qemu/hw/vfio/common.c

2288 lines
70 KiB
C
Raw Normal View History

/*
* generic functions used by VFIO devices
*
* Copyright Red Hat, Inc. 2012
*
* Authors:
* Alex Williamson <alex.williamson@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Based on qemu-kvm device-assignment:
* Adapted for KVM by Qumranet.
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#ifdef CONFIG_KVM
#include <linux/kvm.h>
#endif
#include <linux/vfio.h>
#include "hw/vfio/vfio-common.h"
#include "hw/vfio/vfio.h"
#include "exec/address-spaces.h"
#include "exec/memory.h"
#include "exec/ram_addr.h"
#include "hw/hw.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/range.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "trace.h"
#include "qapi/error.h"
#include "migration/migration.h"
VFIOGroupList vfio_group_list =
QLIST_HEAD_INITIALIZER(vfio_group_list);
static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
QLIST_HEAD_INITIALIZER(vfio_address_spaces);
#ifdef CONFIG_KVM
/*
* We have a single VFIO pseudo device per KVM VM. Once created it lives
* for the life of the VM. Closing the file descriptor only drops our
* reference to it and the device's reference to kvm. Therefore once
* initialized, this file descriptor is only released on QEMU exit and
* we'll re-use it should another vfio device be attached before then.
*/
static int vfio_kvm_device_fd = -1;
#endif
/*
* Common VFIO interrupt disable
*/
void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
{
struct vfio_irq_set irq_set = {
.argsz = sizeof(irq_set),
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
.index = index,
.start = 0,
.count = 0,
};
ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
}
void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
{
struct vfio_irq_set irq_set = {
.argsz = sizeof(irq_set),
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
.index = index,
.start = 0,
.count = 1,
};
ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
}
void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
{
struct vfio_irq_set irq_set = {
.argsz = sizeof(irq_set),
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
.index = index,
.start = 0,
.count = 1,
};
ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
}
static inline const char *action_to_str(int action)
{
switch (action) {
case VFIO_IRQ_SET_ACTION_MASK:
return "MASK";
case VFIO_IRQ_SET_ACTION_UNMASK:
return "UNMASK";
case VFIO_IRQ_SET_ACTION_TRIGGER:
return "TRIGGER";
default:
return "UNKNOWN ACTION";
}
}
static const char *index_to_str(VFIODevice *vbasedev, int index)
{
if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
return NULL;
}
switch (index) {
case VFIO_PCI_INTX_IRQ_INDEX:
return "INTX";
case VFIO_PCI_MSI_IRQ_INDEX:
return "MSI";
case VFIO_PCI_MSIX_IRQ_INDEX:
return "MSIX";
case VFIO_PCI_ERR_IRQ_INDEX:
return "ERR";
case VFIO_PCI_REQ_IRQ_INDEX:
return "REQ";
default:
return NULL;
}
}
int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
int action, int fd, Error **errp)
{
struct vfio_irq_set *irq_set;
int argsz, ret = 0;
const char *name;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
irq_set->index = index;
irq_set->start = subindex;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = fd;
if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
ret = -errno;
}
g_free(irq_set);
if (!ret) {
return 0;
}
error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
name = index_to_str(vbasedev, index);
if (name) {
error_prepend(errp, "%s-%d: ", name, subindex);
} else {
error_prepend(errp, "index %d-%d: ", index, subindex);
}
error_prepend(errp,
"Failed to %s %s eventfd signaling for interrupt ",
fd < 0 ? "tear down" : "set up", action_to_str(action));
return ret;
}
/*
* IO Port/MMIO - Beware of the endians, VFIO is always little endian
*/
void vfio_region_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIORegion *region = opaque;
VFIODevice *vbasedev = region->vbasedev;
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
switch (size) {
case 1:
buf.byte = data;
break;
case 2:
buf.word = cpu_to_le16(data);
break;
case 4:
buf.dword = cpu_to_le32(data);
break;
case 8:
buf.qword = cpu_to_le64(data);
break;
default:
hw_error("vfio: unsupported write size, %u bytes", size);
break;
}
if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
",%d) failed: %m",
__func__, vbasedev->name, region->nr,
addr, data, size);
}
trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
/*
* A read or write to a BAR always signals an INTx EOI. This will
* do nothing if not pending (including not in INTx mode). We assume
* that a BAR access is in response to an interrupt and that BAR
* accesses will service the interrupt. Unfortunately, we don't know
* which access will service the interrupt, so we're potentially
* getting quite a few host interrupts per guest interrupt.
*/
vbasedev->ops->vfio_eoi(vbasedev);
}
uint64_t vfio_region_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIORegion *region = opaque;
VFIODevice *vbasedev = region->vbasedev;
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
uint64_t data = 0;
if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
__func__, vbasedev->name, region->nr,
addr, size);
return (uint64_t)-1;
}
switch (size) {
case 1:
data = buf.byte;
break;
case 2:
data = le16_to_cpu(buf.word);
break;
case 4:
data = le32_to_cpu(buf.dword);
break;
case 8:
data = le64_to_cpu(buf.qword);
break;
default:
hw_error("vfio: unsupported read size, %u bytes", size);
break;
}
trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
/* Same as write above */
vbasedev->ops->vfio_eoi(vbasedev);
return data;
}
const MemoryRegionOps vfio_region_ops = {
.read = vfio_region_read,
.write = vfio_region_write,
.endianness = DEVICE_LITTLE_ENDIAN,
vfio: Set MemoryRegionOps:max_access_size and min_access_size Sets valid.max_access_size and valid.min_access_size to ensure safe 8-byte accesses to vfio. Today, 8-byte accesses are broken into pairs of 4-byte calls that goes unprotected: qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc0, 0x2020c, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc4, 0xa0000, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 which occasionally leads to: qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc0, 0x2030c, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc0, 0x1000c, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc4, 0xb0000, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc4, 0xa0000, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 causing strange errors in guest OS. With this patch, such accesses are protected by the same lock guard: qemu_mutex_lock locked mutex 0x10905ad8 vfio_region_write (0001:03:00.0:region1+0xc0, 0x2000c, 4) vfio_region_write (0001:03:00.0:region1+0xc4, 0xb0000, 4) qemu_mutex_unlock unlocked mutex 0x10905ad8 This happens because the 8-byte write should be broken into 4-byte writes by memory.c:access_with_adjusted_size() in order to be under the same lock. Today, it's done in exec.c:address_space_write_continue() which was able to handle only 4 bytes due to a zero'ed valid.max_access_size (see exec.c:memory_access_size()). Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2017-05-04 04:52:34 +08:00
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
/*
* Device state interfaces
*/
bool vfio_mig_active(void)
{
VFIOGroup *group;
VFIODevice *vbasedev;
if (QLIST_EMPTY(&vfio_group_list)) {
return false;
}
QLIST_FOREACH(group, &vfio_group_list, next) {
QLIST_FOREACH(vbasedev, &group->device_list, next) {
if (vbasedev->migration_blocker) {
return false;
}
}
}
return true;
}
vfio/migrate: Move switch of dirty tracking into vfio_memory_listener For now the switch of vfio dirty page tracking is integrated into @vfio_save_handler. The reason is that some PCI vendor driver may start to track dirty base on _SAVING state of device, so if dirty tracking is started before setting device state, vfio will report full-dirty to QEMU. However, the dirty bmap of all ramblocks are fully set when setup ram saving, so it's not matter whether the device is in _SAVING state when start vfio dirty tracking. Moreover, this logic causes some problems [1]. The object of dirty tracking is guest memory, but the object of @vfio_save_handler is device state, which produces unnecessary coupling and conflicts: 1. Coupling: Their saving granule is different (perVM vs perDevice). vfio will enable dirty_page_tracking for each devices, actually once is enough. 2. Conflicts: The ram_save_setup() traverses all memory_listeners to execute their log_start() and log_sync() hooks to get the first round dirty bitmap, which is used by the bulk stage of ram saving. However, as vfio dirty tracking is not yet started, it can't get dirty bitmap from vfio. Then we give up the chance to handle vfio dirty page at bulk stage. Move the switch of vfio dirty_page_tracking into vfio_memory_listener can solve above problems. Besides, Do not require devices in SAVING state for vfio_sync_dirty_bitmap(). [1] https://www.spinics.net/lists/kvm/msg229967.html Reported-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210309031913.11508-1-zhukeqian1@huawei.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-09 11:19:13 +08:00
static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
{
