hdr,
size_t full_ip6hdr_len,
const struct tcp_header *tcp)
{
uint32_t l4len;
if (is_ip4) {
l4len = be16_to_cpu(ip4_hdr->ip_len) - IP_HDR_GET_LEN(ip4_hdr);
} else {
size_t opts_len = full_ip6hdr_len - sizeof(struct ip6_header);
l4len = be16_to_cpu(ip6_hdr->ip6_ctlun.ip6_un1.ip6_un1_plen) - opts_len;
}
return l4len > TCP_HEADER_DATA_OFFSET(tcp);
}
void eth_get_protocols(const struct iovec *iov, int iovcnt,
bool *isip4, bool *isip6,
bool *isudp, bool *istcp,
size_t *l3hdr_off,
size_t *l4hdr_off,
size_t *l5hdr_off,
eth_ip6_hdr_info *ip6hdr_info,
eth_ip4_hdr_info *ip4hdr_info,
eth_l4_hdr_info *l4hdr_info)
{
int proto;
bool fragment = false;
size_t l2hdr_len = eth_get_l2_hdr_length_iov(iov, iovcnt);
size_t input_size = iov_size(iov, iovcnt);
size_t copied;
*isip4 = *isip6 = *isudp = *istcp = false;
proto = eth_get_l3_proto(iov, iovcnt, l2hdr_len);
*l3hdr_off = l2hdr_len;
if (proto == ETH_P_IP) {
struct ip_header *iphdr = &ip4hdr_info->ip4_hdr;
if (input_size < l2hdr_len) {
return;
}
copied = iov_to_buf(iov, iovcnt, l2hdr_len, iphdr, sizeof(*iphdr));
*isip4 = true;
if (copied < sizeof(*iphdr)) {
return;
}
if (IP_HEADER_VERSION(iphdr) == IP_HEADER_VERSION_4) {
if (iphdr->ip_p == IP_PROTO_TCP) {
*istcp = true;
} else if (iphdr->ip_p == IP_PROTO_UDP) {
*isudp = true;
}
}
ip4hdr_info->fragment = IP4_IS_FRAGMENT(iphdr);
*l4hdr_off = l2hdr_len + IP_HDR_GET_LEN(iphdr);
fragment = ip4hdr_info->fragment;
} else if (proto == ETH_P_IPV6) {
*isip6 = true;
if (eth_parse_ipv6_hdr(iov, iovcnt, l2hdr_len,
ip6hdr_info)) {
if (ip6hdr_info->l4proto == IP_PROTO_TCP) {
*istcp = true;
} else if (ip6hdr_info->l4proto == IP_PROTO_UDP) {
*isudp = true;
}
} else {
return;
}
*l4hdr_off = l2hdr_len + ip6hdr_info->full_hdr_len;
fragment = ip6hdr_info->fragment;
}
if (!fragment) {
if (*istcp) {
*istcp = _eth_copy_chunk(input_size,
iov, iovcnt,
*l4hdr_off, sizeof(l4hdr_info->hdr.tcp),
&l4hdr_info->hdr.tcp);
if (*istcp) {
*l5hdr_off = *l4hdr_off +
TCP_HEADER_DATA_OFFSET(&l4hdr_info->hdr.tcp);
l4hdr_info->has_tcp_data =
_eth_tcp_has_data(proto == ETH_P_IP,
&ip4hdr_info->ip4_hdr,
&ip6hdr_info->ip6_hdr,
*l4hdr_off - *l3hdr_off,
&l4hdr_info->hdr.tcp);
}
} else if (*isudp) {
*isudp = _eth_copy_chunk(input_size,
iov, iovcnt,
*l4hdr_off, sizeof(l4hdr_info->hdr.udp),
&l4hdr_info->hdr.udp);
*l5hdr_off = *l4hdr_off + sizeof(l4hdr_info->hdr.udp);
}
}
}
size_t
eth_strip_vlan(const struct iovec *iov, int iovcnt, size_t iovoff,
uint8_t *new_ehdr_buf,
uint16_t *payload_offset, uint16_t *tci)
{
struct vlan_header vlan_hdr;
struct eth_header *new_ehdr = (struct eth_header *) new_ehdr_buf;
size_t copied = iov_to_buf(iov, iovcnt, iovoff,
new_ehdr, sizeof(*new_ehdr));
if (copied < sizeof(*new_ehdr)) {
return 0;
}
switch (be16_to_cpu(new_ehdr->h_proto)) {
case ETH_P_VLAN:
case ETH_P_DVLAN:
copied = iov_to_buf(iov, iovcnt, iovoff + sizeof(*new_ehdr),
&vlan_hdr, sizeof(vlan_hdr));
if (copied < sizeof(vlan_hdr)) {
return 0;
}
new_ehdr->h_proto = vlan_hdr.h_proto;
