cleanup, stub out tests

not sure how best to write tests, probably a larger test framework on
a board farm to test on real devices will be more sensible.
This commit is contained in:
Caleb Connolly 2022-06-04 15:51:22 +01:00
parent 55612452e0
commit 4c49647382
No known key found for this signature in database
GPG Key ID: 0583312B195F64B6
12 changed files with 2572 additions and 2189 deletions

120
.clang-format Normal file
View File

@ -0,0 +1,120 @@
# SPDX-License-Identifier: GPL-2.0
#
# clang-format configuration file. Intended for clang-format >= 4.
#
# For more information, see:
#
# Documentation/process/clang-format.rst
# https://clang.llvm.org/docs/ClangFormat.html
# https://clang.llvm.org/docs/ClangFormatStyleOptions.html
#
# Copied from Linux @ 5.18.0
---
AccessModifierOffset: -4
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignConsecutiveMacros: AcrossEmptyLines
#AlignEscapedNewlines: Left # Unknown to clang-format-4.0
AlignOperands: true
AlignTrailingComments: false
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: None
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: false
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: true
AfterNamespace: true
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
#AfterExternBlock: false # Unknown to clang-format-5.0
BeforeCatch: false
BeforeElse: false
IndentBraces: false
#SplitEmptyFunction: true # Unknown to clang-format-4.0
#SplitEmptyRecord: true # Unknown to clang-format-4.0
#SplitEmptyNamespace: true # Unknown to clang-format-4.0
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Custom
#BreakBeforeInheritanceComma: false # Unknown to clang-format-4.0
BreakBeforeTernaryOperators: false
BreakConstructorInitializersBeforeComma: false
#BreakConstructorInitializers: BeforeComma # Unknown to clang-format-4.0
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: false
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
#CompactNamespaces: false # Unknown to clang-format-4.0
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 8
ContinuationIndentWidth: 8
Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
#FixNamespaceComments: false # Unknown to clang-format-4.0
IncludeBlocks: Preserve
IncludeCategories:
- Regex: '.*'
Priority: 1
IncludeIsMainRegex: '(Test)?$'
IndentCaseLabels: false
#IndentPPDirectives: None # Unknown to clang-format-5.0
IndentWidth: 8
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
#ObjCBinPackProtocolList: Auto # Unknown to clang-format-5.0
ObjCBlockIndentWidth: 8
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
# Taken from git's rules
#PenaltyBreakAssignment: 10 # Unknown to clang-format-4.0
PenaltyBreakBeforeFirstCallParameter: 30
PenaltyBreakComment: 10
PenaltyBreakFirstLessLess: 0
PenaltyBreakString: 10
PenaltyExcessCharacter: 100
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: false
SortIncludes: false
#SortUsingDeclarations: false # Unknown to clang-format-4.0
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
#SpaceBeforeCtorInitializerColon: true # Unknown to clang-format-5.0
#SpaceBeforeInheritanceColon: true # Unknown to clang-format-5.0
SpaceBeforeParens: ControlStatements
#SpaceBeforeRangeBasedForLoopColon: true # Unknown to clang-format-5.0
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInContainerLiterals: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp03
TabWidth: 8
UseTab: Always
...

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -5,10 +5,22 @@ This HAL was pulled from AOSP source code and bastardised to build and run on a
## Dependencies
* zlib-dev
* meson
* cmake
* linux-headers
## Building
qbootctl uses the meson build system
```sh
meson build
meson compile -C build
```
## Usage
```
```text
qbootctl: qcom bootctrl HAL port for Linux
-------------------------------------------
qbootctl [-c|-m|-s|-u|-b|-n|-x] [SLOT]

103
bootctrl.h Normal file
View File

@ -0,0 +1,103 @@
/*
* Copyright (C) 2016 The Android Open Source Project
* Copyright (C) 2022 Caleb Connolly <caleb@connolly.tech>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __BOOTCTRL_H__
#define __BOOTCTRL_H__
struct slot_info {
bool active;
bool bootable;
bool successful;
};
struct boot_control_module {
/*
* (*getCurrentSlot)() returns the value letting the system know
* whether the current slot is A or B. The meaning of A and B is
* left up to the implementer. It is assumed that if the current slot
* is A, then the block devices underlying B can be accessed directly
* without any risk of corruption.
* The returned value is always guaranteed to be strictly less than the
* value returned by getNumberSlots. Slots start at 0 and
* finish at getNumberSlots() - 1
*/
unsigned (*getCurrentSlot)();
/*
* (*markBootSuccessful)() marks the specified slot
* as boot successful
*
* Returns 0 on success, -errno on error.
*/
int (*markBootSuccessful)(unsigned slot);
/*
* (*setActiveBootSlot)() marks the slot passed in parameter as
* the active boot slot (see getCurrentSlot for an explanation
* of the "slot" parameter). This overrides any previous call to
* setSlotAsUnbootable.
* Returns 0 on success, -errno on error.
*/
int (*setActiveBootSlot)(unsigned slot);
/*
* (*setSlotAsUnbootable)() marks the slot passed in parameter as
* an unbootable. This can be used while updating the contents of the slot's
* partitions, so that the system will not attempt to boot a known bad set up.
* Returns 0 on success, -errno on error.
*/
int (*setSlotAsUnbootable)(unsigned slot);
/*
* (*isSlotBootable)() returns if the slot passed in parameter is
* bootable. Note that slots can be made unbootable by both the
* bootloader and by the OS using setSlotAsUnbootable.
* Returns 1 if the slot is bootable, 0 if it's not, and -errno on
* error.
*/
int (*isSlotBootable)(unsigned slot);
/*
* (*getSuffix)() returns the string suffix used by partitions that
* correspond to the slot number passed in parameter. The returned string
* is expected to be statically allocated and not need to be freed.
* Returns NULL if slot does not match an existing slot.
*/
const char* (*getSuffix)(unsigned slot);
/*
* (*isSlotMarkedSucessful)() returns if the slot passed in parameter has
* been marked as successful using markBootSuccessful.
* Returns 1 if the slot has been marked as successful, 0 if it's
* not the case, and -errno on error.
*/
int (*isSlotMarkedSuccessful)(unsigned slot);
/**
* Returns the active slot to boot into on the next boot. If
* setActiveBootSlot() has been called, the getter function should return
* the same slot as the one provided in the last setActiveBootSlot() call.
*/
unsigned (*getActiveBootSlot)();
};
extern const struct boot_control_module bootctl;
extern const struct boot_control_module bootctl_test;
#endif // __BOOTCTRL_H__