VFIOGroup *group;
VFIODevice *vbasedev;
MigrationState *ms = migrate_get_current();
if (!migration_is_setup_or_active(ms->state)) {
return false;
}
QLIST_FOREACH(group, &container->group_list, container_next) {
QLIST_FOREACH(vbasedev, &group->device_list, next) {
VFIOMigration *migration = vbasedev->migration;
if (!migration) {
return false;
}
vfio/migrate: Move switch of dirty tracking into vfio_memory_listener For now the switch of vfio dirty page tracking is integrated into @vfio_save_handler. The reason is that some PCI vendor driver may start to track dirty base on _SAVING state of device, so if dirty tracking is started before setting device state, vfio will report full-dirty to QEMU. However, the dirty bmap of all ramblocks are fully set when setup ram saving, so it's not matter whether the device is in _SAVING state when start vfio dirty tracking. Moreover, this logic causes some problems [1]. The object of dirty tracking is guest memory, but the object of @vfio_save_handler is device state, which produces unnecessary coupling and conflicts: 1. Coupling: Their saving granule is different (perVM vs perDevice). vfio will enable dirty_page_tracking for each devices, actually once is enough. 2. Conflicts: The ram_save_setup() traverses all memory_listeners to execute their log_start() and log_sync() hooks to get the first round dirty bitmap, which is used by the bulk stage of ram saving. However, as vfio dirty tracking is not yet started, it can't get dirty bitmap from vfio. Then we give up the chance to handle vfio dirty page at bulk stage. Move the switch of vfio dirty_page_tracking into vfio_memory_listener can solve above problems. Besides, Do not require devices in SAVING state for vfio_sync_dirty_bitmap(). [1] https://www.spinics.net/lists/kvm/msg229967.html Reported-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210309031913.11508-1-zhukeqian1@huawei.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-09 11:19:13 +08:00
if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
&& (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
return false;
}
}
}
return true;
}
static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
{
VFIOGroup *group;
VFIODevice *vbasedev;
MigrationState *ms = migrate_get_current();
if (!migration_is_setup_or_active(ms->state)) {
return false;
}
QLIST_FOREACH(group, &container->group_list, container_next) {
QLIST_FOREACH(vbasedev, &group->device_list, next) {
VFIOMigration *migration = vbasedev->migration;
if (!migration) {
return false;
}
if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) &&
(migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
continue;
} else {
return false;
}
}
}
return true;
}
static int vfio_dma_unmap_bitmap(VFIOContainer *container,
hwaddr iova, ram_addr_t size,
IOMMUTLBEntry *iotlb)
{
struct vfio_iommu_type1_dma_unmap *unmap;
struct vfio_bitmap *bitmap;
uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size;
int ret;
unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
unmap->iova = iova;
unmap->size = size;
unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
bitmap = (struct vfio_bitmap *)&unmap->data;
/*
* cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
* qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
* to qemu_real_host_page_size.
*/
bitmap->pgsize = qemu_real_host_page_size;
bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
BITS_PER_BYTE;
if (bitmap->size > container->max_dirty_bitmap_size) {
error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
(uint64_t)bitmap->size);
ret = -E2BIG;
goto unmap_exit;
}
bitmap->data = g_try_malloc0(bitmap->size);
if (!bitmap->data) {
ret = -ENOMEM;
goto unmap_exit;
}
ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
if (!ret) {
cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
iotlb->translated_addr, pages);
} else {
error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
}
g_free(bitmap->data);
unmap_exit:
g_free(unmap);
return ret;
}
/*
* DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
*/
static int vfio_dma_unmap(VFIOContainer *container,
hwaddr iova, ram_addr_t size,
IOMMUTLBEntry *iotlb)
{
struct vfio_iommu_type1_dma_unmap unmap = {
.argsz = sizeof(unmap),
.flags = 0,
.iova = iova,
.size = size,
};
if (iotlb && container->dirty_pages_supported &&
vfio_devices_all_running_and_saving(container)) {
return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
}
vfio/common: Work around kernel overflow bug in DMA unmap A kernel bug was introduced in v4.15 via commit 71a7d3d78e3c which adds a test for address space wrap-around in the vfio DMA unmap path. Unfortunately due to overflow, the kernel detects an unmap of the last page in the 64-bit address space as a wrap-around. In QEMU, a Q35 guest with VT-d emulation and guest IOMMU enabled will attempt to make such an unmap request during VM system reset, triggering an error: qemu-kvm: VFIO_UNMAP_DMA: -22 qemu-kvm: vfio_dma_unmap(0x561f059948f0, 0xfef00000, 0xffffffff01100000) = -22 (Invalid argument) Here the IOVA start address (0xfef00000) and the size parameter (0xffffffff01100000) add to exactly 2^64, triggering the bug. A kernel fix is queued for the Linux v5.0 release to address this. This patch implements a workaround to retry the unmap, excluding the final page of the range when we detect an unmap failing which matches the requirements for this issue. This is expected to be a safe and complete workaround as the VT-d address space does not extend to the full 64-bit space and therefore the last page should never be mapped. This workaround can be removed once all kernels with this bug are sufficiently deprecated. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1662291 Reported-by: Pei Zhang <pezhang@redhat.com> Debugged-by: Peter Xu <peterx@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-02-22 12:07:03 +08:00
while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
/*
* The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
* v4.15) where an overflow in its wrap-around check prevents us from
* unmapping the last page of the address space. Test for the error
* condition and re-try the unmap excluding the last page. The
* expectation is that we've never mapped the last page anyway and this
* unmap request comes via vIOMMU support which also makes it unlikely
* that this page is used. This bug was introduced well after type1 v2
* support was introduced, so we shouldn't need to test for v1. A fix
* is queued for kernel v5.0 so this workaround can be removed once
* affected kernels are sufficiently deprecated.
*/
if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
container->iommu_type == VFIO_TYPE1v2_IOMMU) {
trace_vfio_dma_unmap_overflow_workaround();
unmap.size -= 1ULL << ctz64(container->pgsizes);
continue;
}
error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
return -errno;
}
return 0;
}
static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
ram_addr_t size, void *vaddr, bool readonly)
{
struct vfio_iommu_type1_dma_map map = {
.argsz = sizeof(map),
.flags = VFIO_DMA_MAP_FLAG_READ,
.vaddr = (__u64)(uintptr_t)vaddr,
.iova = iova,
.size = size,
};
if (!readonly) {
map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
}
/*
* Try the mapping, if it fails with EBUSY, unmap the region and try
* again. This shouldn't be necessary, but we sometimes see it in
* the VGA ROM space.
*/
if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
(errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
return 0;
}
error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
return -errno;
}
static void vfio_host_win_add(VFIOContainer *container,
hwaddr min_iova, hwaddr max_iova,
uint64_t iova_pgsizes)
{
VFIOHostDMAWindow *hostwin;
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (ranges_overlap(hostwin->min_iova,
hostwin->max_iova - hostwin->min_iova + 1,
min_iova,
max_iova - min_iova + 1)) {
hw_error("%s: Overlapped IOMMU are not enabled", __func__);
}
}
hostwin = g_malloc0(sizeof(*hostwin));
hostwin->min_iova = min_iova;
hostwin->max_iova = max_iova;
hostwin->iova_pgsizes = iova_pgsizes;
QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
}
static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
hwaddr max_iova)
{
VFIOHostDMAWindow *hostwin;
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
QLIST_REMOVE(hostwin, hostwin_next);
return 0;
}
}
return -1;
}
static bool vfio_listener_skipped_section(MemoryRegionSection *section)
{
return (!memory_region_is_ram(section->mr) &&
!memory_region_is_iommu(section->mr)) ||
/*
* Sizing an enabled 64-bit BAR can cause spurious mappings to
* addresses in the upper part of the 64-bit address space. These
* are never accessed by the CPU and beyond the address width of
* some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
*/
section->offset_within_address_space & (1ULL << 63);
}
/* Called with rcu_read_lock held. */
static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
ram_addr_t *ram_addr, bool *read_only)
{
MemoryRegion *mr;
hwaddr xlat;
hwaddr len = iotlb->addr_mask + 1;
bool writable = iotlb->perm & IOMMU_WO;
/*
* The IOMMU TLB entry we have just covers translation through
* this IOMMU to its immediate target. We need to translate
* it the rest of the way through to memory.