*tci = be16_to_cpu(vlan_hdr.h_tci);
*payload_offset = iovoff + sizeof(*new_ehdr) + sizeof(vlan_hdr);
if (be16_to_cpu(new_ehdr->h_proto) == ETH_P_VLAN) {
copied = iov_to_buf(iov, iovcnt, *payload_offset,
PKT_GET_VLAN_HDR(new_ehdr), sizeof(vlan_hdr));
if (copied < sizeof(vlan_hdr)) {
return 0;
}
*payload_offset += sizeof(vlan_hdr);
return sizeof(struct eth_header) + sizeof(struct vlan_header);
} else {
return sizeof(struct eth_header);
}
default:
return 0;
}
}
size_t
eth_strip_vlan_ex(const struct iovec *iov, int iovcnt, size_t iovoff,
uint16_t vet, uint8_t *new_ehdr_buf,
uint16_t *payload_offset, uint16_t *tci)
{
struct vlan_header vlan_hdr;
struct eth_header *new_ehdr = (struct eth_header *) new_ehdr_buf;
size_t copied = iov_to_buf(iov, iovcnt, iovoff,
new_ehdr, sizeof(*new_ehdr));
if (copied < sizeof(*new_ehdr)) {
return 0;
}
if (be16_to_cpu(new_ehdr->h_proto) == vet) {
copied = iov_to_buf(iov, iovcnt, iovoff + sizeof(*new_ehdr),
&vlan_hdr, sizeof(vlan_hdr));
if (copied < sizeof(vlan_hdr)) {
return 0;
}
new_ehdr->h_proto = vlan_hdr.h_proto;
*tci = be16_to_cpu(vlan_hdr.h_tci);
*payload_offset = iovoff + sizeof(*new_ehdr) + sizeof(vlan_hdr);
return sizeof(struct eth_header);
}
return 0;
}
void
eth_setup_ip4_fragmentation(const void *l2hdr, size_t l2hdr_len,
void *l3hdr, size_t l3hdr_len,
size_t l3payload_len,
size_t frag_offset, bool more_frags)
{
const struct iovec l2vec = {
.iov_base = (void *) l2hdr,
.iov_len = l2hdr_len
};
if (eth_get_l3_proto(&l2vec, 1, l2hdr_len) == ETH_P_IP) {
uint16_t orig_flags;
struct ip_header *iphdr = (struct ip_header *) l3hdr;
uint16_t frag_off_units = frag_offset / IP_FRAG_UNIT_SIZE;
uint16_t new_ip_off;
assert(frag_offset % IP_FRAG_UNIT_SIZE == 0);
assert((frag_off_units & ~IP_OFFMASK) == 0);
orig_flags = be16_to_cpu(iphdr->ip_off) & ~(IP_OFFMASK|IP_MF);
new_ip_off = frag_off_units | orig_flags | (more_frags ? IP_MF : 0);
iphdr->ip_off = cpu_to_be16(new_ip_off);
iphdr->ip_len = cpu_to_be16(l3payload_len + l3hdr_len);
}
}
void
eth_fix_ip4_checksum(void *l3hdr, size_t l3hdr_len)
{
struct ip_header *iphdr = (struct ip_header *) l3hdr;
iphdr->ip_sum = 0;
iphdr->ip_sum = cpu_to_be16(net_raw_checksum(l3hdr, l3hdr_len));
}
uint32_t
eth_calc_ip4_pseudo_hdr_csum(struct ip_header *iphdr,
uint16_t csl,
uint32_t *cso)
{
struct ip_pseudo_header ipph;
ipph.ip_src = iphdr->ip_src;
ipph.ip_dst = iphdr->ip_dst;
ipph.ip_payload = cpu_to_be16(csl);
ipph.ip_proto = iphdr->ip_p;
ipph.zeros = 0;
*cso = sizeof(ipph);
return net_checksum_add(*cso, (uint8_t *) &ipph);
}
uint32_t
eth_calc_ip6_pseudo_hdr_csum(struct ip6_header *iphdr,
uint16_t csl,
uint8_t l4_proto,
uint32_t *cso)
{
struct ip6_pseudo_header ipph;
ipph.ip6_src = iphdr->ip6_src;
ipph.ip6_dst = iphdr->ip6_dst;
ipph.len = cpu_to_be16(csl);
ipph.zero[0] = 0;
ipph.zero[1] = 0;
ipph.zero[2] = 0;
ipph.next_hdr = l4_proto;
*cso = sizeof(ipph);
return net_checksum_add(*cso, (uint8_t *)&ipph);
}
static bool
eth_is_ip6_extension_header_type(uint8_t hdr_type)
{
switch (hdr_type) {