717
bootctrl_impl.cpp Normal file
View File

@ -0,0 +1,717 @@
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
* Copyright (C) 2021-2022 Caleb Connolly <caleb@connolly.tech>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <map>
#include <list>
#include <string>
#include <vector>
#include <errno.h>
#include <regex>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include "utils.h"
#include "gpt-utils.h"
#include "bootctrl.h"
#define BOOTDEV_DIR "/dev/disk/by-partlabel"
#define BOOT_IMG_PTN_NAME "boot_"
#define LUN_NAME_END_LOC 14
#define BOOT_SLOT_PROP "slot_suffix"
#define MAX_CMDLINE_SIZE 4096
#define SLOT_ACTIVE 1
#define SLOT_INACTIVE 2
#define UPDATE_SLOT(pentry, guid, slot_state) \
({ \
memcpy(pentry, guid, TYPE_GUID_SIZE); \
if (slot_state == SLOT_ACTIVE) \
*(pentry + AB_FLAG_OFFSET) = AB_SLOT_ACTIVE_VAL; \
else if (slot_state == SLOT_INACTIVE) \
*(pentry + AB_FLAG_OFFSET) = \
(*(pentry + AB_FLAG_OFFSET) & \
~AB_PARTITION_ATTR_SLOT_ACTIVE); \
})
using namespace std;
const char *slot_suffix_arr[] = { AB_SLOT_A_SUFFIX, AB_SLOT_B_SUFFIX, NULL };
enum part_attr_type {
ATTR_SLOT_ACTIVE = 0,
ATTR_BOOT_SUCCESSFUL,
ATTR_UNBOOTABLE,
ATTR_BOOTABLE,
};
void get_kernel_cmdline_arg(const char *arg, char *buf, const char *def)
{
int fd;
char pcmd[MAX_CMDLINE_SIZE];
char *val, *found, *ptr = buf;
fd = open("/proc/cmdline", O_RDONLY);
int rc = read(fd, pcmd, MAX_CMDLINE_SIZE);
if (rc < 0) {
fprintf(stderr, "Couldn't open /proc/cmdline: %d (%s)\n", rc,
strerror(errno));
goto error;
}
close(fd);
found = strstr(pcmd, arg);
if (!found || !(val = strstr(found, "="))) {
fprintf(stderr, "Couldn't find cmdline arg: '%s'\n", arg);
goto error;
}
val++;
// no this doesn't handle quotes lol
while (*val != ' ') {
*ptr++ = *val++;
}
return;
error:
strcpy(buf, def);
}
//Get the value of one of the attribute fields for a partition.
static int get_partition_attribute(char *partname,
enum part_attr_type part_attr)
{
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
int retval = -1;
uint8_t *attr = NULL;
if (!partname)
goto error;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n", __func__);
goto error;
}
if (gpt_disk_get_disk_info(partname, disk)) {
fprintf(stderr, "%s: Failed to get disk info\n", __func__);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partname, PRIMARY_GPT);
if (!pentry) {
fprintf(stderr, "%s: pentry does not exist in disk struct\n",
__func__);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
LOGD("get_partition_attribute() partname = %s, attr = 0x%x\n", partname,
*attr);
if (part_attr == ATTR_SLOT_ACTIVE) {
retval = !!(*attr & AB_PARTITION_ATTR_SLOT_ACTIVE);
LOGD("ATTR_SLOT_ACTIVE, retval = %d\n", retval);
} else if (part_attr == ATTR_BOOT_SUCCESSFUL) {
retval = !!(*attr & AB_PARTITION_ATTR_BOOT_SUCCESSFUL);
LOGD("AB_PARTITION_ATTR_BOOT_SUCCESSFUL, retval = %d\n",
retval);
} else if (part_attr == ATTR_UNBOOTABLE) {
retval = !!(*attr & AB_PARTITION_ATTR_UNBOOTABLE);
LOGD("AB_PARTITION_ATTR_UNBOOTABLE, retval = %d\n", retval);
} else {
retval = -1;
}
gpt_disk_free(disk);
return retval;
error:
if (disk)
gpt_disk_free(disk);
return retval;
}
//Set a particular attribute for all the partitions in a
//slot
static int update_slot_attribute(const char *slot, enum part_attr_type ab_attr)
{
unsigned int i = 0;
char buf[PATH_MAX];
struct stat st;
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
uint8_t *pentry_bak = NULL;
int rc = -1;
uint8_t *attr = NULL;
uint8_t *attr_bak = NULL;
char partName[MAX_GPT_NAME_SIZE + 1] = { 0 };
const char ptn_list[][MAX_GPT_NAME_SIZE - 1] = { AB_PTN_LIST };
int slot_name_valid = 0;
if (!slot) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
for (i = 0; slot_suffix_arr[i] != NULL; i++) {
if (!strncmp(slot, slot_suffix_arr[i],
strlen(slot_suffix_arr[i])))
slot_name_valid = 1;
}
if (!slot_name_valid) {
fprintf(stderr, "%s: Invalid slot name\n", __func__);
goto error;
}
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
memset(buf, '\0', sizeof(buf));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
ptn_list[i], AB_SLOT_A_SUFFIX);
if (stat(buf, &st) < 0) {
//partition does not have _a version
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
ptn_list[i], AB_SLOT_B_SUFFIX);
if (stat(buf, &st) < 0) {
//partition does not have _b version
continue;
}
memset(partName, '\0', sizeof(partName));
snprintf(partName, sizeof(partName) - 1, "%s%s", ptn_list[i],
slot);
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n",
__func__);
goto error;
}
rc = gpt_disk_get_disk_info(partName, disk);
if (rc != 0) {
fprintf(stderr, "%s: Failed to get disk info for %s\n",
__func__, partName);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partName, PRIMARY_GPT);
pentry_bak = gpt_disk_get_pentry(disk, partName, SECONDARY_GPT);
if (!pentry || !pentry_bak) {
fprintf(stderr,
"%s: Failed to get pentry/pentry_bak for %s\n",
__func__, partName);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
LOGD("%s: got pentry for part '%s': 0x%lx (at flags: 0x%x)\n",
__func__, partName, *(uint64_t *)pentry, *attr);
attr_bak = pentry_bak + AB_FLAG_OFFSET;
switch (ab_attr) {
case ATTR_BOOT_SUCCESSFUL:
*attr = (*attr) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
*attr_bak =
(*attr_bak) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
break;
case ATTR_UNBOOTABLE:
*attr = (*attr) | AB_PARTITION_ATTR_UNBOOTABLE;
*attr_bak = (*attr_bak) | AB_PARTITION_ATTR_UNBOOTABLE;
break;
case ATTR_BOOTABLE:
*attr = (*attr) ^ AB_PARTITION_ATTR_UNBOOTABLE;
*attr_bak = (*attr_bak) ^ AB_PARTITION_ATTR_UNBOOTABLE;
break;
case ATTR_SLOT_ACTIVE:
*attr = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
*attr_bak = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
break;
default:
fprintf(stderr, "%s: Unrecognized attr\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update crc for %s\n",
__func__, partName);
goto error;
}
if (gpt_disk_commit(disk)) {