*/
mr = address_space_translate(&address_space_memory,
iotlb->translated_addr,
&xlat, &len, writable,
MEMTXATTRS_UNSPECIFIED);
if (!memory_region_is_ram(mr)) {
error_report("iommu map to non memory area %"HWADDR_PRIx"",
xlat);
return false;
}
/*
* Translation truncates length to the IOMMU page size,
* check that it did not truncate too much.
*/
if (len & iotlb->addr_mask) {
error_report("iommu has granularity incompatible with target AS");
return false;
}
if (vaddr) {
*vaddr = memory_region_get_ram_ptr(mr) + xlat;
}
if (ram_addr) {
*ram_addr = memory_region_get_ram_addr(mr) + xlat;
}
if (read_only) {
*read_only = !writable || mr->readonly;
}
return true;
}
static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
VFIOContainer *container = giommu->container;
hwaddr iova = iotlb->iova + giommu->iommu_offset;
void *vaddr;
int ret;
trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
iova, iova + iotlb->addr_mask);
if (iotlb->target_as != &address_space_memory) {
error_report("Wrong target AS \"%s\", only system memory is allowed",
iotlb->target_as->name ? iotlb->target_as->name : "none");
return;
}
rcu_read_lock();
if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
bool read_only;
if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
goto out;
}
/*
* vaddr is only valid until rcu_read_unlock(). But after
* vfio_dma_map has set up the mapping the pages will be
* pinned by the kernel. This makes sure that the RAM backend
* of vaddr will always be there, even if the memory object is
* destroyed and its backing memory munmap-ed.
*/
ret = vfio_dma_map(container, iova,
iotlb->addr_mask + 1, vaddr,
read_only);
if (ret) {
error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx", %p) = %d (%m)",
container, iova,
iotlb->addr_mask + 1, vaddr, ret);
}
} else {
ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
if (ret) {
error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx") = %d (%m)",
container, iova,
iotlb->addr_mask + 1, ret);
}
}
out:
rcu_read_unlock();
}
static void vfio_listener_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
hwaddr iova, end;
Int128 llend, llsize;
void *vaddr;
int ret;
VFIOHostDMAWindow *hostwin;
bool hostwin_found;
Error *err = NULL;
if (vfio_listener_skipped_section(section)) {
trace_vfio_listener_region_add_skip(
section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(int128_sub(section->size, int128_one())));
return;
}
if (unlikely((section->offset_within_address_space &
~qemu_real_host_page_mask) !=
(section->offset_within_region & ~qemu_real_host_page_mask))) {
error_report("%s received unaligned region", __func__);
return;
}
iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
llend = int128_make64(section->offset_within_address_space);
llend = int128_add(llend, section->size);
llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
if (int128_ge(int128_make64(iova), llend)) {
return;
}
end = int128_get64(int128_sub(llend, int128_one()));
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
hwaddr pgsize = 0;
/* For now intersections are not allowed, we may relax this later */
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (ranges_overlap(hostwin->min_iova,
hostwin->max_iova - hostwin->min_iova + 1,
section->offset_within_address_space,
int128_get64(section->size))) {
error_setg(&err,
"region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
"host DMA window [0x%"PRIx64",0x%"PRIx64"]",
section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(section->size) - 1,
hostwin->min_iova, hostwin->max_iova);
goto fail;
}
}
ret = vfio_spapr_create_window(container, section, &pgsize);
if (ret) {
error_setg_errno(&err, -ret, "Failed to create SPAPR window");
goto fail;
}
vfio_host_win_add(container, section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(section->size) - 1, pgsize);
#ifdef CONFIG_KVM
if (kvm_enabled()) {
VFIOGroup *group;
IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
struct kvm_vfio_spapr_tce param;
struct kvm_device_attr attr = {
.group = KVM_DEV_VFIO_GROUP,
.attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
.addr = (uint64_t)(unsigned long)&param,
};
if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
&param.tablefd)) {
QLIST_FOREACH(group, &container->group_list, container_next) {
param.groupfd = group->fd;
if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
error_report("vfio: failed to setup fd %d "
"for a group with fd %d: %s",
param.tablefd, param.groupfd,
strerror(errno));
return;
}
trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
}
}
}
#endif
}
hostwin_found = false;
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
hostwin_found = true;
break;
}
}
if (!hostwin_found) {
error_setg(&err, "Container %p can't map guest IOVA region"
" 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
goto fail;
}
memory_region_ref(section->mr);
if (memory_region_is_iommu(section->mr)) {
VFIOGuestIOMMU *giommu;
IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
int iommu_idx;
trace_vfio_listener_region_add_iommu(iova, end);
/*
* FIXME: For VFIO iommu types which have KVM acceleration to
* avoid bouncing all map/unmaps through qemu this way, this
* would be the right place to wire that up (tell the KVM
* device emulation the VFIO iommu handles to use).
*/
giommu = g_malloc0(sizeof(*giommu));
giommu->iommu = iommu_mr;
giommu->iommu_offset = section->offset_within_address_space -
section->offset_within_region;
giommu->container = container;
llend = int128_add(int128_make64(section->offset_within_region),
section->size);
llend = int128_sub(llend, int128_one());
iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
MEMTXATTRS_UNSPECIFIED);
iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
IOMMU_NOTIFIER_IOTLB_EVENTS,
section->offset_within_region,
int128_get64(llend),
iommu_idx);
ret = memory_region_iommu_set_page_size_mask(giommu->iommu,
container->pgsizes,
&err);
if (ret) {
g_free(giommu);
goto fail;
}
ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
&err);
if (ret) {
g_free(giommu);
goto fail;
}
QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
memory_region_iommu_replay(giommu->iommu, &giommu->n);
return;
}
/* Here we assume that memory_region_is_ram(section->mr)==true */
vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
trace_vfio_listener_region_add_ram(iova, end, vaddr);
llsize = int128_sub(llend, int128_make64(iova));
if (memory_region_is_ram_device(section->mr)) {
hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
trace_vfio_listener_region_add_no_dma_map(
memory_region_name(section->mr),
section->offset_within_address_space,
int128_getlo(section->size),
pgmask + 1);
return;
}
}
ret = vfio_dma_map(container, iova, int128_get64(llsize),
vaddr, section->readonly);
if (ret) {
error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx", %p) = %d (%m)",
container, iova, int128_get64(llsize), vaddr, ret);
if (memory_region_is_ram_device(section->mr)) {
/* Allow unexpected mappings not to be fatal for RAM devices */
error_report_err(err);
return;
}
goto fail;
}
return;
fail:
if (memory_region_is_ram_device(section->mr)) {
error_report("failed to vfio_dma_map. pci p2p may not work");
return;
}
/*
* On the initfn path, store the first error in the container so we
* can gracefully fail. Runtime, there's not much we can do other
* than throw a hardware error.
*/
if (!container->initialized) {
if (!container->error) {
error_propagate_prepend(&container->error, err,
"Region %s: ",
memory_region_name(section->mr));
} else {
error_free(err);
}
} else {
error_report_err(err);
hw_error("vfio: DMA mapping failed, unable to continue");
}
}
static void vfio_listener_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
hwaddr iova, end;
Int128 llend, llsize;
int ret;
bool try_unmap = true;
if (vfio_listener_skipped_section(section)) {
trace_vfio_listener_region_del_skip(
section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(int128_sub(section->size, int128_one())));
return;
}
if (unlikely((section->offset_within_address_space &
~qemu_real_host_page_mask) !=
(section->offset_within_region & ~qemu_real_host_page_mask))) {
error_report("%s received unaligned region", __func__);
return;
}
if (memory_region_is_iommu(section->mr)) {
VFIOGuestIOMMU *giommu;
QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
if (MEMORY_REGION(giommu->iommu) == section->mr &&
giommu->n.start == section->offset_within_region) {
memory_region_unregister_iommu_notifier(section->mr,
&giommu->n);
QLIST_REMOVE(giommu, giommu_next);
g_free(giommu);
break;
}
}
/*
* FIXME: We assume the one big unmap below is adequate to
* remove any individual page mappings in the IOMMU which
* might have been copied into VFIO. This works for a page table
* based IOMMU where a big unmap flattens a large range of IO-PTEs.