case IP6_HOP_BY_HOP:
case IP6_ROUTING:
case IP6_FRAGMENT:
case IP6_AUTHENTICATION:
case IP6_DESTINATON:
case IP6_MOBILITY:
return true;
default:
return false;
}
}
static bool
_eth_get_rss_ex_dst_addr(const struct iovec *pkt, int pkt_frags,
size_t ext_hdr_offset,
struct ip6_ext_hdr *ext_hdr,
struct in6_address *dst_addr)
{
net/eth: Read ip6_ext_hdr_routing buffer before accessing it We can't know the caller read enough data in the memory pointed by ext_hdr to cast it as a ip6_ext_hdr_routing. Declare rt_hdr on the stack and fill it again from the iovec. Since we already checked there is enough data in the iovec buffer, simply add an assert() call to consume the bytes_read variable. This fix a 2 bytes buffer overrun in eth_parse_ipv6_hdr() reported by QEMU fuzzer: $ cat << EOF | ./qemu-system-i386 -M pc-q35-5.0 \ -accel qtest -monitor none \ -serial none -nographic -qtest stdio outl 0xcf8 0x80001010 outl 0xcfc 0xe1020000 outl 0xcf8 0x80001004 outw 0xcfc 0x7 write 0x25 0x1 0x86 write 0x26 0x1 0xdd write 0x4f 0x1 0x2b write 0xe1020030 0x4 0x190002e1 write 0xe102003a 0x2 0x0807 write 0xe1020048 0x4 0x12077cdd write 0xe1020400 0x4 0xba077cdd write 0xe1020420 0x4 0x190002e1 write 0xe1020428 0x4 0x3509d807 write 0xe1020438 0x1 0xe2 EOF ================================================================= ==2859770==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffdef904902 at pc 0x561ceefa78de bp 0x7ffdef904820 sp 0x7ffdef904818 READ of size 1 at 0x7ffdef904902 thread T0 #0 0x561ceefa78dd in _eth_get_rss_ex_dst_addr net/eth.c:410:17 #1 0x561ceefa41fb in eth_parse_ipv6_hdr net/eth.c:532:17 #2 0x561cef7de639 in net_tx_pkt_parse_headers hw/net/net_tx_pkt.c:228:14 #3 0x561cef7dbef4 in net_tx_pkt_parse hw/net/net_tx_pkt.c:273:9 #4 0x561ceec29f22 in e1000e_process_tx_desc hw/net/e1000e_core.c:730:29 #5 0x561ceec28eac in e1000e_start_xmit hw/net/e1000e_core.c:927:9 #6 0x561ceec1baab in e1000e_set_tdt hw/net/e1000e_core.c:2444:9 #7 0x561ceebf300e in e1000e_core_write hw/net/e1000e_core.c:3256:9 #8 0x561cef3cd4cd in e1000e_mmio_write hw/net/e1000e.c:110:5 Address 0x7ffdef904902 is located in stack of thread T0 at offset 34 in frame #0 0x561ceefa320f in eth_parse_ipv6_hdr net/eth.c:486 This frame has 1 object(s): [32, 34) 'ext_hdr' (line 487) <== Memory access at offset 34 overflows this variable HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork (longjmp and C++ exceptions *are* supported) SUMMARY: AddressSanitizer: stack-buffer-overflow net/eth.c:410:17 in _eth_get_rss_ex_dst_addr Shadow bytes around the buggy address: 0x10003df188d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18910: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 =>0x10003df18920:[02]f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18930: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18940: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18950: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18960: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18970: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Stack