mirror of
https://github.com/linux-msm/qbootctl
synced 2024-11-23 14:43:29 +08:00
b8d2248914
For some usecases it is desired to still update the GPT headers even if the UFS BSG device is missing. Add a new flag which implements this behaviour. It isn't made the default because on some platforms this could result in an unbootable device, there it's preferable to defer to the user by just bailing out if the UFS BSG device is unavailable. Signed-off-by: Caleb Connolly <caleb@connolly.tech>
812 lines
25 KiB
C
812 lines
25 KiB
C
/*
|
|
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2021-2022 Caleb Connolly <caleb@connolly.tech>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of The Linux Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#define _LARGEFILE64_SOURCE /* enable lseek64() */
|
|
|
|
#include <assert.h>
|
|
#include <asm/byteorder.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
|
|
#include "gpt-utils.h"
|
|
#include "utils.h"
|
|
#include "crc32.h"
|
|
|
|
/* list the names of the backed-up partitions to be swapped */
|
|
/* extension used for the backup partitions - tzbak, abootbak, etc. */
|
|
#define BAK_PTN_NAME_EXT "bak"
|
|
#define XBL_PRIMARY "/dev/disk/by-partlabel/xbl_a" // FIXME
|
|
#define XBL_BACKUP "/dev/disk/by-partlabel/xblbak"
|
|
#define XBL_AB_PRIMARY "/dev/disk/by-partlabel/xbl_a"
|
|
#define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b"
|
|
/* GPT defines */
|
|
#define MAX_LUNS 26
|
|
// Size of the buffer that needs to be passed to the UFS ioctl
|
|
#define UFS_ATTR_DATA_SIZE 32
|
|
// This will allow us to get the root lun path from the path to the partition.
|
|
// i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
|
|
// the boot critical luns lie between sda to sdz which is acceptable because
|
|
// only user added external disks,etc would lie beyond that limit which do not
|
|
// contain partitions that interest us here.
|
|
#define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1)
|
|
|
|
// From /dev/disk/sda get just sda
|
|
#define LUN_NAME_START_LOC (sizeof("/dev/") - 1)
|
|
#define BOOT_LUN_A_ID 1
|
|
#define BOOT_LUN_B_ID 2
|
|
|
|
#define GET_4_BYTES(ptr) \
|
|
((uint32_t) * ((uint8_t *)(ptr)) | ((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \
|
|
((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | ((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))
|
|
|
|
#define GET_8_BYTES(ptr) \
|
|
((uint64_t) * ((uint8_t *)(ptr)) | ((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \
|
|
((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \
|
|
((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \
|
|
((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \
|
|
((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \
|
|
((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | ((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))
|
|
|
|
#define PUT_4_BYTES(ptr, y) \
|
|
*((uint8_t *)(ptr)) = (y)&0xff; \
|
|
*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
|
|
*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
|
|
*((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
|
|
|
|
enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC };
|
|
// List of LUN's containing boot critical images.
|
|
// Required in the case of UFS devices
|
|
struct update_data {
|
|
char lun_list[MAX_LUNS][GPT_PTN_PATH_MAX];
|
|
uint32_t num_valid_entries;
|
|
};
|
|
|
|
void DumpHex(const void *data, size_t size)
|
|
{
|
|
char ascii[17];
|
|
size_t i, j;
|
|
ascii[16] = '\0';
|
|
for (i = 0; i < size; ++i) {
|
|
printf("%02X ", ((unsigned char *)data)[i]);
|
|
if (((unsigned char *)data)[i] >= ' ' && ((unsigned char *)data)[i] <= '~') {
|
|
ascii[i % 16] = ((unsigned char *)data)[i];
|
|
} else {
|
|
ascii[i % 16] = '.';
|
|
}
|
|
if ((i + 1) % 8 == 0 || i + 1 == size) {
|
|
printf(" ");
|
|
if ((i + 1) % 16 == 0) {
|
|
printf("| %s \n", ascii);
|
|
} else if (i + 1 == size) {
|
|
ascii[(i + 1) % 16] = '\0';
|
|
if ((i + 1) % 16 <= 8) {
|
|
printf(" ");
|
|
}
|
|
for (j = (i + 1) % 16; j < 16; ++j) {
|
|
printf(" ");
|
|
}
|
|
printf("| %s \n", ascii);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ==========================================================================
|
|
*
|
|
* \brief Read/Write len bytes from/to block dev
|
|
*
|
|
* \param [in] fd block dev file descriptor (returned from open)
|
|