* That may not be true for all IOMMU types.
*/
}
iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
llend = int128_make64(section->offset_within_address_space);
llend = int128_add(llend, section->size);
llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
if (int128_ge(int128_make64(iova), llend)) {
return;
}
end = int128_get64(int128_sub(llend, int128_one()));
llsize = int128_sub(llend, int128_make64(iova));
trace_vfio_listener_region_del(iova, end);
if (memory_region_is_ram_device(section->mr)) {
hwaddr pgmask;
VFIOHostDMAWindow *hostwin;
bool hostwin_found = false;
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
hostwin_found = true;
break;
}
}
assert(hostwin_found); /* or region_add() would have failed */
pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
}
if (try_unmap) {
if (int128_eq(llsize, int128_2_64())) {
/* The unmap ioctl doesn't accept a full 64-bit span. */
llsize = int128_rshift(llsize, 1);
ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
if (ret) {
error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx") = %d (%m)",
container, iova, int128_get64(llsize), ret);
}
iova += int128_get64(llsize);
}
ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
if (ret) {
error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx") = %d (%m)",
container, iova, int128_get64(llsize), ret);
}
}
memory_region_unref(section->mr);
if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
vfio_spapr_remove_window(container,
section->offset_within_address_space);
if (vfio_host_win_del(container,
section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(section->size) - 1) < 0) {
hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
__func__, section->offset_within_address_space);
}
}
}
vfio/migrate: Move switch of dirty tracking into vfio_memory_listener For now the switch of vfio dirty page tracking is integrated into @vfio_save_handler. The reason is that some PCI vendor driver may start to track dirty base on _SAVING state of device, so if dirty tracking is started before setting device state, vfio will report full-dirty to QEMU. However, the dirty bmap of all ramblocks are fully set when setup ram saving, so it's not matter whether the device is in _SAVING state when start vfio dirty tracking. Moreover, this logic causes some problems [1]. The object of dirty tracking is guest memory, but the object of @vfio_save_handler is device state, which produces unnecessary coupling and conflicts: 1. Coupling: Their saving granule is different (perVM vs perDevice). vfio will enable dirty_page_tracking for each devices, actually once is enough. 2. Conflicts: The ram_save_setup() traverses all memory_listeners to execute their log_start() and log_sync() hooks to get the first round dirty bitmap, which is used by the bulk stage of ram saving. However, as vfio dirty tracking is not yet started, it can't get dirty bitmap from vfio. Then we give up the chance to handle vfio dirty page at bulk stage. Move the switch of vfio dirty_page_tracking into vfio_memory_listener can solve above problems. Besides, Do not require devices in SAVING state for vfio_sync_dirty_bitmap(). [1] https://www.spinics.net/lists/kvm/msg229967.html Reported-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210309031913.11508-1-zhukeqian1@huawei.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-09 11:19:13 +08:00
static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
{
int ret;
struct vfio_iommu_type1_dirty_bitmap dirty = {
.argsz = sizeof(dirty),
};
if (start) {
dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
} else {
dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
}
ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
if (ret) {
error_report("Failed to set dirty tracking flag 0x%x errno: %d",
dirty.flags, errno);
}
}
static void vfio_listener_log_global_start(MemoryListener *listener)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
vfio_set_dirty_page_tracking(container, true);
}
static void vfio_listener_log_global_stop(MemoryListener *listener)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
vfio_set_dirty_page_tracking(container, false);
}
static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
uint64_t size, ram_addr_t ram_addr)
{
struct vfio_iommu_type1_dirty_bitmap *dbitmap;
struct vfio_iommu_type1_dirty_bitmap_get *range;
uint64_t pages;
int ret;
dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
range->iova = iova;
range->size = size;
/*
* cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
* qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
* to qemu_real_host_page_size.
*/
range->bitmap.pgsize = qemu_real_host_page_size;
pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size;
range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
BITS_PER_BYTE;
range->bitmap.data = g_try_malloc0(range->bitmap.size);
if (!range->bitmap.data) {
ret = -ENOMEM;
goto err_out;
}
ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
if (ret) {
error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
" size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
(uint64_t)range->size, errno);
goto err_out;
}
cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
ram_addr, pages);
trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
range->bitmap.size, ram_addr);
err_out:
g_free(range->bitmap.data);
g_free(dbitmap);
return ret;
}
typedef struct {
IOMMUNotifier n;
VFIOGuestIOMMU *giommu;
} vfio_giommu_dirty_notifier;
static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
vfio_giommu_dirty_notifier *gdn = container_of(n,
vfio_giommu_dirty_notifier, n);
VFIOGuestIOMMU *giommu = gdn->giommu;
VFIOContainer *container = giommu->container;
hwaddr iova = iotlb->iova + giommu->iommu_offset;
ram_addr_t translated_addr;
trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
if (iotlb->target_as != &address_space_memory) {
error_report("Wrong target AS \"%s\", only system memory is allowed",
iotlb->target_as->name ? iotlb->target_as->name : "none");
return;
}
rcu_read_lock();
if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
int ret;
ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
translated_addr);
if (ret) {
error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx") = %d (%m)",
container, iova,
iotlb->addr_mask + 1, ret);
}
}
rcu_read_unlock();
}
static int vfio_sync_dirty_bitmap(VFIOContainer *container,
MemoryRegionSection *section)
{
ram_addr_t ram_addr;
if (memory_region_is_iommu(section->mr)) {
VFIOGuestIOMMU *giommu;
QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
if (MEMORY_REGION(giommu->iommu) == section->mr &&
giommu->n.start == section->offset_within_region) {
Int128 llend;
vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
int idx = memory_region_iommu_attrs_to_index(giommu->iommu,
MEMTXATTRS_UNSPECIFIED);
llend = int128_add(int128_make64(section->offset_within_region),
section->size);
llend = int128_sub(llend, int128_one());
iommu_notifier_init(&gdn.n,
vfio_iommu_map_dirty_notify,
IOMMU_NOTIFIER_MAP,
section->offset_within_region,
int128_get64(llend),
idx);
memory_region_iommu_replay(giommu->iommu, &gdn.n);
break;
}
}
return 0;
}
ram_addr = memory_region_get_ram_addr(section->mr) +
section->offset_within_region;
return vfio_get_dirty_bitmap(container,
REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
int128_get64(section->size), ram_addr);
}
static void vfio_listener_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
if (vfio_listener_skipped_section(section) ||
!container->dirty_pages_supported) {
return;
}
vfio/migrate: Move switch of dirty tracking into vfio_memory_listener For now the switch of vfio dirty page tracking is integrated into @vfio_save_handler. The reason is that some PCI vendor driver may start to track dirty base on _SAVING state of device, so if dirty tracking is started before setting device state, vfio will report full-dirty to QEMU. However, the dirty bmap of all ramblocks are fully set when setup ram saving, so it's not matter whether the device is in _SAVING state when start vfio dirty tracking. Moreover, this logic causes some problems [1]. The object of dirty tracking is guest memory, but the object of @vfio_save_handler is device state, which produces unnecessary coupling and conflicts: 1. Coupling: Their saving granule is different (perVM vs perDevice). vfio will enable dirty_page_tracking for each devices, actually once is enough. 2. Conflicts: The ram_save_setup() traverses all memory_listeners to execute their log_start() and log_sync() hooks to get the first round dirty bitmap, which is used by the bulk stage of ram saving. However, as vfio dirty tracking is not yet started, it can't get dirty bitmap from vfio. Then we give up the chance to handle vfio dirty page at bulk stage. Move the switch of vfio dirty_page_tracking into vfio_memory_listener can solve above problems. Besides, Do not require devices in SAVING state for vfio_sync_dirty_bitmap(). [1] https://www.spinics.net/lists/kvm/msg229967.html Reported-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210309031913.11508-1-zhukeqian1@huawei.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-09 11:19:13 +08:00
if (vfio_devices_all_dirty_tracking(container)) {
vfio_sync_dirty_bitmap(container, section);
}
}
static const MemoryListener vfio_memory_listener = {
