initial commit

This is a port of the Android bootctrl HAL and Qualcomms GPT based
implementation for musl/glibc based systems running mainline linux

Currently it doesn't work because the gpt hdr which is read doesn't
seem to have valid data.
This commit is contained in:
Caleb Connolly 2021-10-09 23:16:20 +01:00
commit 2f5bf10269
No known key found for this signature in database
GPG Key ID: 0583312B195F64B6
11 changed files with 2883 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
.vscode/
build/

92
BootControl.cpp Normal file
View File

@ -0,0 +1,92 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include "boot_control.h"
#include "BootControl.h"
BootControl::BootControl(boot_control_module *module) : mModule(module) {
}
// Methods from ::android::hardware::boot::V1_0::IBootControl follow.
unsigned int BootControl::getNumberSlots() {
return mModule->getNumberSlots(mModule);
}
unsigned int BootControl::getCurrentSlot() {
return mModule->getCurrentSlot(mModule);
}
int BootControl::markBootSuccessful() {
int ret = mModule->markBootSuccessful(mModule);
return ret;
}
int BootControl::setActiveBootSlot(unsigned int slot) {
int ret = mModule->setActiveBootSlot(mModule, slot);
return ret;
}
int BootControl::setSlotAsUnbootable(unsigned int slot) {
int ret = mModule->setSlotAsUnbootable(mModule, slot);
return ret;
}
BoolResult BootControl::isSlotBootable(unsigned int slot) {
int32_t ret = mModule->isSlotBootable(mModule, slot);
if (ret < 0) {
return BoolResult::INVALID_SLOT;
}
return ret ? BoolResult::TRUE : BoolResult::FALSE;
}
BoolResult BootControl::isSlotMarkedSuccessful(unsigned int slot) {
int32_t ret = mModule->isSlotMarkedSuccessful(mModule, slot);
if (ret < 0) {
return BoolResult::INVALID_SLOT;
}
return ret ? BoolResult::TRUE : BoolResult::FALSE;
}
std::string BootControl::getSuffix(unsigned int slot) {
std::string ans;
const char *suffix = mModule->getSuffix(mModule, slot);
if (suffix) {
ans = std::string(suffix);
}
return ans;
}
BootControl* BootControlInit() {
boot_control_module* module;
// For devices that don't build a standalone libhardware bootctrl impl for recovery,
// we simulate the hw_get_module() by accessing it from the current process directly.
const boot_control_module* hw_module = &HAL_MODULE_INFO_SYM;
module = reinterpret_cast<boot_control_module*>(const_cast<boot_control_module*>(hw_module));
module->init(module);
return new BootControl(module);
}
int main (int argc, char * argv []) {
BootControl *bootctl = BootControlInit();
printf("======= Current slot: %d\n", bootctl->getCurrentSlot());
printf("======= isslotbootable: a = %d, b = %d\n", bootctl->isSlotBootable(0),
bootctl->isSlotBootable(1));
printf("======= isSlotMarkedSuccessful: a = %d, b = %d\n", bootctl->isSlotMarkedSuccessful(0),
bootctl->isSlotMarkedSuccessful(1));
}

45
BootControl.h Normal file
View File

@ -0,0 +1,45 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_BOOT_V1_0_BOOTCONTROL_H
#define ANDROID_HARDWARE_BOOT_V1_0_BOOTCONTROL_H
/**
* A result encapsulating whether a function returned true, false or
* failed due to an invalid slot number
*/
enum class BoolResult : int {
FALSE = 0,
TRUE = 1,
INVALID_SLOT = -1 /* -1 */,
};
struct BootControl {
BootControl(boot_control_module* module);
// Methods from ::android::hardware::boot::V1_0::IBootControl follow.
unsigned int getNumberSlots();
unsigned int getCurrentSlot();
int markBootSuccessful();
int setActiveBootSlot(unsigned int slot);
int setSlotAsUnbootable(unsigned int slot);
BoolResult isSlotBootable(unsigned int slot);
BoolResult isSlotMarkedSuccessful(unsigned int slot);
std::string getSuffix(unsigned int slot);
private:
boot_control_module* mModule;
};
#endif // ANDROID_HARDWARE_BOOT_V1_0_BOOTCONTROL_H

15
CMakeLists.txt Normal file
View File

@ -0,0 +1,15 @@
cmake_minimum_required(VERSION 3.10)
# set the project name
project(qbootctl)
set(BootCtrl_Files BootControl.cpp
boot_control_impl_qcom.cpp
gpt-utils.cpp)
include_directories(include)
# add the executable
add_executable(qbootctl ${BootCtrl_Files})
target_link_libraries(qbootctl libz.so)