* \param [in] rw RW flag: 0 - read, != 0; - write
|
|
* \param [in] offset block dev offset [bytes] - RW start position
|
|
* \param [in] buf Pointer to the buffer containing the data
|
|
* \param [in] len RW size in bytes. Buf must be at least that big
|
|
*
|
|
* \return 0 on success
|
|
*
|
|
* ==========================================================================
|
|
*/
|
|
static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
|
|
{
|
|
int r;
|
|
|
|
if (lseek64(fd, offset, SEEK_SET) < 0) {
|
|
fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n", offset,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
if (rw)
|
|
r = write(fd, buf, len);
|
|
else
|
|
r = read(fd, buf, len);
|
|
|
|
if (r < 0) {
|
|
fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read\n",
|
|
strerror(errno));
|
|
} else {
|
|
if (rw) {
|
|
r = fsync(fd);
|
|
if (r < 0)
|
|
fprintf(stderr, "fsync failed: %s\n", strerror(errno));
|
|
} else {
|
|
r = 0;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* ==========================================================================
|
|
*
|
|
* \brief Search within GPT for partition entry with the given name
|
|
* or it's backup twin (name-bak).
|
|
*
|
|
* \param [in] ptn_name Partition name to seek
|
|
* \param [in] pentries_start Partition entries array start pointer
|
|
* \param [in] pentries_end Partition entries array end pointer
|
|
* \param [in] pentry_size Single partition entry size [bytes]
|
|
*
|
|
* \return First partition entry pointer that matches the name or null
|
|
*
|
|
* ==========================================================================
|
|
*/
|
|
static uint8_t *gpt_pentry_seek(const char *ptn_name, const uint8_t *pentries_start,
|
|
const uint8_t *pentries_end, uint32_t pentry_size)
|
|
{
|
|
char *pentry_name;
|
|
unsigned len = strlen(ptn_name);
|
|
|
|
for (pentry_name = (char *)(pentries_start + PARTITION_NAME_OFFSET);
|
|
pentry_name < (char *)pentries_end; pentry_name += pentry_size) {
|
|
char name8[MAX_GPT_NAME_SIZE / 2];
|
|
unsigned i;
|
|
|
|
/* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
|
|
for (i = 0; i < sizeof(name8); i++)
|
|
name8[i] = pentry_name[i * 2];
|
|
if (!strncmp(ptn_name, name8, len))
|
|
if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
|
|
return (uint8_t *)(pentry_name - PARTITION_NAME_OFFSET);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Defined in ufs-bsg.cpp
|
|
int32_t set_boot_lun(uint8_t lun_id);
|
|
|
|
// Switch between using either the primary or the backup
|
|
// boot LUN for boot. This is required since UFS boot partitions
|
|
// cannot have a backup GPT which is what we use for failsafe
|
|
// updates of the other 'critical' partitions. This function will
|
|
// not be invoked for emmc targets and on UFS targets is only required
|
|
// to be invoked for XBL.
|
|
//
|
|
// The algorithm to do this is as follows:
|
|
//- Find the real block device(eg: /dev/disk/sdb) that corresponds
|
|
// to the /dev/disk/bootdevice/by-name/xbl(bak) symlink
|
|
//
|
|
//- Once we have the block device 'node' name(sdb in the above example)
|
|
// use this node to to locate the scsi generic device that represents
|
|
// it by checking the file /sys/block/sdb/device/scsi_generic/sgY
|
|
//
|
|
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
|
|
// the boot lun to either LUNA or LUNB
|
|
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
|
|
{
|
|
struct stat st;
|
|
uint8_t boot_lun_id = 0;
|
|
const char *boot_dev = NULL;
|
|
int ret = -1;
|
|
|
|
(void)st;
|
|
(void)boot_dev;
|
|
|
|
if (chain == BACKUP_BOOT) {
|
|
boot_lun_id = BOOT_LUN_B_ID;
|
|
if (!stat(XBL_BACKUP, &st))
|
|
boot_dev = XBL_BACKUP;
|
|
else if (!stat(XBL_AB_SECONDARY, &st))
|
|
boot_dev = XBL_AB_SECONDARY;
|
|
else {
|
|
fprintf(stderr, "%s: Failed to locate secondary xbl\n", __func__);
|
|
goto error;
|
|
}
|
|
} else if (chain == NORMAL_BOOT) {
|
|
boot_lun_id = BOOT_LUN_A_ID;
|
|
if (!stat(XBL_PRIMARY, &st))
|
|
boot_dev = XBL_PRIMARY;
|
|
else if (!stat(XBL_AB_PRIMARY, &st))
|
|
boot_dev = XBL_AB_PRIMARY;
|
|
else {
|
|
fprintf(stderr, "%s: Failed to locate primary xbl\n", __func__);
|
|
goto error;
|
|
}
|
|
} else {
|
|
fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
|
|
goto error;
|
|
}
|
|
// We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
|
|
// the same time. If not the current configuration is invalid.