.region_add = vfio_listener_region_add,
.region_del = vfio_listener_region_del,
vfio/migrate: Move switch of dirty tracking into vfio_memory_listener For now the switch of vfio dirty page tracking is integrated into @vfio_save_handler. The reason is that some PCI vendor driver may start to track dirty base on _SAVING state of device, so if dirty tracking is started before setting device state, vfio will report full-dirty to QEMU. However, the dirty bmap of all ramblocks are fully set when setup ram saving, so it's not matter whether the device is in _SAVING state when start vfio dirty tracking. Moreover, this logic causes some problems [1]. The object of dirty tracking is guest memory, but the object of @vfio_save_handler is device state, which produces unnecessary coupling and conflicts: 1. Coupling: Their saving granule is different (perVM vs perDevice). vfio will enable dirty_page_tracking for each devices, actually once is enough. 2. Conflicts: The ram_save_setup() traverses all memory_listeners to execute their log_start() and log_sync() hooks to get the first round dirty bitmap, which is used by the bulk stage of ram saving. However, as vfio dirty tracking is not yet started, it can't get dirty bitmap from vfio. Then we give up the chance to handle vfio dirty page at bulk stage. Move the switch of vfio dirty_page_tracking into vfio_memory_listener can solve above problems. Besides, Do not require devices in SAVING state for vfio_sync_dirty_bitmap(). [1] https://www.spinics.net/lists/kvm/msg229967.html Reported-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210309031913.11508-1-zhukeqian1@huawei.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-09 11:19:13 +08:00
.log_global_start = vfio_listener_log_global_start,
.log_global_stop = vfio_listener_log_global_stop,
.log_sync = vfio_listener_log_sync,
};
static void vfio_listener_release(VFIOContainer *container)
{
memory_listener_unregister(&container->listener);
if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
memory_listener_unregister(&container->prereg_listener);
}
}
static struct vfio_info_cap_header *
vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
{
struct vfio_info_cap_header *hdr;
for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
if (hdr->id == id) {
return hdr;
}
}
return NULL;
}
struct vfio_info_cap_header *
vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
{
if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
return NULL;
}
return vfio_get_cap((void *)info, info->cap_offset, id);
}
static struct vfio_info_cap_header *
vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
{
if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
return NULL;
}
return vfio_get_cap((void *)info, info->cap_offset, id);
}
struct vfio_info_cap_header *
vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
{
if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
return NULL;
}
return vfio_get_cap((void *)info, info->cap_offset, id);
}
bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
unsigned int *avail)
{
struct vfio_info_cap_header *hdr;
struct vfio_iommu_type1_info_dma_avail *cap;
/* If the capability cannot be found, assume no DMA limiting */
hdr = vfio_get_iommu_type1_info_cap(info,
VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
if (hdr == NULL) {
return false;
}
if (avail != NULL) {
cap = (void *) hdr;
*avail = cap->avail;
}
return true;
}
static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
struct vfio_region_info *info)
{
struct vfio_info_cap_header *hdr;
struct vfio_region_info_cap_sparse_mmap *sparse;
int i, j;
hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
if (!hdr) {
return -ENODEV;
}
sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
region->nr, sparse->nr_areas);
region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
for (i = 0, j = 0; i < sparse->nr_areas; i++) {
trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
sparse->areas[i].offset +
sparse->areas[i].size);
if (sparse->areas[i].size) {
region->mmaps[j].offset = sparse->areas[i].offset;
region->mmaps[j].size = sparse->areas[i].size;
j++;
}
}
region->nr_mmaps = j;
region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
return 0;
}
int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
int index, const char *name)
{
struct vfio_region_info *info;
int ret;
ret = vfio_get_region_info(vbasedev, index, &info);
if (ret) {
return ret;
}
region->vbasedev = vbasedev;
region->flags = info->flags;
region->size = info->size;
region->fd_offset = info->offset;
region->nr = index;
if (region->size) {
region->mem = g_new0(MemoryRegion, 1);
memory_region_init_io(region->mem, obj, &vfio_region_ops,
region, name, region->size);
if (!vbasedev->no_mmap &&
region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
ret = vfio_setup_region_sparse_mmaps(region, info);
if (ret) {
region->nr_mmaps = 1;
region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
region->mmaps[0].offset = 0;
region->mmaps[0].size = region->size;
}
}
}
g_free(info);
trace_vfio_region_setup(vbasedev->name, index, name,
region->flags, region->fd_offset, region->size);
return 0;
}
static void vfio_subregion_unmap(VFIORegion *region, int index)
{
trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
region->mmaps[index].offset,
region->mmaps[index].offset +
region->mmaps[index].size - 1);
memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
munmap(region->mmaps[index].mmap, region->mmaps[index].size);
object_unparent(OBJECT(&region->mmaps[index].mem));
region->mmaps[index].mmap = NULL;
}
int vfio_region_mmap(VFIORegion *region)
{
int i, prot = 0;
char *name;
if (!region->mem) {
return 0;
}
prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
for (i = 0; i < region->nr_mmaps; i++) {
region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
MAP_SHARED, region->vbasedev->fd,
region->fd_offset +
region->mmaps[i].offset);
if (region->mmaps[i].mmap == MAP_FAILED) {
int ret = -errno;
trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
region->fd_offset +
region->mmaps[i].offset,
region->fd_offset +
region->mmaps[i].offset +
region->mmaps[i].size - 1, ret);
region->mmaps[i].mmap = NULL;
for (i--; i >= 0; i--) {
vfio_subregion_unmap(region, i);
}
return ret;
}
name = g_strdup_printf("%s mmaps[%d]",
memory_region_name(region->mem), i);
memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
memory_region_owner(region->mem),
name, region->mmaps[i].size,
region->mmaps[i].mmap);
g_free(name);
memory_region_add_subregion(region->mem, region->mmaps[i].offset,
&region->mmaps[i].mem);
trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
region->mmaps[i].offset,
region->mmaps[i].offset +
region->mmaps[i].size - 1);
}
return 0;
}
void vfio_region_unmap(VFIORegion *region)
{
int i;
if (!region->mem) {
return;
}
for (i = 0; i < region->nr_mmaps; i++) {
if (region->mmaps[i].mmap) {
vfio_subregion_unmap(region, i);
}
}
}
void vfio_region_exit(VFIORegion *region)
{
int i;
if (!region->mem) {
return;
}
for (i = 0; i < region->nr_mmaps; i++) {
if (region->mmaps[i].mmap) {
memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
}
}
trace_vfio_region_exit(region->vbasedev->name, region->nr);
}
void vfio_region_finalize(VFIORegion *region)
{
int i;
if (!region->mem) {
return;
}
for (i = 0; i < region->nr_mmaps; i++) {
if (region->mmaps[i].mmap) {
munmap(region->mmaps[i].mmap, region->mmaps[i].size);
object_unparent(OBJECT(&region->mmaps[i].mem));
}
}
object_unparent(OBJECT(region->mem));
g_free(region->mem);
g_free(region->mmaps);
trace_vfio_region_finalize(region->vbasedev->name, region->nr);
region->mem = NULL;
region->mmaps = NULL;
region->nr_mmaps = 0;
region->size = 0;
region->flags = 0;
region->nr = 0;
}
void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
{
int i;
if (!region->mem) {
return;
}
for (i = 0; i < region->nr_mmaps; i++) {
if (region->mmaps[i].mmap) {
memory_region_set_enabled(&region->mmaps[i].mem, enabled);
}
}
trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
enabled);
}
void vfio_reset_handler(void *opaque)
{
VFIOGroup *group;
VFIODevice *vbasedev;
QLIST_FOREACH(group, &vfio_group_list, next) {
QLIST_FOREACH(vbasedev, &group->device_list, next) {
if (vbasedev->dev->realized) {
vbasedev->ops->vfio_compute_needs_reset(vbasedev);
}
}
}
QLIST_FOREACH(group, &vfio_group_list, next) {
QLIST_FOREACH(vbasedev, &group->device_list, next) {
if (vbasedev->dev->realized && vbasedev->needs_reset) {
vbasedev->ops->vfio_hot_reset_multi(vbasedev);
}
}
}
}
static void vfio_kvm_device_add_group(VFIOGroup *group)
{
#ifdef CONFIG_KVM
struct kvm_device_attr attr = {
.group = KVM_DEV_VFIO_GROUP,
.attr = KVM_DEV_VFIO_GROUP_ADD,
.addr = (uint64_t)(unsigned long)&group->fd,
};
if (!kvm_enabled()) {
return;
}
if (vfio_kvm_device_fd < 0) {
struct kvm_create_device cd = {
.type = KVM_DEV_TYPE_VFIO,
};
if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
error_report("Failed to create KVM VFIO device: %m");
return;
}
vfio_kvm_device_fd = cd.fd;
}
if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
error_report("Failed to add group %d to KVM VFIO device: %m",
group->groupid);
}
#endif
}
static void vfio_kvm_device_del_group(VFIOGroup *group)
{
#ifdef CONFIG_KVM
struct kvm_device_attr attr = {
.group = KVM_DEV_VFIO_GROUP,
.attr = KVM_DEV_VFIO_GROUP_DEL,