fprintf(stderr,
"%s: Failed to write back entry for %s\n",
__func__, partName);
goto error;
}
gpt_disk_free(disk);
disk = NULL;
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_number_slots()
{
struct dirent *de = NULL;
DIR *dir_bootdev = NULL;
unsigned slot_count = 0;
dir_bootdev = opendir(BOOTDEV_DIR);
if (!dir_bootdev) {
fprintf(stderr, "%s: Failed to open bootdev dir (%s)\n",
__func__, strerror(errno));
goto error;
}
while ((de = readdir(dir_bootdev))) {
if (de->d_name[0] == '.')
continue;
static_assert(AB_SLOT_A_SUFFIX[0] == '_',
"Breaking change to slot A suffix");
static_assert(AB_SLOT_B_SUFFIX[0] == '_',
"Breaking change to slot B suffix");
if (!strncmp(de->d_name, BOOT_IMG_PTN_NAME,
strlen(BOOT_IMG_PTN_NAME)) &&
!!strncmp(de->d_name, "boot_aging\n",
strlen("boot_aging"))) {
slot_count++;
}
}
closedir(dir_bootdev);
return slot_count;
error:
if (dir_bootdev)
closedir(dir_bootdev);
return 0;
}
static unsigned int get_current_slot()
{
uint32_t num_slots = 0;
char bootSlotProp[MAX_CMDLINE_SIZE] = { '\0' };
unsigned i = 0;
num_slots = get_number_slots();
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
get_kernel_cmdline_arg(BOOT_SLOT_PROP, bootSlotProp, "_a");
if (!strncmp(bootSlotProp, "N/A\n", strlen("N/A"))) {
fprintf(stderr, "%s: Unable to read boot slot property\n",
__func__);
goto error;
}
//Iterate through a list of partitons named as boot+suffix
//and see which one is currently active.
for (i = 0; slot_suffix_arr[i] != NULL; i++) {
if (!strncmp(bootSlotProp, slot_suffix_arr[i],
strlen(slot_suffix_arr[i]))) {
//printf("%s current_slot = %d\n", __func__, i);
return i;
}
}
error:
//The HAL spec requires that we return a number between
//0 to num_slots - 1. Since something went wrong here we
//are just going to return the default slot.
return 0;
}
static int boot_control_check_slot_sanity(unsigned slot)
{
uint32_t num_slots = get_number_slots();
if ((num_slots < 1) || (slot > num_slots - 1)) {
fprintf(stderr, "Invalid slot number");
return -1;
}
return 0;
}
int get_boot_attr(unsigned slot, enum part_attr_type attr)
{
char bootPartition[MAX_GPT_NAME_SIZE + 1] = { 0 };
if (boot_control_check_slot_sanity(slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
return -1;
}
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
return get_partition_attribute(bootPartition, attr);
}
int is_slot_bootable(unsigned slot)
{
int attr = 0;
attr = get_boot_attr(slot, ATTR_UNBOOTABLE);
if (attr >= 0)
return !attr;
return -1;
}
int mark_boot_successful(unsigned slot)
{
int successful = get_boot_attr(slot, ATTR_BOOT_SUCCESSFUL);
if (!is_slot_bootable(slot)) {
printf("SLOT %s: was marked unbootable, fixing this"
" (I hope you know what you're doing...)\n",
slot_suffix_arr[slot]);
update_slot_attribute(slot_suffix_arr[slot], ATTR_BOOTABLE);
}
if (successful) {
fprintf(stderr, "SLOT %s: already marked successful\n",
slot_suffix_arr[slot]);
return -1;
}
if (update_slot_attribute(slot_suffix_arr[slot],
ATTR_BOOT_SUCCESSFUL)) {
goto error;
}
return 0;
error:
fprintf(stderr, "SLOT %s: Failed to mark boot successful\n",
slot_suffix_arr[slot]);
return -1;
}
const char *get_suffix(unsigned slot)
{
if (boot_control_check_slot_sanity(slot) != 0)
return NULL;
else
return slot_suffix_arr[slot];
}
//Return a gpt disk structure representing the disk that holds
//partition.
static struct gpt_disk *boot_ctl_get_disk_info(char *partition)
{
struct gpt_disk *disk = NULL;
if (!partition)
return NULL;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk\n", __func__);
goto error;
}
if (gpt_disk_get_disk_info(partition, disk)) {
fprintf(stderr, "failed to get disk info for %s\n", partition);
goto error;
}
return disk;
error:
if (disk)
gpt_disk_free(disk);
return NULL;
}
//The argument here is a vector of partition names(including the slot suffix)
//that lie on a single disk
static int boot_ctl_set_active_slot_for_partitions(vector<string> part_list,
unsigned slot)
{
char buf[PATH_MAX] = { 0 };
struct gpt_disk *disk = NULL;
char slotA[MAX_GPT_NAME_SIZE + 1] = { 0 };
char slotB[MAX_GPT_NAME_SIZE + 1] = { 0 };
char active_guid[TYPE_GUID_SIZE + 1] = { 0 };
char inactive_guid[TYPE_GUID_SIZE + 1] = { 0 };
int rc;
//Pointer to the partition entry of current 'A' partition
uint8_t *pentryA = NULL;
uint8_t *pentryA_bak = NULL;
//Pointer to partition entry of current 'B' partition
uint8_t *pentryB = NULL;
uint8_t *pentryB_bak = NULL;
struct stat st;
vector<string>::iterator partition_iterator;
LOGD("Marking slot %s as active:\n", slot_suffix_arr[slot]);
for (partition_iterator = part_list.begin();
partition_iterator != part_list.end(); partition_iterator++) {
//Chop off the slot suffix from the partition name to
//make the string easier to work with.
string prefix = *partition_iterator;
LOGD("Part: %s\n", prefix.c_str());
if (prefix.size() < (strlen(AB_SLOT_A_SUFFIX) + 1)) {
fprintf(stderr, "Invalid partition name: %s\n",
prefix.c_str());
goto error;
}
prefix.resize(prefix.size() - strlen(AB_SLOT_A_SUFFIX));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
prefix.c_str(), AB_SLOT_A_SUFFIX);
LOGD("\t_a Path: '%s'\n", buf);
rc = stat(buf, &st);
if (rc < 0) {
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc,
strerror(errno));
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
prefix.c_str(), AB_SLOT_B_SUFFIX);
LOGD("\t_b Path: '%s'\n", buf);
rc = stat(buf, &st);
if (rc < 0) {
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc,
strerror(errno));
continue;
}
memset(slotA, 0, sizeof(slotA));
memset(slotB, 0, sizeof(slotA));
snprintf(slotA, sizeof(slotA) - 1, "%s%s", prefix.c_str(),
AB_SLOT_A_SUFFIX);
snprintf(slotB, sizeof(slotB) - 1, "%s%s", prefix.c_str(),
AB_SLOT_B_SUFFIX);
//Get the disk containing the partitions that were passed in.
//All partitions passed in must lie on the same disk.
if (!disk) {
disk = boot_ctl_get_disk_info(slotA);
if (!disk)
goto error;
}