|
|
if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) &&
|
|
(stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) {
|
|
fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n", __func__,
|
|
strerror(errno));
|
|
goto error;
|
|
}
|
|
LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev);
|
|
|
|
if (set_boot_lun(boot_lun_id)) {
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
return 0;
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
// Given a parttion name(eg: rpm) get the path to the block device that
|
|
// represents the GPT disk the partition resides on. In the case of emmc it
|
|
// would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
|
|
// through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
|
|
// the path to the LUN from there.
|
|
static int get_dev_path_from_partition_name(const char *partname, char *buf, size_t buflen)
|
|
{
|
|
char path[GPT_PTN_PATH_MAX] = { 0 };
|
|
int i;
|
|
|
|
if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
|
|
fprintf(stderr, "%s: Invalid argument\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
// Need to find the lun that holds partition partname
|
|
snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname);
|
|
|
|
|
|
buf = realpath(path, buf);
|
|
if (!buf) {
|
|
return -1;
|
|
} else {
|
|
for (i = strlen(buf); i > 0; i--)
|
|
if (!isdigit(buf[i - 1]))
|
|
break;
|
|
|
|
if (i >= 2 && buf[i - 1] == 'p' && isdigit(buf[i - 2]))
|
|
i--;
|
|
|
|
buf[i] = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Get the block size of the disk represented by decsriptor fd
|
|
static uint32_t gpt_get_block_size(int fd)
|
|
{
|
|
uint32_t block_size = 0;
|
|
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s: invalid descriptor\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
|
|
fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n", __func__,
|
|
strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
return block_size;
|
|
error:
|
|
return 0;
|
|
}
|
|
|
|
// Write the GPT header present in the passed in buffer back to the
|
|
// disk represented by fd
|
|
static int gpt_set_header(uint8_t *gpt_header, int fd, enum gpt_instance instance)
|
|
{
|
|
uint32_t block_size = 0;
|
|
off_t gpt_header_offset = 0;
|
|
|
|
if (!gpt_header || fd < 0) {
|
|
fprintf(stderr, "%s: Invalid arguments\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
block_size = gpt_get_block_size(fd);
|
|
LOGD("%s: Block size is : %d\n", __func__, block_size);
|
|
if (block_size == 0) {
|
|
fprintf(stderr, "%s: Failed to get block size\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
if (instance == PRIMARY_GPT)
|
|
gpt_header_offset = block_size;
|
|
else
|
|
gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
|
|
if (gpt_header_offset <= 0) {
|
|
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
LOGD("%s: Writing back header to offset %ld\n", __func__, gpt_header_offset);
|
|
if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
|
|
fprintf(stderr, "%s: Failed to write back GPT header\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
// Read out the GPT headers for the disk that contains the partition partname
|
|
static int gpt_get_headers(const char *partname, uint8_t **primary, uint8_t **backup)
|
|
{
|
|
uint8_t *hdr = NULL;
|
|
char devpath[GPT_PTN_PATH_MAX] = { 0 };
|
|
off_t hdr_offset = 0;
|
|
uint32_t block_size = 0;
|
|
int instance;
|
|
int fd = -1;
|
|
|
|
if (!partname) {
|
|
fprintf(stderr, "%s: Invalid partition name\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath)) != 0) {
|
|
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, partname);
|
|
goto error;
|
|
}
|
|
|
|