.addr = (uint64_t)(unsigned long)&group->fd,
};
if (vfio_kvm_device_fd < 0) {
return;
}
if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
error_report("Failed to remove group %d from KVM VFIO device: %m",
group->groupid);
}
#endif
}
static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
{
VFIOAddressSpace *space;
QLIST_FOREACH(space, &vfio_address_spaces, list) {
if (space->as == as) {
return space;
}
}
/* No suitable VFIOAddressSpace, create a new one */
space = g_malloc0(sizeof(*space));
space->as = as;
QLIST_INIT(&space->containers);
QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
return space;
}
static void vfio_put_address_space(VFIOAddressSpace *space)
{
if (QLIST_EMPTY(&space->containers)) {
QLIST_REMOVE(space, list);
g_free(space);
}
}
/*
* vfio_get_iommu_type - selects the richest iommu_type (v2 first)
*/
static int vfio_get_iommu_type(VFIOContainer *container,
Error **errp)
{
int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
int i;
for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
return iommu_types[i];
}
}
error_setg(errp, "No available IOMMU models");
return -EINVAL;
}
static int vfio_init_container(VFIOContainer *container, int group_fd,
Error **errp)
{
int iommu_type, ret;
iommu_type = vfio_get_iommu_type(container, errp);
if (iommu_type < 0) {
return iommu_type;
}
ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
if (ret) {
error_setg_errno(errp, errno, "Failed to set group container");
return -errno;
}
while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
/*
* On sPAPR, despite the IOMMU subdriver always advertises v1 and
* v2, the running platform may not support v2 and there is no
* way to guess it until an IOMMU group gets added to the container.
* So in case it fails with v2, try v1 as a fallback.
*/
iommu_type = VFIO_SPAPR_TCE_IOMMU;
continue;
}
error_setg_errno(errp, errno, "Failed to set iommu for container");
return -errno;
}
container->iommu_type = iommu_type;
return 0;
}
static int vfio_get_iommu_info(VFIOContainer *container,
struct vfio_iommu_type1_info **info)
{
size_t argsz = sizeof(struct vfio_iommu_type1_info);
*info = g_new0(struct vfio_iommu_type1_info, 1);
again:
(*info)->argsz = argsz;
if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
g_free(*info);
*info = NULL;
return -errno;
}
if (((*info)->argsz > argsz)) {
argsz = (*info)->argsz;
*info = g_realloc(*info, argsz);
goto again;
}
return 0;
}
static struct vfio_info_cap_header *
vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
{
struct vfio_info_cap_header *hdr;
void *ptr = info;
if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
return NULL;
}
for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
if (hdr->id == id) {
return hdr;
}
}
return NULL;
}
static void vfio_get_iommu_info_migration(VFIOContainer *container,
struct vfio_iommu_type1_info *info)
{
struct vfio_info_cap_header *hdr;
struct vfio_iommu_type1_info_cap_migration *cap_mig;
hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
if (!hdr) {
return;
}
cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
header);
/*
* cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
* qemu_real_host_page_size to mark those dirty.
*/
if (cap_mig->pgsize_bitmap & qemu_real_host_page_size) {
container->dirty_pages_supported = true;
container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
container->dirty_pgsizes = cap_mig->pgsize_bitmap;
}
}
static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
Error **errp)
{
VFIOContainer *container;
int ret, fd;
VFIOAddressSpace *space;
space = vfio_get_address_space(as);
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
/*
* VFIO is currently incompatible with discarding of RAM insofar as the
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
* madvise to purge (zap) the page from QEMU's address space does not
* interact with the memory API and therefore leaves stale virtual to
* physical mappings in the IOMMU if the page was previously pinned. We
* therefore set discarding broken for each group added to a container,
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
* whether the container is used individually or shared. This provides
* us with options to allow devices within a group to opt-in and allow
* discarding, so long as it is done consistently for a group (for instance
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
* if the device is an mdev device where it is known that the host vendor
* driver will never pin pages outside of the working set of the guest
* driver, which would thus not be discarding candidates).
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
*
* The first opportunity to induce pinning occurs here where we attempt to
* attach the group to existing containers within the AddressSpace. If any
* pages are already zapped from the virtual address space, such as from
* previous discards, new pinning will cause valid mappings to be
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
* re-established. Likewise, when the overall MemoryListener for a new
* container is registered, a replay of mappings within the AddressSpace
* will occur, re-establishing any previously zapped pages as well.
*
* Especially virtio-balloon is currently only prevented from discarding
* new memory, it will not yet set ram_block_discard_set_required() and
* therefore, neither stops us here or deals with the sudden memory
* consumption of inflated memory.
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
*/
ret = ram_block_discard_disable(true);
if (ret) {
error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
return ret;
}
vfio: Inhibit ballooning based on group attachment to a container We use a VFIOContainer to associate an AddressSpace to one or more VFIOGroups. The VFIOContainer represents the DMA context for that AdressSpace for those VFIOGroups and is synchronized to changes in that AddressSpace via a MemoryListener. For IOMMU backed devices, maintaining the DMA context for a VFIOGroup generally involves pinning a host virtual address in order to create a stable host physical address and then mapping a translation from the associated guest physical address to that host physical address into the IOMMU. While the above maintains the VFIOContainer synchronized to the QEMU memory API of the VM, memory ballooning occurs outside of that API. Inflating the memory balloon (ie. cooperatively capturing pages from the guest for use by the host) simply uses MADV_DONTNEED to "zap" pages from QEMU's host virtual address space. The page pinning and IOMMU mapping above remains in place, negating the host's ability to reuse the page, but the host virtual to host physical mapping of the page is invalidated outside of QEMU's memory API. When the balloon is later deflated, attempting to cooperatively return pages to the guest, the page is simply freed by the guest balloon driver, allowing it to be used in the guest and incurring a page fault when that occurs. The page fault maps a new host physical page backing the existing host virtual address, meanwhile the VFIOContainer still maintains the translation to the original host physical address. At this point the guest vCPU and any assigned devices will map different host physical addresses to the same guest physical address. Badness. The IOMMU typically does not have page level granularity with which it can track this mapping without also incurring inefficiencies in using page size mappings throughout. MMU notifiers in the host kernel also provide indicators for invalidating the mapping on balloon inflation, not for updating the mapping when the balloon is deflated. For these reasons we assume a default behavior that the mapping of each VFIOGroup into the VFIOContainer is incompatible with memory ballooning and increment the balloon inhibitor to match the attached VFIOGroups. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-08-17 23:27:16 +08:00
QLIST_FOREACH(container, &space->containers, next) {
if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
group->container = container;
QLIST_INSERT_HEAD(&container->group_list, group, container_next);
vfio_kvm_device_add_group(group);
return 0;
}
}
fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
if (fd < 0) {
error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
ret = -errno;
goto put_space_exit;
}
ret = ioctl(fd, VFIO_GET_API_VERSION);
if (ret != VFIO_API_VERSION) {
error_setg(errp, "supported vfio version: %d, "
"reported version: %d", VFIO_API_VERSION, ret);
ret = -EINVAL;
goto close_fd_exit;
}
container = g_malloc0(sizeof(*container));
container->space = space;
container->fd = fd;
container->error = NULL;
container->dirty_pages_supported = false;
QLIST_INIT(&container->giommu_list);
QLIST_INIT(&container->hostwin_list);
ret = vfio_init_container(container, group->fd, errp);
if (ret) {
goto free_container_exit;
}
switch (container->iommu_type) {
case VFIO_TYPE1v2_IOMMU:
case VFIO_TYPE1_IOMMU:
{
struct vfio_iommu_type1_info *info;
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
/*
* FIXME: This assumes that a Type1 IOMMU can map any 64-bit
* IOVA whatsoever. That's not actually true, but the current
* kernel interface doesn't tell us what it can map, and the
* existing Type1 IOMMUs generally support any IOVA we're
* going to actually try in practice.