left redzone: f1 Stack right redzone: f3 ==2859770==ABORTING Add the corresponding qtest case with the fuzzer reproducer. FWIW GCC 11 similarly reported: net/eth.c: In function 'eth_parse_ipv6_hdr': net/eth.c:410:15: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ net/eth.c:410:38: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ Cc: qemu-stable@nongnu.org Buglink: https://bugs.launchpad.net/qemu/+bug/1879531 Reported-by: Alexander Bulekov <alxndr@bu.edu> Reported-by: Miroslav Rezanina <mrezanin@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Miroslav Rezanina <mrezanin@redhat.com> Fixes: eb700029c78 ("net_pkt: Extend packet abstraction as required by e1000e functionality") Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
2021-03-11 02:31:22 +08:00
struct ip6_ext_hdr_routing rt_hdr;
size_t input_size = iov_size(pkt, pkt_frags);
size_t bytes_read;
net/eth: Read ip6_ext_hdr_routing buffer before accessing it We can't know the caller read enough data in the memory pointed by ext_hdr to cast it as a ip6_ext_hdr_routing. Declare rt_hdr on the stack and fill it again from the iovec. Since we already checked there is enough data in the iovec buffer, simply add an assert() call to consume the bytes_read variable. This fix a 2 bytes buffer overrun in eth_parse_ipv6_hdr() reported by QEMU fuzzer: $ cat << EOF | ./qemu-system-i386 -M pc-q35-5.0 \ -accel qtest -monitor none \ -serial none -nographic -qtest stdio outl 0xcf8 0x80001010 outl 0xcfc 0xe1020000 outl 0xcf8 0x80001004 outw 0xcfc 0x7 write 0x25 0x1 0x86 write 0x26 0x1 0xdd write 0x4f 0x1 0x2b write 0xe1020030 0x4 0x190002e1 write 0xe102003a 0x2 0x0807 write 0xe1020048 0x4 0x12077cdd write 0xe1020400 0x4 0xba077cdd write 0xe1020420 0x4 0x190002e1 write 0xe1020428 0x4 0x3509d807 write 0xe1020438 0x1 0xe2 EOF ================================================================= ==2859770==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffdef904902 at pc 0x561ceefa78de bp 0x7ffdef904820 sp 0x7ffdef904818 READ of size 1 at 0x7ffdef904902 thread T0 #0 0x561ceefa78dd in _eth_get_rss_ex_dst_addr net/eth.c:410:17 #1 0x561ceefa41fb in eth_parse_ipv6_hdr net/eth.c:532:17 #2 0x561cef7de639 in net_tx_pkt_parse_headers hw/net/net_tx_pkt.c:228:14 #3 0x561cef7dbef4 in net_tx_pkt_parse hw/net/net_tx_pkt.c:273:9 #4 0x561ceec29f22 in e1000e_process_tx_desc hw/net/e1000e_core.c:730:29 #5 0x561ceec28eac in e1000e_start_xmit hw/net/e1000e_core.c:927:9 #6 0x561ceec1baab in e1000e_set_tdt hw/net/e1000e_core.c:2444:9 #7 0x561ceebf300e in e1000e_core_write hw/net/e1000e_core.c:3256:9 #8 0x561cef3cd4cd in e1000e_mmio_write hw/net/e1000e.c:110:5 Address 0x7ffdef904902 is located in stack of thread T0 at offset 34 in frame #0 0x561ceefa320f in eth_parse_ipv6_hdr net/eth.c:486 This frame has 1 object(s): [32, 34) 'ext_hdr' (line 487) <== Memory access at offset 34 overflows this variable HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork (longjmp and C++ exceptions *are* supported) SUMMARY: AddressSanitizer: stack-buffer-overflow net/eth.c:410:17 in _eth_get_rss_ex_dst_addr Shadow bytes around the buggy address: 0x10003df188d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18910: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 =>0x10003df18920:[02]f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18930: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18940: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18950: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18960: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18970: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Stack left redzone: f1 Stack right redzone: f3 ==2859770==ABORTING Add the corresponding qtest case with the fuzzer reproducer. FWIW GCC 11 similarly reported: net/eth.c: In function 'eth_parse_ipv6_hdr': net/eth.c:410:15: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ net/eth.c:410:38: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ Cc: qemu-stable@nongnu.org Buglink: https://bugs.launchpad.net/qemu/+bug/1879531 Reported-by: Alexander Bulekov <alxndr@bu.edu> Reported-by: Miroslav Rezanina <mrezanin@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Miroslav Rezanina <mrezanin@redhat.com> Fixes: eb700029c78 ("net_pkt: Extend packet abstraction as required by e1000e functionality") Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
2021-03-11 02:31:22 +08:00
if (input_size < ext_hdr_offset + sizeof(rt_hdr) + sizeof(*dst_addr)) {
return false;
}
net/eth: Read ip6_ext_hdr_routing buffer before accessing it We can't know the caller read enough data in the memory pointed by ext_hdr to cast it as a ip6_ext_hdr_routing. Declare rt_hdr on the stack and fill it again from the iovec. Since we already checked there is enough data in the iovec buffer, simply add an assert() call to consume the bytes_read variable. This fix a 2 bytes buffer overrun in eth_parse_ipv6_hdr() reported by QEMU fuzzer: $ cat << EOF | ./qemu-system-i386 -M pc-q35-5.0 \ -accel qtest -monitor none \ -serial none -nographic -qtest stdio outl 0xcf8 0x80001010 outl 0xcfc 0xe1020000 outl 0xcf8 0x80001004 outw 0xcfc 0x7 write 0x25 0x1 0x86 write 0x26 0x1 0xdd write 0x4f 0x1 0x2b write 0xe1020030 0x4 0x190002e1 write 0xe102003a 0x2 0x0807 write 0xe1020048 0x4 0x12077cdd write 0xe1020400 0x4 0xba077cdd write 0xe1020420 0x4 0x190002e1 write 0xe1020428 0x4 0x3509d807 write 0xe1020438 0x1 0xe2 EOF ================================================================= ==2859770==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffdef904902 at pc 0x561ceefa78de bp 0x7ffdef904820 sp 0x7ffdef904818 READ of size 1 at 0x7ffdef904902 thread T0 #0 0x561ceefa78dd in _eth_get_rss_ex_dst_addr net/eth.c:410:17 #1 0x561ceefa41fb in eth_parse_ipv6_hdr net/eth.c:532:17 #2 0x561cef7de639 in net_tx_pkt_parse_headers hw/net/net_tx_pkt.c:228:14 #3 0x561cef7dbef4 