fd = open(devpath, O_RDWR);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s: Failed to open %s : %s\n", __func__, devpath, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
block_size = gpt_get_block_size(fd);
|
|
if (block_size == 0) {
|
|
fprintf(stderr, "%s: Failed to get gpt block size for %s\n", __func__, partname);
|
|
goto error;
|
|
}
|
|
|
|
for (instance = PRIMARY_GPT; instance <= SECONDARY_GPT; instance++) {
|
|
hdr = (uint8_t *)calloc(block_size, 1);
|
|
if (!hdr) {
|
|
fprintf(stderr, "%s: Failed to allocate memory for gpt header\n", __func__);
|
|
}
|
|
if (instance == PRIMARY_GPT)
|
|
hdr_offset = block_size;
|
|
else {
|
|
hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
|
|
}
|
|
if (hdr_offset < 0) {
|
|
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
|
|
goto error;
|
|
}
|
|
if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
|
|
fprintf(stderr, "%s: Failed to read GPT header from device\n", __func__);
|
|
goto error;
|
|
}
|
|
if (instance == PRIMARY_GPT)
|
|
*primary = hdr;
|
|
else
|
|
*backup = hdr;
|
|
}
|
|
|
|
close(fd);
|
|
return 0;
|
|
|
|
error:
|
|
close(fd);
|
|
if (hdr)
|
|
free(hdr);
|
|
return -1;
|
|
}
|
|
|
|
// Returns the partition entry array based on the
|
|
// passed in buffer which contains the gpt header.
|
|
// The fd here is the descriptor for the 'disk' which
|
|
// holds the partition
|
|
static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
|
|
{
|
|
uint64_t pentries_start = 0;
|
|
uint32_t pentry_size = 0;
|
|
uint32_t block_size = 0;
|
|
uint32_t pentries_arr_size = 0;
|
|
uint8_t *pentry_arr = NULL;
|
|
int rc = 0;
|
|
if (!hdr) {
|
|
fprintf(stderr, "%s: Invalid header\n", __func__);
|
|
goto error;
|
|
}
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s: Invalid fd\n", __func__);
|
|
goto error;
|
|
}
|
|
block_size = gpt_get_block_size(fd);
|
|
if (!block_size) {
|
|
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
|
|
goto error;
|
|
}
|
|
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
|
|
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
|
|
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
|
|
pentry_arr = (uint8_t *)calloc(1, pentries_arr_size);
|
|
if (!pentry_arr) {
|
|
fprintf(stderr, "%s: Failed to allocate memory for partition array\n", __func__);
|
|
goto error;
|
|
}
|
|
rc = blk_rw(fd, 0, pentries_start, pentry_arr, pentries_arr_size);
|
|
if (rc) {
|
|
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
|
|
goto error;
|
|
}
|
|
return pentry_arr;
|
|
error:
|
|
if (pentry_arr)
|
|
free(pentry_arr);
|
|
return NULL;
|
|
}
|
|
|
|
static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
|
|
{
|
|
uint32_t block_size = 0;
|
|
uint64_t pentries_start = 0;
|
|
uint32_t pentry_size = 0;
|
|
uint32_t pentries_arr_size = 0;
|
|
int rc = 0;
|
|
if (!hdr || fd < 0 || !arr) {
|
|
fprintf(stderr, "%s: Invalid argument\n", __func__);
|
|
goto error;
|
|
}
|
|
block_size = gpt_get_block_size(fd);
|
|
if (!block_size) {
|
|
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
|
|
goto error;
|
|
}
|
|
LOGD("%s : Block size is %d\n", __func__, block_size);
|
|
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
|
|
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
|
|
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
|
|
LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64 "\n", __func__,
|
|
pentries_arr_size, pentries_start);
|
|
LOGD("pentries_start: %lu\n", pentries_start);
|
|
rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size);
|
|
if (rc) {
|
|
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
|
|
goto error;
|
|
}
|
|
return 0;
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Free previously allocated/initialized handle
|
|
* This function is always safe and must be called
|
|
* before discarding the handle.