7
README.md Normal file
View File

@ -0,0 +1,7 @@
Qualcomm bootctl HAL for Linux
This HAL was pulled from AOSP source code and bastardised to build and run on a musl/glibc system. This may or may not render any hardware you run it on unusable, you have been warned.
# Dependencies
* zlib-dev

136
boot_control.h Normal file
View File

@ -0,0 +1,136 @@
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INCLUDE_HARDWARE_BOOT_CONTROL_H
#define ANDROID_INCLUDE_HARDWARE_BOOT_CONTROL_H
#define BOOT_CONTROL_MODULE_API_VERSION_0_1 HARDWARE_MODULE_API_VERSION(0, 1)
/**
* The id of this module
*/
#define BOOT_CONTROL_HARDWARE_MODULE_ID "bootctrl"
/*
* The Boot Control HAL is designed to allow for managing sets of redundant
* partitions, called slots, that can be booted from independantly. Slots
* are sets of partitions whose names differ only by a given suffix.
* They are identified here by a 0 indexed number, and associated with their
* suffix, which can be appended to the base name for any particular partition
* to find the one associated with that slot. The bootloader must pass the suffix
* of the currently active slot either through a kernel command line property at
* androidboot.slot_suffix, or the device tree at /firmware/android/slot_suffix.
* The primary use of this set up is to allow for background updates while the
* device is running, and to provide a fallback in the event that the update fails.
*/
/**
* Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
* and the fields of this data structure must begin with hw_module_t
* followed by module specific information.
*/
struct boot_control_module {
/*
* (*init)() perform any initialization tasks needed for the HAL.
* This is called only once.
*/
void (*init)(struct boot_control_module *module);
/*
* (*getNumberSlots)() returns the number of available slots.
* For instance, a system with a single set of partitions would return
* 1, a system with A/B would return 2, A/B/C -> 3...
*/
unsigned (*getNumberSlots)(struct boot_control_module *module);
/*
* (*getCurrentSlot)() returns the value letting the system know
* whether the current slot is A or B. The meaning of A and B is
* left up to the implementer. It is assumed that if the current slot
* is A, then the block devices underlying B can be accessed directly
* without any risk of corruption.
* The returned value is always guaranteed to be strictly less than the
* value returned by getNumberSlots. Slots start at 0 and
* finish at getNumberSlots() - 1
*/
unsigned (*getCurrentSlot)(struct boot_control_module *module);
/*
* (*markBootSuccessful)() marks the current slot
* as having booted successfully
*
* Returns 0 on success, -errno on error.
*/
int (*markBootSuccessful)(struct boot_control_module *module);
/*
* (*setActiveBootSlot)() marks the slot passed in parameter as
* the active boot slot (see getCurrentSlot for an explanation
* of the "slot" parameter). This overrides any previous call to
* setSlotAsUnbootable.
* Returns 0 on success, -errno on error.
*/
int (*setActiveBootSlot)(struct boot_control_module *module, unsigned slot);
/*
* (*setSlotAsUnbootable)() marks the slot passed in parameter as
* an unbootable. This can be used while updating the contents of the slot's
* partitions, so that the system will not attempt to boot a known bad set up.
* Returns 0 on success, -errno on error.
*/
int (*setSlotAsUnbootable)(struct boot_control_module *module, unsigned slot);
/*
* (*isSlotBootable)() returns if the slot passed in parameter is
* bootable. Note that slots can be made unbootable by both the
* bootloader and by the OS using setSlotAsUnbootable.
* Returns 1 if the slot is bootable, 0 if it's not, and -errno on
* error.
*/
int (*isSlotBootable)(struct boot_control_module *module, unsigned slot);
/*
* (*getSuffix)() returns the string suffix used by partitions that
* correspond to the slot number passed in parameter. The returned string
* is expected to be statically allocated and not need to be freed.
* Returns NULL if slot does not match an existing slot.
*/
const char* (*getSuffix)(struct boot_control_module *module, unsigned slot);
/*
* (*isSlotMarkedSucessful)() returns if the slot passed in parameter has
* been marked as successful using markBootSuccessful.
* Returns 1 if the slot has been marked as successful, 0 if it's
* not the case, and -errno on error.
*/
int (*isSlotMarkedSuccessful)(struct boot_control_module *module, unsigned slot);
/**
* Returns the active slot to boot into on the next boot. If
* setActiveBootSlot() has been called, the getter function should return
* the same slot as the one provided in the last setActiveBootSlot() call.
*/
unsigned (*getActiveBootSlot)(struct boot_control_module *module);
void* reserved[30];
};
extern const struct boot_control_module HAL_MODULE_INFO_SYM;
#endif // ANDROID_INCLUDE_HARDWARE_BOOT_CONTROL_H