in net_tx_pkt_parse hw/net/net_tx_pkt.c:273:9 #4 0x561ceec29f22 in e1000e_process_tx_desc hw/net/e1000e_core.c:730:29 #5 0x561ceec28eac in e1000e_start_xmit hw/net/e1000e_core.c:927:9 #6 0x561ceec1baab in e1000e_set_tdt hw/net/e1000e_core.c:2444:9 #7 0x561ceebf300e in e1000e_core_write hw/net/e1000e_core.c:3256:9 #8 0x561cef3cd4cd in e1000e_mmio_write hw/net/e1000e.c:110:5 Address 0x7ffdef904902 is located in stack of thread T0 at offset 34 in frame #0 0x561ceefa320f in eth_parse_ipv6_hdr net/eth.c:486 This frame has 1 object(s): [32, 34) 'ext_hdr' (line 487) <== Memory access at offset 34 overflows this variable HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork (longjmp and C++ exceptions *are* supported) SUMMARY: AddressSanitizer: stack-buffer-overflow net/eth.c:410:17 in _eth_get_rss_ex_dst_addr Shadow bytes around the buggy address: 0x10003df188d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df188f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18910: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 =>0x10003df18920:[02]f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18930: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18940: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18950: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18960: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10003df18970: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Stack left redzone: f1 Stack right redzone: f3 ==2859770==ABORTING Add the corresponding qtest case with the fuzzer reproducer. FWIW GCC 11 similarly reported: net/eth.c: In function 'eth_parse_ipv6_hdr': net/eth.c:410:15: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ net/eth.c:410:38: error: array subscript 'struct ip6_ext_hdr_routing[0]' is partly outside array bounds of 'struct ip6_ext_hdr[1]' [-Werror=array-bounds] 410 | if ((rthdr->rtype == 2) && (rthdr->segleft == 1)) { | ~~~~~^~~~~~~~~ net/eth.c:485:24: note: while referencing 'ext_hdr' 485 | struct ip6_ext_hdr ext_hdr; | ^~~~~~~ Cc: qemu-stable@nongnu.org Buglink: https://bugs.launchpad.net/qemu/+bug/1879531 Reported-by: Alexander Bulekov <alxndr@bu.edu> Reported-by: Miroslav Rezanina <mrezanin@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Miroslav Rezanina <mrezanin@redhat.com> Fixes: eb700029c78 ("net_pkt: Extend packet abstraction as required by e1000e functionality") Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
2021-03-11 02:31:22 +08:00
bytes_read = iov_to_buf(pkt, pkt_frags, ext_hdr_offset,
&rt_hdr, sizeof(rt_hdr));
assert(bytes_read == sizeof(rt_hdr));
if ((rt_hdr.rtype != 2) || (rt_hdr.segleft != 1)) {
return false;
}
bytes_read = iov_to_buf(pkt, pkt_frags, ext_hdr_offset + sizeof(rt_hdr),
dst_addr, sizeof(*dst_addr));
assert(bytes_read == sizeof(*dst_addr));
return true;
}
static bool
_eth_get_rss_ex_src_addr(const struct iovec *pkt, int pkt_frags,
size_t dsthdr_offset,
struct ip6_ext_hdr *ext_hdr,
struct in6_address *src_addr)
{