//Get partition entry for slot A & B from the primary
//and backup tables.
pentryA = gpt_disk_get_pentry(disk, slotA, PRIMARY_GPT);
pentryA_bak = gpt_disk_get_pentry(disk, slotA, SECONDARY_GPT);
pentryB = gpt_disk_get_pentry(disk, slotB, PRIMARY_GPT);
pentryB_bak = gpt_disk_get_pentry(disk, slotB, SECONDARY_GPT);
if (!pentryA || !pentryA_bak || !pentryB || !pentryB_bak) {
//None of these should be NULL since we have already
//checked for A & B versions earlier.
fprintf(stderr, "Slot pentries for %s not found.\n",
prefix.c_str());
goto error;
}
LOGD("\tAB attr (A): 0x%x (backup: 0x%x)\n",
*(uint16_t *)(pentryA + AB_FLAG_OFFSET),
*(uint16_t *)(pentryA_bak + AB_FLAG_OFFSET));
LOGD("\tAB attr (B): 0x%x (backup: 0x%x)\n",
*(uint16_t *)(pentryB + AB_FLAG_OFFSET),
*(uint16_t *)(pentryB_bak + AB_FLAG_OFFSET));
memset(active_guid, '\0', sizeof(active_guid));
memset(inactive_guid, '\0', sizeof(inactive_guid));
if (get_partition_attribute(slotA, ATTR_SLOT_ACTIVE) == 1) {
//A is the current active slot
memcpy((void *)active_guid, (const void *)pentryA,
TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryB,
TYPE_GUID_SIZE);
} else if (get_partition_attribute(slotB, ATTR_SLOT_ACTIVE) ==
1) {
//B is the current active slot
memcpy((void *)active_guid, (const void *)pentryB,
TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryA,
TYPE_GUID_SIZE);
} else {
fprintf(stderr, "Both A & B are inactive..Aborting");
goto error;
}
// printf("\tActive GUID: %s\n", active_guid);
// printf("\tInactive GUID: %s\n", active_guid);
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))) {
//Mark A as active in primary table
UPDATE_SLOT(pentryA, active_guid, SLOT_ACTIVE);
//Mark A as active in backup table
UPDATE_SLOT(pentryA_bak, active_guid, SLOT_ACTIVE);
//Mark B as inactive in primary table
UPDATE_SLOT(pentryB, inactive_guid, SLOT_INACTIVE);
//Mark B as inactive in backup table
UPDATE_SLOT(pentryB_bak, inactive_guid, SLOT_INACTIVE);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))) {
//Mark B as active in primary table
UPDATE_SLOT(pentryB, active_guid, SLOT_ACTIVE);
//Mark B as active in backup table
UPDATE_SLOT(pentryB_bak, active_guid, SLOT_ACTIVE);
//Mark A as inavtive in primary table
UPDATE_SLOT(pentryA, inactive_guid, SLOT_INACTIVE);
//Mark A as inactive in backup table
UPDATE_SLOT(pentryA_bak, inactive_guid, SLOT_INACTIVE);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk) != 0) {
fprintf(stderr, "%s: Failed to update gpt_disk crc\n",
__func__);
goto error;
}
}
//write updated content to disk
if (disk) {
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
goto error;
}
gpt_disk_free(disk);
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_active_boot_slot()
{
uint32_t num_slots = get_number_slots();
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
for (uint32_t i = 0; i < num_slots; i++) {
if (get_boot_attr(i, ATTR_SLOT_ACTIVE))
return i;
}
fprintf(stderr, "%s: Failed to find the active boot slot\n", __func__);
return 0;
}
int set_active_boot_slot(unsigned slot)
{
map<string, vector<string> > ptn_map;
vector<string> ptn_vec;
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
uint32_t i;
int rc = -1;
map<string, vector<string> >::iterator map_iter;
if (boot_control_check_slot_sanity(slot)) {
fprintf(stderr, "%s: Bad arguments\n", __func__);
goto error;
}
//The partition list just contains prefixes(without the _a/_b) of the
//partitions that support A/B. In order to get the layout we need the
//actual names. To do this we append the slot suffix to every member
//in the list.
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
//XBL is handled differrently for ufs devices so ignore it
if (!strncmp(ptn_list[i], PTN_XBL, strlen(PTN_XBL)))
continue;
//The partition list will be the list of _a partitions
string cur_ptn = ptn_list[i];
cur_ptn.append(AB_SLOT_A_SUFFIX);
ptn_vec.push_back(cur_ptn);
}
//The partition map gives us info in the following format:
// [path_to_block_device_1]--><partitions on device 1>
// [path_to_block_device_2]--><partitions on device 2>
// ...
// ...
// eg:
// [/dev/block/sdb]---><system, boot, rpm, tz,....>
if (gpt_utils_get_partition_map(ptn_vec, ptn_map)) {
fprintf(stderr, "%s: Failed to get partition map\n", __func__);
goto error;
}
for (map_iter = ptn_map.begin(); map_iter != ptn_map.end();
map_iter++) {
if (map_iter->second.size() < 1)
continue;
if (boot_ctl_set_active_slot_for_partitions(map_iter->second,
slot)) {
fprintf(stderr,
"%s: Failed to set active slot for partitions \n",
__func__);
;
goto error;
}
}
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))) {
//Set xbl_a as the boot lun
rc = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))) {
//Set xbl_b as the boot lun
rc = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (rc) {
fprintf(stderr,
"%s: Failed to switch xbl boot partition\n",
__func__);
goto error;
}
return 0;
error:
return -1;
}
int set_slot_as_unbootable(unsigned slot)
{
if (boot_control_check_slot_sanity(slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
if (update_slot_attribute(slot_suffix_arr[slot], ATTR_UNBOOTABLE)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark slot unbootable\n", __func__);
return -1;
}
int is_slot_marked_successful(unsigned slot)
{
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = { 0 };
if (boot_control_check_slot_sanity(slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_BOOT_SUCCESSFUL);
LOGD("%s: slot = %d, attr = 0x%x\n", __func__, slot, attr);
if (attr >= 0)
return attr;
error:
return -1;
}
const struct boot_control_module bootctl = {
.getCurrentSlot = get_current_slot,
.markBootSuccessful = mark_boot_successful,
.setActiveBootSlot = set_active_boot_slot,
.setSlotAsUnbootable = set_slot_as_unbootable,
.isSlotBootable = is_slot_bootable,
.getSuffix = get_suffix,
.isSlotMarkedSuccessful = is_slot_marked_successful,
.getActiveBootSlot = get_active_boot_slot,
};