*/
ret = vfio_get_iommu_info(container, &info);
if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
/* Assume 4k IOVA page size */
info->iova_pgsizes = 4096;
}
vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
container->pgsizes = info->iova_pgsizes;
if (!ret) {
vfio_get_iommu_info_migration(container, info);
}
g_free(info);
break;
}
case VFIO_SPAPR_TCE_v2_IOMMU:
case VFIO_SPAPR_TCE_IOMMU:
{
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
struct vfio_iommu_spapr_tce_info info;
bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
/*
* The host kernel code implementing VFIO_IOMMU_DISABLE is called
* when container fd is closed so we do not call it explicitly
* in this file.
*/
if (!v2) {
ret = ioctl(fd, VFIO_IOMMU_ENABLE);
if (ret) {
error_setg_errno(errp, errno, "failed to enable container");
ret = -errno;
goto free_container_exit;
}
} else {
container->prereg_listener = vfio_prereg_listener;
memory_listener_register(&container->prereg_listener,
&address_space_memory);
if (container->error) {
memory_listener_unregister(&container->prereg_listener);
ret = -1;
error_propagate_prepend(errp, container->error,
"RAM memory listener initialization failed: ");
goto free_container_exit;
}
}
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
info.argsz = sizeof(info);
ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
if (ret) {
error_setg_errno(errp, errno,
"VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
ret = -errno;
if (v2) {
memory_listener_unregister(&container->prereg_listener);
}
vfio: Check guest IOVA ranges against host IOMMU capabilities The current vfio core code assumes that the host IOMMU is capable of mapping any IOVA the guest wants to use to where we need. However, real IOMMUs generally only support translating a certain range of IOVAs (the "DMA window") not a full 64-bit address space. The common x86 IOMMUs support a wide enough range that guests are very unlikely to go beyond it in practice, however the IOMMU used on IBM Power machines - in the default configuration - supports only a much more limited IOVA range, usually 0..2GiB. If the guest attempts to set up an IOVA range that the host IOMMU can't map, qemu won't report an error until it actually attempts to map a bad IOVA. If guest RAM is being mapped directly into the IOMMU (i.e. no guest visible IOMMU) then this will show up very quickly. If there is a guest visible IOMMU, however, the problem might not show up until much later when the guest actually attempt to DMA with an IOVA the host can't handle. This patch adds a test so that we will detect earlier if the guest is attempting to use IOVA ranges that the host IOMMU won't be able to deal with. For now, we assume that "Type1" (x86) IOMMUs can support any IOVA, this is incorrect, but no worse than what we have already. We can't do better for now because the Type1 kernel interface doesn't tell us what IOVA range the IOMMU actually supports. For the Power "sPAPR TCE" IOMMU, however, we can retrieve the supported IOVA range and validate guest IOVA ranges against it, and this patch does so. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-30 10:13:53 +08:00
goto free_container_exit;
}
if (v2) {
container->pgsizes = info.ddw.pgsizes;
/*
* There is a default window in just created container.
* To make region_add/del simpler, we better remove this
* window now and let those iommu_listener callbacks
* create/remove them when needed.
*/
ret = vfio_spapr_remove_window(container, info.dma32_window_start);
if (ret) {
error_setg_errno(errp, -ret,
"failed to remove existing window");
goto free_container_exit;
}
} else {
/* The default table uses 4K pages */
container->pgsizes = 0x1000;
vfio_host_win_add(container, info.dma32_window_start,
info.dma32_window_start +
info.dma32_window_size - 1,
0x1000);
}
}
}
vfio-pci, ppc64/spapr: Reorder group-to-container attaching At the moment VFIO PCI device initialization works as follows: vfio_realize vfio_get_group vfio_connect_container register memory listeners (1) update QEMU groups lists vfio_kvm_device_add_group Then (example for pseries) the machine reset hook triggers region_add() for all regions where listeners from (1) are listening: ppc_spapr_reset spapr_phb_reset spapr_tce_table_enable memory_region_add_subregion vfio_listener_region_add vfio_spapr_create_window This scheme works fine until we need to handle VFIO PCI device hotplug and we want to enable PPC64/sPAPR in-kernel TCE acceleration on, i.e. after PCI hotplug we need a place to call ioctl(vfio_kvm_device_fd, KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE). Since the ioctl needs a LIOBN fd (from sPAPRTCETable) and a IOMMU group fd (from VFIOGroup), vfio_listener_region_add() seems to be the only place for this ioctl(). However this only works during boot time because the machine reset happens strictly after all devices are finalized. When hotplug happens, vfio_listener_region_add() is called when a memory listener is registered but when this happens: 1. new group is not added to the container->group_list yet; 2. VFIO KVM device is unaware of the new IOMMU group. This moves bits around to have all necessary VFIO infrastructure in place for both initial startup and hotplug cases. [aw: ie, register vfio groups with kvm prior to memory listener registration such that kvm-vfio pseudo device ioctls are available during the region_add callback] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2017-07-18 02:39:09 +08:00
vfio_kvm_device_add_group(group);
QLIST_INIT(&container->group_list);
QLIST_INSERT_HEAD(&space->containers, container, next);
group->container = container;
QLIST_INSERT_HEAD(&container->group_list, group, container_next);
container->listener = vfio_memory_listener;
memory_listener_register(&container->listener, container->space->as);
if (container->error) {
ret = -1;
error_propagate_prepend(errp, container->error,
"memory listener initialization failed: ");
goto listener_release_exit;
}
container->initialized = true;
return 0;
listener_release_exit:
vfio-pci, ppc64/spapr: Reorder group-to-container attaching At the moment VFIO PCI device initialization works as follows: vfio_realize vfio_get_group vfio_connect_container register memory listeners (1) update QEMU groups lists vfio_kvm_device_add_group Then (example for pseries) the machine reset hook triggers region_add() for all regions where listeners from (1) are listening: ppc_spapr_reset spapr_phb_reset spapr_tce_table_enable memory_region_add_subregion vfio_listener_region_add vfio_spapr_create_window This scheme works fine until we need to handle VFIO PCI device hotplug and we want to enable PPC64/sPAPR in-kernel TCE acceleration on, i.e. after PCI hotplug we need a place to call ioctl(vfio_kvm_device_fd, KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE). Since the ioctl needs a LIOBN fd (from sPAPRTCETable) and a IOMMU group fd (from VFIOGroup), vfio_listener_region_add() seems to be the only place for this ioctl(). However this only works during boot time because the machine reset happens strictly after all devices are finalized. When hotplug happens, vfio_listener_region_add() is called when a memory listener is registered but when this happens: 1. new group is not added to the container->group_list yet; 2. VFIO KVM device is unaware of the new IOMMU group. This moves bits around to have all necessary VFIO infrastructure in place for both initial startup and hotplug cases. [aw: ie, register vfio groups with kvm prior to memory listener registration such that kvm-vfio pseudo device ioctls are available during the region_add callback] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2017-07-18 02:39:09 +08:00
QLIST_REMOVE(group, container_next);
QLIST_REMOVE(container, next);
vfio_kvm_device_del_group(group);
vfio_listener_release(container);
free_container_exit:
g_free(container);
close_fd_exit:
close(fd);
put_space_exit:
ram_block_discard_disable(false);
vfio_put_address_space(space);
return ret;
}
static void vfio_disconnect_container(VFIOGroup *group)
{
VFIOContainer *container = group->container;
QLIST_REMOVE(group, container_next);
group->container = NULL;
/*
* Explicitly release the listener first before unset container,
* since unset may destroy the backend container if it's the last
* group.