|
|
* it is called automatically by gpt_disk_get_disk_info()
|
|
*/
|
|
void gpt_disk_free(struct gpt_disk *disk)
|
|
{
|
|
if (!disk)
|
|
return;
|
|
|
|
if (disk->hdr) {
|
|
free(disk->hdr);
|
|
disk->hdr = NULL;
|
|
}
|
|
if (disk->hdr_bak) {
|
|
free(disk->hdr_bak);
|
|
disk->hdr_bak = NULL;
|
|
}
|
|
if (disk->pentry_arr) {
|
|
free(disk->pentry_arr);
|
|
disk->pentry_arr = NULL;
|
|
}
|
|
if (disk->pentry_arr_bak) {
|
|
free(disk->pentry_arr_bak);
|
|
disk->pentry_arr_bak = NULL;
|
|
}
|
|
|
|
disk->is_initialized = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
bool gpt_disk_is_valid(struct gpt_disk *disk)
|
|
{
|
|
return disk->is_initialized == GPT_DISK_INIT_MAGIC;
|
|
}
|
|
|
|
/*
|
|
* Check if a partition by-path is for the disk we have info for
|
|
* and populate the blockdev path.
|
|
* e.g. for /dev/disk/by-partlabel/system_a blockdev would be /dev/sda
|
|
*/
|
|
int partition_is_for_disk(const struct gpt_disk *disk, const char *part, char *blockdev, int blockdev_len)
|
|
{
|
|
int ret;
|
|
|
|
ret = get_dev_path_from_partition_name(part, blockdev, blockdev_len);
|
|
if (ret) {
|
|
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, part);
|
|
return -1;
|
|
}
|
|
|
|
if (!strcmp(blockdev, disk->devpath)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* fills up the passed in gpt_disk struct with information about the
|
|
* disk represented by path dev. Returns 0 on success and -1 on error.
|
|
*/
|
|
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk)
|
|
{
|
|
int fd = -1, rc;
|
|
uint32_t gpt_header_size = 0;
|
|
char devpath[GPT_PTN_PATH_MAX] = { 0 };
|
|
|
|
if (!disk || !dev) {
|
|
fprintf(stderr, "%s: Invalid arguments\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
rc = partition_is_for_disk(disk, dev, devpath, sizeof(devpath));
|
|
|
|
if (rc > 0)
|
|
return 0;
|
|
|
|
if (rc < 0) {
|
|
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, dev);
|
|
return -1;
|
|
}
|
|
|
|
if (disk->is_initialized == GPT_DISK_INIT_MAGIC) {
|
|
// We already have a valid disk handle. Free it.
|
|
LOGD("%s: Freeing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
|
|
gpt_disk_free(disk);
|
|
}
|
|
|
|
LOGD("%s: Initializing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
|
|
|
|
// devpath popualted by partition_is_for_disk
|
|
strncpy(disk->devpath, devpath, sizeof(disk->devpath));
|
|
|
|
if (gpt_get_headers(dev, &disk->hdr, &disk->hdr_bak)) {
|
|
fprintf(stderr, "%s: Failed to get GPT headers\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
assert(disk->hdr != NULL);
|
|
assert(disk->hdr_bak != NULL);
|
|
|
|
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
|
|
|
|
// FIXME: pointer offsets crc bleh
|
|
disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);
|
|
|
|
disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);
|
|
|
|
fd = open(disk->devpath, O_RDWR);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
|
|
strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
assert(disk->pentry_arr == NULL);
|
|
disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
|
|
if (!disk->pentry_arr) {
|
|
fprintf(stderr, "%s: Failed to obtain partition entry array\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
assert(disk->pentry_arr_bak == NULL);
|
|
disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
|
|
if (!disk->pentry_arr_bak) {
|
|
fprintf(stderr, "%s: Failed to obtain backup partition entry array\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
|
|
disk->pentry_arr_size = GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) * disk->pentry_size;
|
|
disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
|
|
disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
|
|
disk->block_size = gpt_get_block_size(fd);
|
|
close(fd);
|
|
disk->is_initialized = GPT_DISK_INIT_MAGIC;
|
|
return 0;
|
|
error:
|
|
if (fd >= 0)
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
// Get pointer to partition entry from a allocated gpt_disk structure
|
|
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname, enum gpt_instance instance)
|
|
{
|
|
uint8_t *ptn_arr = NULL;
|
|
if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
|
|
fprintf(stderr, "%s: disk handle not initialised\n", __func__);
|
|
return NULL;
|
|
}
|
|
ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr : disk->pentry_arr_bak;
|
|
return (gpt_pentry_seek(partname, ptn_arr, ptn_arr + disk->pentry_arr_size,
|
|
disk->pentry_size));
|
|
}
|
|
|
|
// Update CRC values for the various components of the gpt_disk
|
|
// structure. This function should be called after any of the fields
|
|
// have been updated before the structure contents are written back to
|
|
// disk.