96
bootctrl_test.cpp Normal file
View File

@ -0,0 +1,96 @@
/*
* Copyright (C) 2016 The Android Open Source Project
* Copyright (C) 2022 Caleb Connolly <caleb@connolly.tech>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "bootctrl.h"
struct test_state {
struct slot_info slots[2];
};
static struct test_state state = {
.slots = {
[0] = {
.active = true,
.bootable = true,
.successful = false,
},
[1] = {
.active = false,
.bootable = true,
.successful = false,
},
}
};
unsigned test_get_current_slot()
{
return (unsigned int)state.slots[1].active;
}
int test_mark_boot_successful(unsigned slot)
{
return 0;
}
int test_set_active_boot_slot(unsigned slot)
{
return 0;
}
int test_set_slot_as_unbootable(unsigned slot)
{
return 0;
}
int test_is_slot_bootable(unsigned slot)
{
return 1;
}
const char *test_get_suffix(unsigned slot)
{
switch (slot) {
case 0:
return "_x";
case 1:
return "_z";
default:
return "??";
}
}
int test_is_slot_marked_successful(unsigned slot)
{
return 1;
}
unsigned test_get_active_boot_slot()
{
return 0;
}
const struct boot_control_module bootctl_test = {
.getCurrentSlot = test_get_current_slot,
.markBootSuccessful = test_mark_boot_successful,
.setActiveBootSlot = test_set_active_boot_slot,
.setSlotAsUnbootable = test_set_slot_as_unbootable,
.isSlotBootable = test_is_slot_bootable,
.getSuffix = test_get_suffix,
.isSlotMarkedSuccessful = test_is_slot_marked_successful,
.getActiveBootSlot = test_get_active_boot_slot,
};