*/
if (QLIST_EMPTY(&container->group_list)) {
vfio_listener_release(container);
}
if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
error_report("vfio: error disconnecting group %d from container",
group->groupid);
}
if (QLIST_EMPTY(&container->group_list)) {
VFIOAddressSpace *space = container->space;
VFIOGuestIOMMU *giommu, *tmp;
QLIST_REMOVE(container, next);
QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
memory_region_unregister_iommu_notifier(
MEMORY_REGION(giommu->iommu), &giommu->n);
QLIST_REMOVE(giommu, giommu_next);
g_free(giommu);
}
trace_vfio_disconnect_container(container->fd);
close(container->fd);
g_free(container);
vfio_put_address_space(space);
}
}
VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
{
VFIOGroup *group;
char path[32];
struct vfio_group_status status = { .argsz = sizeof(status) };
QLIST_FOREACH(group, &vfio_group_list, next) {
if (group->groupid == groupid) {
/* Found it. Now is it already in the right context? */
if (group->container->space->as == as) {
return group;
} else {
error_setg(errp, "group %d used in multiple address spaces",
group->groupid);
return NULL;
}
}
}
group = g_malloc0(sizeof(*group));
snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
group->fd = qemu_open_old(path, O_RDWR);
if (group->fd < 0) {
error_setg_errno(errp, errno, "failed to open %s", path);
goto free_group_exit;
}
if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
error_setg_errno(errp, errno, "failed to get group %d status", groupid);
goto close_fd_exit;
}
if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
error_setg(errp, "group %d is not viable", groupid);
error_append_hint(errp,
"Please ensure all devices within the iommu_group "
"are bound to their vfio bus driver.\n");
goto close_fd_exit;
}
group->groupid = groupid;
QLIST_INIT(&group->device_list);
if (vfio_connect_container(group, as, errp)) {
error_prepend(errp, "failed to setup container for group %d: ",
groupid);
goto close_fd_exit;
}
if (QLIST_EMPTY(&vfio_group_list)) {
qemu_register_reset(vfio_reset_handler, NULL);
}
QLIST_INSERT_HEAD(&vfio_group_list, group, next);
return group;
close_fd_exit:
close(group->fd);
free_group_exit:
g_free(group);
return NULL;
}
void vfio_put_group(VFIOGroup *group)
{
if (!group || !QLIST_EMPTY(&group->device_list)) {
return;
}
if (!group->ram_block_discard_allowed) {
ram_block_discard_disable(false);
}
vfio_kvm_device_del_group(group);
vfio_disconnect_container(group);
QLIST_REMOVE(group, next);
trace_vfio_put_group(group->fd);
close(group->fd);
g_free(group);
if (QLIST_EMPTY(&vfio_group_list)) {
qemu_unregister_reset(vfio_reset_handler, NULL);
}
}
int vfio_get_device(VFIOGroup *group, const char *name,
VFIODevice *vbasedev, Error **errp)
{
struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
int ret, fd;
fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
if (fd < 0) {
error_setg_errno(errp, errno, "error getting device from group %d",
group->groupid);
error_append_hint(errp,
"Verify all devices in group %d are bound to vfio-<bus> "
"or pci-stub and not already in use\n", group->groupid);
return fd;
}
ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
if (ret) {
error_setg_errno(errp, errno, "error getting device info");
close(fd);
return ret;
}
/*
* Set discarding of RAM as not broken for this group if the driver knows
* the device operates compatibly with discarding. Setting must be
* consistent per group, but since compatibility is really only possible
* with mdev currently, we expect singleton groups.
*/
if (vbasedev->ram_block_discard_allowed !=
group->ram_block_discard_allowed) {
if (!QLIST_EMPTY(&group->device_list)) {
error_setg(errp, "Inconsistent setting of support for discarding "
"RAM (e.g., balloon) within group");
close(fd);
return -1;
}
if (!group->ram_block_discard_allowed) {
group->ram_block_discard_allowed = true;
ram_block_discard_disable(false);
}
}
vbasedev->fd = fd;
vbasedev->group = group;
QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
vbasedev->num_irqs = dev_info.num_irqs;
vbasedev->num_regions = dev_info.num_regions;
vbasedev->flags = dev_info.flags;
trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
dev_info.num_irqs);
vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
return 0;
}
void vfio_put_base_device(VFIODevice *vbasedev)
{
if (!vbasedev->group) {
return;
}
QLIST_REMOVE(vbasedev, next);
vbasedev->group = NULL;
trace_vfio_put_base_device(vbasedev->fd);
close(vbasedev->fd);
}
int vfio_get_region_info(VFIODevice *vbasedev, int index,
struct vfio_region_info **info)
{
size_t argsz = sizeof(struct vfio_region_info);
*info = g_malloc0(argsz);
(*info)->index = index;
retry:
(*info)->argsz = argsz;
if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
g_free(*info);
*info = NULL;
return -errno;
}
if ((*info)->argsz > argsz) {
argsz = (*info)->argsz;
*info = g_realloc(*info, argsz);
goto retry;
}
return 0;
}
int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
uint32_t subtype, struct vfio_region_info **info)
{
int i;
for (i = 0; i < vbasedev->num_regions; i++) {
struct vfio_info_cap_header *hdr;
struct vfio_region_info_cap_type *cap_type;
if (vfio_get_region_info(vbasedev, i, info)) {
continue;
}
hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
if (!hdr) {
g_free(*info);
continue;
}
cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
trace_vfio_get_dev_region(vbasedev->name, i,
cap_type->type, cap_type->subtype);
if (cap_type->type == type && cap_type->subtype == subtype) {
return 0;
}
g_free(*info);
}
*info = NULL;
return -ENODEV;
}
bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
{
struct vfio_region_info *info = NULL;
bool ret = false;
if (!vfio_get_region_info(vbasedev, region, &info)) {
if (vfio_get_region_info_cap(info, cap_type)) {
ret = true;
}
g_free(info);
}
return ret;
}
/*
* Interfaces for IBM EEH (Enhanced Error Handling)
*/
static bool vfio_eeh_container_ok(VFIOContainer *container)
{
/*
* As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
* implementation is broken if there are multiple groups in a
* container. The hardware works in units of Partitionable
* Endpoints (== IOMMU groups) and the EEH operations naively
* iterate across all groups in the container, without any logic
* to make sure the groups have their state synchronized. For
* certain operations (ENABLE) that might be ok, until an error
* occurs, but for others (GET_STATE) it's clearly broken.
*/
/*
* XXX Once fixed kernels exist, test for them here
*/
if (QLIST_EMPTY(&container->group_list)) {
return false;
}
if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
return false;
}
return true;
}
static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
{
struct vfio_eeh_pe_op pe_op = {
.argsz = sizeof(pe_op),
.op = op,
};
int ret;
if (!vfio_eeh_container_ok(container)) {
error_report("vfio/eeh: EEH_PE_OP 0x%x: "
"kernel requires a container with exactly one group", op);
return -EPERM;
}
ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
if (ret < 0) {
error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
return -errno;
}
return ret;
}
static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
{
VFIOAddressSpace *space = vfio_get_address_space(as);
VFIOContainer *container = NULL;
if (QLIST_EMPTY(&space->containers)) {
/* No containers to act on */
goto out;
}
container = QLIST_FIRST(&space->containers);
if (QLIST_NEXT(container, next)) {
/* We don't yet have logic to synchronize EEH state across
* multiple containers */
container = NULL;
goto out;
}
out:
vfio_put_address_space(space);
return container;
}
bool vfio_eeh_as_ok(AddressSpace *as)
{
VFIOContainer *container = vfio_eeh_as_container(as);
return (container != NULL) && vfio_eeh_container_ok(container);
}
int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
{
VFIOContainer *container = vfio_eeh_as_container(as);
if (!container) {
return -ENODEV;
}
return vfio_eeh_container_op(container, op);
}