size_t bytes_left = (ext_hdr->ip6r_len + 1) * 8 - sizeof(*ext_hdr);
struct ip6_option_hdr opthdr;
size_t opt_offset = dsthdr_offset + sizeof(*ext_hdr);
while (bytes_left > sizeof(opthdr)) {
size_t input_size = iov_size(pkt, pkt_frags);
size_t bytes_read, optlen;
if (input_size < opt_offset) {
return false;
}
bytes_read = iov_to_buf(pkt, pkt_frags, opt_offset,
&opthdr, sizeof(opthdr));
if (bytes_read != sizeof(opthdr)) {
return false;
}
optlen = (opthdr.type == IP6_OPT_PAD1) ? 1
: (opthdr.len + sizeof(opthdr));
if (optlen > bytes_left) {
return false;
}
if (opthdr.type == IP6_OPT_HOME) {
size_t input_size = iov_size(pkt, pkt_frags);
if (input_size < opt_offset + sizeof(opthdr)) {
return false;
}
bytes_read = iov_to_buf(pkt, pkt_frags,
opt_offset + sizeof(opthdr),
src_addr, sizeof(*src_addr));
return bytes_read == sizeof(*src_addr);
}
opt_offset += optlen;
bytes_left -= optlen;
}
return false;
}
bool eth_parse_ipv6_hdr(const struct iovec *pkt, int pkt_frags,
size_t ip6hdr_off, eth_ip6_hdr_info *info)
{
struct ip6_ext_hdr ext_hdr;
size_t bytes_read;
uint8_t curr_ext_hdr_type;
size_t input_size = iov_size(pkt, pkt_frags);
info->rss_ex_dst_valid = false;
info->rss_ex_src_valid = false;
info->fragment = false;
if (input_size < ip6hdr_off) {
return false;
}
bytes_read = iov_to_buf(pkt, pkt_frags, ip6hdr_off,
&info->ip6_hdr, sizeof(info->ip6_hdr));
if (bytes_read < sizeof(info->ip6_hdr)) {
return false;
}
info->full_hdr_len = sizeof(struct ip6_header);
curr_ext_hdr_type = info->ip6_hdr.ip6_nxt;
if (!eth_is_ip6_extension_header_type(curr_ext_hdr_type)) {
info->l4proto = info->ip6_hdr.ip6_nxt;
info->has_ext_hdrs = false;
return true;
}
info->has_ext_hdrs = true;
do {
if (input_size < ip6hdr_off + info->full_hdr_len) {
return false;
}
bytes_read = iov_to_buf(pkt, pkt_frags, ip6hdr_off + info->full_hdr_len,
&ext_hdr, sizeof(ext_hdr));
if (bytes_read < sizeof(ext_hdr)) {
return false;
}
if (curr_ext_hdr_type == IP6_ROUTING) {
if (ext_hdr.ip6r_len == sizeof(struct in6_address) / 8) {
info->rss_ex_dst_valid =
_eth_get_rss_ex_dst_addr(pkt, pkt_frags,
ip6hdr_off + info->full_hdr_len,
&ext_hdr, &info->rss_ex_dst);
}
} else if (curr_ext_hdr_type == IP6_DESTINATON) {
info->rss_ex_src_valid =
_eth_get_rss_ex_src_addr(pkt, pkt_frags,
ip6hdr_off + info->full_hdr_len,
&ext_hdr, &info->rss_ex_src);
} else if (curr_ext_hdr_type == IP6_FRAGMENT) {
info->fragment = true;
}
info->full_hdr_len += (ext_hdr.ip6r_len + 1) * IP6_EXT_GRANULARITY;
curr_ext_hdr_type = ext_hdr.ip6r_nxt;
} while (eth_is_ip6_extension_header_type(curr_ext_hdr_type));
info->l4proto = ext_hdr.ip6r_nxt;
return true;
}
bool eth_pad_short_frame(uint8_t *padded_pkt, size_t *padded_buflen,
const void *pkt, size_t pkt_size)
{
assert(padded_buflen && *padded_buflen >= ETH_ZLEN);
if (pkt_size >= ETH_ZLEN) {
return false;
}
/* pad to minimum Ethernet frame length */
memcpy(padded_pkt, pkt, pkt_size);
memset(&padded_pkt[pkt_size], 0, ETH_ZLEN - pkt_size);
*padded_buflen = ETH_ZLEN;
return true;
}