File diff suppressed because it is too large Load Diff

View File

@ -37,78 +37,58 @@ extern "C" {
#endif
#include <unistd.h>
#include <stdlib.h>
/******************************************************************************
* GPT HEADER DEFINES
******************************************************************************/
#define GPT_SIGNATURE "EFI PART"
#define HEADER_SIZE_OFFSET 12
#define HEADER_CRC_OFFSET 16
#define PRIMARY_HEADER_OFFSET 24
#define BACKUP_HEADER_OFFSET 32
#define FIRST_USABLE_LBA_OFFSET 40
#define LAST_USABLE_LBA_OFFSET 48
#define PENTRIES_OFFSET 72
#define PARTITION_COUNT_OFFSET 80
#define PENTRY_SIZE_OFFSET 84
#define PARTITION_CRC_OFFSET 88
#define TYPE_GUID_OFFSET 0
#define TYPE_GUID_SIZE 16
#define PTN_ENTRY_SIZE 128
#define UNIQUE_GUID_OFFSET 16
#define FIRST_LBA_OFFSET 32
#define LAST_LBA_OFFSET 40
#define ATTRIBUTE_FLAG_OFFSET 48
#define PARTITION_NAME_OFFSET 56
#define MAX_GPT_NAME_SIZE 72
#define GPT_SIGNATURE "EFI PART"
#define HEADER_SIZE_OFFSET 12
#define HEADER_CRC_OFFSET 16
#define PRIMARY_HEADER_OFFSET 24
#define BACKUP_HEADER_OFFSET 32
#define FIRST_USABLE_LBA_OFFSET 40
#define LAST_USABLE_LBA_OFFSET 48
#define PENTRIES_OFFSET 72
#define PARTITION_COUNT_OFFSET 80
#define PENTRY_SIZE_OFFSET 84
#define PARTITION_CRC_OFFSET 88
#define TYPE_GUID_OFFSET 0
#define TYPE_GUID_SIZE 16
#define PTN_ENTRY_SIZE 128
#define UNIQUE_GUID_OFFSET 16
#define FIRST_LBA_OFFSET 32
#define LAST_LBA_OFFSET 40
#define ATTRIBUTE_FLAG_OFFSET 48
#define PARTITION_NAME_OFFSET 56
#define MAX_GPT_NAME_SIZE 72
/******************************************************************************
* AB RELATED DEFINES
******************************************************************************/
//Bit 48 onwords in the attribute field are the ones where we are allowed to
//store our AB attributes.
#define AB_FLAG_OFFSET (ATTRIBUTE_FLAG_OFFSET + 6)
#define GPT_DISK_INIT_MAGIC 0xABCD
#define AB_PARTITION_ATTR_SLOT_ACTIVE (0x1<<2)
#define AB_PARTITION_ATTR_BOOT_SUCCESSFUL (0x1<<6)
#define AB_PARTITION_ATTR_UNBOOTABLE (0x1<<7)
#define AB_SLOT_ACTIVE_VAL 0xF
#define AB_SLOT_INACTIVE_VAL 0x0
#define AB_SLOT_ACTIVE 1
#define AB_SLOT_INACTIVE 0
#define AB_SLOT_A_SUFFIX "_a"
#define AB_SLOT_B_SUFFIX "_b"
#define PTN_XBL "xbl"
#define PTN_SWAP_LIST PTN_XBL, \
"abl", "aop", "apdp", "cmnlib", "cmnlib64", \
"devcfg", "dtbo", "hyp", "keymaster", "msadp", \
"qupfw", "storsec", "tz", "vbmeta", "vbmeta_system", "xbl_config"
#define AB_FLAG_OFFSET (ATTRIBUTE_FLAG_OFFSET + 6)
#define GPT_DISK_INIT_MAGIC 0xABCD
#define AB_PARTITION_ATTR_SLOT_ACTIVE (0x1 << 2)
#define AB_PARTITION_ATTR_BOOT_SUCCESSFUL (0x1 << 6)
#define AB_PARTITION_ATTR_UNBOOTABLE (0x1 << 7)
#define AB_SLOT_ACTIVE_VAL 0xF
#define AB_SLOT_INACTIVE_VAL 0x0
#define AB_SLOT_ACTIVE 1
#define AB_SLOT_INACTIVE 0
#define AB_SLOT_A_SUFFIX "_a"
#define AB_SLOT_B_SUFFIX "_b"
#define PTN_XBL "xbl"
#define PTN_SWAP_LIST \
PTN_XBL, "abl", "aop", "apdp", "cmnlib", "cmnlib64", "devcfg", "dtbo", \
"hyp", "keymaster", "msadp", "qupfw", "storsec", "tz", \
"vbmeta", "vbmeta_system", "xbl_config"
#define AB_PTN_LIST PTN_SWAP_LIST, "boot", "system", "vendor", "modem", "system_ext", "product"
#define BOOT_DEV_DIR "/dev/disk/by-partlabel"
#define AB_PTN_LIST \
PTN_SWAP_LIST, "boot", "system", "vendor", "modem", "system_ext", \
"product"
#define BOOT_DEV_DIR "/dev/disk/by-partlabel"
/******************************************************************************
* HELPER MACROS
******************************************************************************/
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
/******************************************************************************
* TYPES
******************************************************************************/
enum boot_update_stage {
UPDATE_MAIN = 1,
UPDATE_BACKUP,
UPDATE_FINALIZE
};
enum gpt_instance {
PRIMARY_GPT = 0,
SECONDARY_GPT
};
enum gpt_instance { PRIMARY_GPT = 0, SECONDARY_GPT };
enum boot_chain {
NORMAL_BOOT = 0,
BACKUP_BOOT
};
enum boot_chain { NORMAL_BOOT = 0, BACKUP_BOOT };
struct gpt_disk {
//GPT primary header
@ -138,12 +118,8 @@ struct gpt_disk {
uint32_t is_initialized;
};
/******************************************************************************
* FUNCTION PROTOTYPES
******************************************************************************/
int prepare_boot_update(enum boot_update_stage stage);
//GPT disk methods
struct gpt_disk* gpt_disk_alloc();
struct gpt_disk *gpt_disk_alloc();
//Free previously allocated gpt_disk struct
void gpt_disk_free(struct gpt_disk *disk);
//Get the details of the disk holding the partition whose name
@ -151,9 +127,8 @@ void gpt_disk_free(struct gpt_disk *disk);
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk);
//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t* gpt_disk_get_pentry(struct gpt_disk *disk,
const char *partname,
enum gpt_instance instance);
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname,
enum gpt_instance instance);
//Update the crc fields of the modified disk structure
int gpt_disk_update_crc(struct gpt_disk *disk);
@ -161,9 +136,6 @@ int gpt_disk_update_crc(struct gpt_disk *disk);
//Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk);
//Return if the current device is UFS based or not
int gpt_utils_is_ufs_device();
//Swtich betwieen using either the primary or the backup
//boot LUN for boot. This is required since UFS boot partitions
//cannot have a backup GPT which is what we use for failsafe
@ -188,8 +160,9 @@ int gpt_utils_set_xbl_boot_partition(enum boot_chain chain);
//sits on. The key in the map is the path to the block device where the
//partition lies and the value is a vector of strings indicating which of
//the passed in partition names sits on that device.
int gpt_utils_get_partition_map(std::vector<std::string>& partition_list,
std::map<std::string,std::vector<std::string>>& partition_map);
int gpt_utils_get_partition_map(
std::vector<std::string> &partition_list,
std::map<std::string, std::vector<std::string> > &partition_map);
#ifdef __cplusplus
}
#endif

View File

@ -6,6 +6,8 @@ deps = [
src = [
'qbootctl.cpp',
'bootctrl_impl.cpp',
'bootctrl_test.cpp',
'gpt-utils.cpp',
'ufs-bsg.cpp',
]