|
|
static int gpt_disk_update_crc(struct gpt_disk *disk)
|
|
{
|
|
uint32_t gpt_header_size = 0;
|
|
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
|
|
fprintf(stderr, "%s: disk not initialised!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
uint32_t old_crc = disk->pentry_arr_crc;
|
|
#endif
|
|
// Recalculate the CRC of the primary partiton array
|
|
disk->pentry_arr_crc = efi_crc32(disk->pentry_arr, disk->pentry_arr_size);
|
|
LOGD("%s() disk %8s GPT pentry len %u crc: %08x -> %08x\n", __func__, disk->devpath,
|
|
disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);
|
|
|
|
// DumpHex(disk->pentry_arr, disk->pentry_arr_size);
|
|
|
|
// Recalculate the CRC of the backup partition array
|
|
disk->pentry_arr_bak_crc = efi_crc32(disk->pentry_arr_bak, disk->pentry_arr_size);
|
|
LOGD("%s() disk %8s GPT pentry_bak len %u crc: %08x -> %08x\n", __func__, disk->devpath,
|
|
disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);
|
|
|
|
// Update the partition CRC value in the primary GPT header
|
|
PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
|
|
|
|
// Update the partition CRC value in the backup GPT header
|
|
PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET, disk->pentry_arr_bak_crc);
|
|
|
|
// Update the CRC value of the primary header
|
|
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
|
|
|
|
// Header CRC is calculated with its own CRC field set to 0
|
|
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
|
|
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
|
|
disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);
|
|
disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);
|
|
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
|
|
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
|
|
return 0;
|
|
}
|
|
|
|
// Write the contents of struct gpt_disk back to the actual disk
|
|
int gpt_disk_commit(struct gpt_disk *disk)
|
|
{
|
|
int fd = -1;
|
|
|
|
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
|
|
fprintf(stderr, "%s: Invalid args\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
if (gpt_disk_update_crc(disk)) {
|
|
fprintf(stderr, "%s: Failed to update CRC values\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
fd = open(disk->devpath, O_RDWR);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
|
|
strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
LOGD("%s: Writing back primary GPT header\n", __func__);
|
|
|
|
// Write the primary header
|
|
if (gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
|
|
fprintf(stderr, "%s: Failed to update primary GPT header\n", __func__);
|
|
goto error;
|
|
}
|
|
LOGD("%s: Writing back primary partition array\n", __func__);
|
|
|
|
// Write back the primary partition array
|
|
if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
|
|
fprintf(stderr, "%s: Failed to write primary GPT partition arr\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
// Write the backup header
|
|
if (gpt_set_header(disk->hdr_bak, fd, SECONDARY_GPT) != 0) {
|
|
fprintf(stderr, "%s: Failed to update backup GPT header\n", __func__);
|
|
goto error;
|
|
}
|
|
LOGD("%s: Writing back backup partition array\n", __func__);
|
|
|
|
// Write back the backup partition array
|
|
if (gpt_set_pentry_arr(disk->hdr_bak, fd, disk->pentry_arr_bak)) {
|
|
fprintf(stderr, "%s: Failed to write backup GPT partition arr\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
LOGD("%s: Done\n", __func__);
|
|
|
|
fsync(fd);
|
|
close(fd);
|
|
return 0;
|
|
|
|
error:
|
|
if (fd >= 0)
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
// Determine whether to handle the given partition as eMMC or UFS, using the
|
|
// name of the backing device.
|
|
//
|
|
// Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
|
|
// will tend to prefer UFS behavior. If it incorrectly reports this, then the
|
|
// program should exit (e.g. by failing) before making any changes.
|
|
bool gpt_utils_is_partition_backed_by_emmc(const char *part)
|
|
{
|
|
char devpath[GPT_PTN_PATH_MAX] = { '\0' };
|
|
|
|
if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath)))
|
|
return false;
|
|
|
|
return !strcmp(devpath, EMMC_DEVICE);
|
|
}
|