File diff suppressed because it is too large Load Diff

View File

@ -76,131 +76,138 @@
int ufs_bsg_dev_open(void)
{
int ret;
if (!fd_ufs_bsg) {
fd_ufs_bsg = open(ufs_bsg_dev, O_RDWR);
ret = errno;
if (fd_ufs_bsg < 0) {
fprintf(stderr, "Unable to open %s (error no: %d)",
ufs_bsg_dev, errno);
fd_ufs_bsg = 0;
return ret;
}
}
return 0;
int ret;
if (!fd_ufs_bsg) {
fd_ufs_bsg = open(ufs_bsg_dev, O_RDWR);
ret = errno;
if (fd_ufs_bsg < 0) {
fprintf(stderr, "Unable to open %s (error no: %d)",
ufs_bsg_dev, errno);
fd_ufs_bsg = 0;
return ret;
}
}
return 0;
}
void ufs_bsg_dev_close(void)
{
if (fd_ufs_bsg) {
close(fd_ufs_bsg);
fd_ufs_bsg = 0;
}
if (fd_ufs_bsg) {
close(fd_ufs_bsg);
fd_ufs_bsg = 0;
}
}
static int ufs_bsg_ioctl(int fd, struct ufs_bsg_request *req,
struct ufs_bsg_reply *rsp, __u8 *buf, __u32 buf_len,
enum bsg_ioctl_dir dir)
struct ufs_bsg_reply *rsp, __u8 *buf, __u32 buf_len,
enum bsg_ioctl_dir dir)
{
int ret;
struct sg_io_v4 sg_io{};
int ret;
struct sg_io_v4 sg_io {
};
sg_io.guard = 'Q';
sg_io.protocol = BSG_PROTOCOL_SCSI;
sg_io.subprotocol = BSG_SUB_PROTOCOL_SCSI_TRANSPORT;
sg_io.request_len = sizeof(*req);
sg_io.request = (__u64)req;
sg_io.response = (__u64)rsp;
sg_io.max_response_len = sizeof(*rsp);
if (dir == BSG_IOCTL_DIR_FROM_DEV) {
sg_io.din_xfer_len = buf_len;
sg_io.din_xferp = (__u64)(buf);
} else {
sg_io.dout_xfer_len = buf_len;
sg_io.dout_xferp = (__u64)(buf);
}
sg_io.guard = 'Q';
sg_io.protocol = BSG_PROTOCOL_SCSI;
sg_io.subprotocol = BSG_SUB_PROTOCOL_SCSI_TRANSPORT;
sg_io.request_len = sizeof(*req);
sg_io.request = (__u64)req;
sg_io.response = (__u64)rsp;
sg_io.max_response_len = sizeof(*rsp);
if (dir == BSG_IOCTL_DIR_FROM_DEV) {
sg_io.din_xfer_len = buf_len;
sg_io.din_xferp = (__u64)(buf);
} else {
sg_io.dout_xfer_len = buf_len;
sg_io.dout_xferp = (__u64)(buf);
}
ret = ioctl(fd, SG_IO, &sg_io);
if (ret)
fprintf(stderr, "%s: Error from sg_io ioctl (return value: %d, error no: %d, reply result from LLD: %d\n)",
__func__, ret, errno, rsp->result);
ret = ioctl(fd, SG_IO, &sg_io);
if (ret)
fprintf(stderr,
"%s: Error from sg_io ioctl (return value: %d, error no: %d, reply result from LLD: %d\n)",
__func__, ret, errno, rsp->result);
if (sg_io.info || rsp->result) {
fprintf(stderr, "%s: Error from sg_io info (check sg info: device_status: 0x%x, transport_status: 0x%x, driver_status: 0x%x, reply result from LLD: %d\n)",
__func__, sg_io.device_status, sg_io.transport_status,
sg_io.driver_status, rsp->result);
ret = -EAGAIN;
}
if (sg_io.info || rsp->result) {
fprintf(stderr,
"%s: Error from sg_io info (check sg info: device_status: 0x%x, transport_status: 0x%x, driver_status: 0x%x, reply result from LLD: %d\n)",
__func__, sg_io.device_status, sg_io.transport_status,
sg_io.driver_status, rsp->result);
ret = -EAGAIN;
}
return ret;
return ret;
}
static void compose_ufs_bsg_query_req(struct ufs_bsg_request *req, __u8 func,
__u8 opcode, __u8 idn, __u8 index, __u8 sel,
__u16 length)
__u8 opcode, __u8 idn, __u8 index,
__u8 sel, __u16 length)
{
struct utp_upiu_header *hdr = &req->upiu_req.header;
struct utp_upiu_query *qr = &req->upiu_req.qr;
struct utp_upiu_header *hdr = &req->upiu_req.header;
struct utp_upiu_query *qr = &req->upiu_req.qr;
req->msgcode = UTP_UPIU_QUERY_REQ;
hdr->dword_0 = DWORD(UTP_UPIU_QUERY_REQ, 0, 0, 0);
hdr->dword_1 = DWORD(0, func, 0, 0);
hdr->dword_2 = DWORD(0, 0, length >> 8, (__u8)length);
qr->opcode = opcode;
qr->idn = idn;
qr->index = index;
qr->selector = sel;
qr->length = htobe16(length);
req->msgcode = UTP_UPIU_QUERY_REQ;
hdr->dword_0 = DWORD(UTP_UPIU_QUERY_REQ, 0, 0, 0);
hdr->dword_1 = DWORD(0, func, 0, 0);
hdr->dword_2 = DWORD(0, 0, length >> 8, (__u8)length);
qr->opcode = opcode;
qr->idn = idn;
qr->index = index;
qr->selector = sel;
qr->length = htobe16(length);
}
static int ufs_query_attr(int fd, __u32 value,
__u8 func, __u8 opcode, __u8 idn,
__u8 index, __u8 sel)
static int ufs_query_attr(int fd, __u32 value, __u8 func, __u8 opcode, __u8 idn,
__u8 index, __u8 sel)
{
struct ufs_bsg_request req{};
struct ufs_bsg_reply rsp{};
enum bsg_ioctl_dir dir = BSG_IOCTL_DIR_FROM_DEV;
int ret = 0;
struct ufs_bsg_request req {
};
struct ufs_bsg_reply rsp {
};
enum bsg_ioctl_dir dir = BSG_IOCTL_DIR_FROM_DEV;
int ret = 0;
if (opcode == QUERY_REQ_OP_WRITE_DESC || opcode == QUERY_REQ_OP_WRITE_ATTR)
dir = BSG_IOCTL_DIR_TO_DEV;
if (opcode == QUERY_REQ_OP_WRITE_DESC ||
opcode == QUERY_REQ_OP_WRITE_ATTR)
dir = BSG_IOCTL_DIR_TO_DEV;
req.upiu_req.qr.value = htobe32(value);
req.upiu_req.qr.value = htobe32(value);
compose_ufs_bsg_query_req(&req, func, opcode, idn, index, sel, 0);
compose_ufs_bsg_query_req(&req, func, opcode, idn, index, sel, 0);
ret = ufs_bsg_ioctl(fd, &req, &rsp, 0, 0, dir);
if (ret)
fprintf(stderr, "%s: Error from ufs_bsg_ioctl (return value: %d, error no: %d\n)",
__func__, ret, errno);
ret = ufs_bsg_ioctl(fd, &req, &rsp, 0, 0, dir);
if (ret)
fprintf(stderr,
"%s: Error from ufs_bsg_ioctl (return value: %d, error no: %d\n)",
__func__, ret, errno);
return ret;
return ret;
}
int32_t set_boot_lun(__u8 lun_id)
{
int32_t ret;
__u32 boot_lun_id = lun_id;
int32_t ret;
__u32 boot_lun_id = lun_id;
// ret = get_ufs_bsg_dev();
// if (ret)
// return ret;
LOGD("Using UFS bsg device: %s\n", ufs_bsg_dev);
// ret = get_ufs_bsg_dev();
// if (ret)
// return ret;
LOGD("Using UFS bsg device: %s\n", ufs_bsg_dev);
ret = ufs_bsg_dev_open();
if (ret)
return ret;
LOGD("Opened ufs bsg dev: %s\n", ufs_bsg_dev);
ret = ufs_bsg_dev_open();
if (ret)
return ret;
LOGD("Opened ufs bsg dev: %s\n", ufs_bsg_dev);
ret = ufs_query_attr(fd_ufs_bsg, boot_lun_id, QUERY_REQ_FUNC_STD_WRITE,
QUERY_REQ_OP_WRITE_ATTR, QUERY_ATTR_IDN_BOOT_LU_EN, 0, 0);
if (ret) {
fprintf(stderr, "Error requesting ufs attr idn %d via query ioctl (return value: %d, error no: %d)",
QUERY_ATTR_IDN_BOOT_LU_EN, ret, errno);
goto out;
}
ret = ufs_query_attr(fd_ufs_bsg, boot_lun_id, QUERY_REQ_FUNC_STD_WRITE,
QUERY_REQ_OP_WRITE_ATTR, QUERY_ATTR_IDN_BOOT_LU_EN,
0, 0);
if (ret) {
fprintf(stderr,
"Error requesting ufs attr idn %d via query ioctl (return value: %d, error no: %d)",
QUERY_ATTR_IDN_BOOT_LU_EN, ret, errno);
goto out;
}
out:
ufs_bsg_dev_close();
return ret;
ufs_bsg_dev_close();
return ret;
}

View File

@ -30,12 +30,11 @@
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define FNAME_SZ 64
#define FNAME_SZ 64
#define SG_IO 0x2285
#define SG_IO 0x2285
#define DWORD(b3, b2, b1, b0) htobe32((b3 << 24) | (b2 << 16) |\
(b1 << 8) | b0)
#define DWORD(b3, b2, b1, b0) htobe32((b3 << 24) | (b2 << 16) | (b1 << 8) | b0)
/* UFS BSG device node */
char ufs_bsg_dev[FNAME_SZ] = "/dev/bsg/ufs-bsg0";
@ -44,52 +43,52 @@ int fd_ufs_bsg;
/* UPIU Transaction Codes */
enum {
UTP_UPIU_NOP_OUT = 0x00,
UTP_UPIU_COMMAND = 0x01,
UTP_UPIU_DATA_OUT = 0x02,
UTP_UPIU_TASK_REQ = 0x04,
UTP_UPIU_QUERY_REQ = 0x16,
UTP_UPIU_NOP_OUT = 0x00,
UTP_UPIU_COMMAND = 0x01,
UTP_UPIU_DATA_OUT = 0x02,
UTP_UPIU_TASK_REQ = 0x04,
UTP_UPIU_QUERY_REQ = 0x16,
};
/* UPIU Query Function field */
enum {
QUERY_REQ_FUNC_STD_READ = 0x01,
QUERY_REQ_FUNC_STD_WRITE = 0x81,
QUERY_REQ_FUNC_STD_READ = 0x01,
QUERY_REQ_FUNC_STD_WRITE = 0x81,
};
enum query_req_opcode {
QUERY_REQ_OP_READ_DESC = 0x1,
QUERY_REQ_OP_WRITE_DESC = 0x2,
QUERY_REQ_OP_READ_ATTR = 0x3,
QUERY_REQ_OP_WRITE_ATTR = 0x4,
QUERY_REQ_OP_READ_FLAG = 0x5,
QUERY_REQ_OP_SET_FLAG = 0x6,
QUERY_REQ_OP_CLEAR_FLAG = 0x7,
QUERY_REQ_OP_TOGGLE_FLAG = 0x8,
QUERY_REQ_OP_READ_DESC = 0x1,
QUERY_REQ_OP_WRITE_DESC = 0x2,
QUERY_REQ_OP_READ_ATTR = 0x3,
QUERY_REQ_OP_WRITE_ATTR = 0x4,
QUERY_REQ_OP_READ_FLAG = 0x5,
QUERY_REQ_OP_SET_FLAG = 0x6,
QUERY_REQ_OP_CLEAR_FLAG = 0x7,
QUERY_REQ_OP_TOGGLE_FLAG = 0x8,
};
enum query_desc_idn {
QUERY_DESC_IDN_DEVICE = 0x0,
QUERY_DESC_IDN_UNIT = 0x2,
QUERY_DESC_IDN_GEOMETRY = 0x7,
QUERY_DESC_IDN_DEVICE = 0x0,
QUERY_DESC_IDN_UNIT = 0x2,
QUERY_DESC_IDN_GEOMETRY = 0x7,
};
enum query_desc_size {
QUERY_DESC_SIZE_DEVICE = 0x40,
QUERY_DESC_SIZE_GEOMETRY = 0x48,
QUERY_DESC_SIZE_UNIT = 0x23,
QUERY_DESC_SIZE_DEVICE = 0x40,
QUERY_DESC_SIZE_GEOMETRY = 0x48,
QUERY_DESC_SIZE_UNIT = 0x23,
};
enum bsg_ioctl_dir {
BSG_IOCTL_DIR_TO_DEV,
BSG_IOCTL_DIR_FROM_DEV,
BSG_IOCTL_DIR_TO_DEV,
BSG_IOCTL_DIR_FROM_DEV,
};
enum query_attr_idn {
QUERY_ATTR_IDN_BOOT_LU_EN = 0x00,
QUERY_ATTR_IDN_RESERVED = 0x01,
QUERY_ATTR_IDN_POWER_MODE = 0x02,
QUERY_ATTR_IDN_ACTIVE_ICC_LVL = 0x03,
QUERY_ATTR_IDN_BOOT_LU_EN = 0x00,
QUERY_ATTR_IDN_RESERVED = 0x01,
QUERY_ATTR_IDN_POWER_MODE = 0x02,
QUERY_ATTR_IDN_ACTIVE_ICC_LVL = 0x03,
};
#endif /* __RECOVERY_UFS_BSG_H__ */