717
boot_control_impl_qcom.cpp Normal file
View File

@ -0,0 +1,717 @@
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <map>
#include <list>
#include <string>
#include <vector>
#include <errno.h>
#include <regex>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include "boot_control.h"
#include "gpt-utils.h"
#define BOOTDEV_DIR "/dev/disk/by-partlabel"
#define BOOT_IMG_PTN_NAME "boot_"
#define LUN_NAME_END_LOC 14
#define BOOT_SLOT_PROP "slot_suffix"
#define MAX_CMDLINE_SIZE 4096
#define SLOT_ACTIVE 1
#define SLOT_INACTIVE 2
#define UPDATE_SLOT(pentry, guid, slot_state) ({ \
memcpy(pentry, guid, TYPE_GUID_SIZE); \
if (slot_state == SLOT_ACTIVE)\
*(pentry + AB_FLAG_OFFSET) = AB_SLOT_ACTIVE_VAL; \
else if (slot_state == SLOT_INACTIVE) \
*(pentry + AB_FLAG_OFFSET) = (*(pentry + AB_FLAG_OFFSET)& \
~AB_PARTITION_ATTR_SLOT_ACTIVE); \
})
using namespace std;
const char *slot_suffix_arr[] = {
AB_SLOT_A_SUFFIX,
AB_SLOT_B_SUFFIX,
NULL};
enum part_attr_type {
ATTR_SLOT_ACTIVE = 0,
ATTR_BOOT_SUCCESSFUL,
ATTR_UNBOOTABLE,
};
void get_kernel_cmdline_arg(const char * arg, const char* buf, const char* def)
{
// int fd = open("/proc/cmdline\n", O_RDONLY);
// char buf[MAX_CMDLINE_SIZE];
// int rc = read(fd, &buf, MAX_CMDLINE_SIZE);
// close(fd);
// std::string cmdline(buf);
// std::regex rgx(std::string(arg).append("=.+"))
printf("%s\n", __func__);
buf = def;
}
void boot_control_init(struct boot_control_module *module)
{
printf("%s\n", __func__);
if (!module) {
fprintf(stderr, "Invalid argument passed to %s\n", __func__);
return;
}
return;
}
//Get the value of one of the attribute fields for a partition.
static int get_partition_attribute(char *partname,
enum part_attr_type part_attr)
{
printf("%s\n", __func__);
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
int retval = -1;
uint8_t *attr = NULL;
if (!partname)
goto error;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n", __func__);
goto error;
}
printf("gpt_disk_get_disk_info\n");
if (gpt_disk_get_disk_info(partname, disk)) {
fprintf(stderr, "%s: Failed to get disk info\n", __func__);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partname, PRIMARY_GPT);
if (!pentry) {
fprintf(stderr, "%s: pentry does not exist in disk struct\n",
__func__);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
printf("gpt_disk_get_pentry: 0x%x", *attr);
if (part_attr == ATTR_SLOT_ACTIVE)
retval = !!(*attr & AB_PARTITION_ATTR_SLOT_ACTIVE);
else if (part_attr == ATTR_BOOT_SUCCESSFUL)
retval = !!(*attr & AB_PARTITION_ATTR_BOOT_SUCCESSFUL);
else if (part_attr == ATTR_UNBOOTABLE)
retval = !!(*attr & AB_PARTITION_ATTR_UNBOOTABLE);
else
retval = -1;
gpt_disk_free(disk);
return retval;
error:
if (disk)
gpt_disk_free(disk);
return retval;
}
//Set a particular attribute for all the partitions in a
//slot
static int update_slot_attribute(const char *slot,
enum part_attr_type ab_attr)
{
unsigned int i = 0;
char buf[PATH_MAX];
struct stat st;
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
uint8_t *pentry_bak = NULL;
int rc = -1;
uint8_t *attr = NULL;
uint8_t *attr_bak = NULL;
char partName[MAX_GPT_NAME_SIZE + 1] = {0};
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
int slot_name_valid = 0;
printf("%s\n", __func__);
if (!slot) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
for (i = 0; slot_suffix_arr[i] != NULL; i++)
{
if (!strncmp(slot, slot_suffix_arr[i],
strlen(slot_suffix_arr[i])))
slot_name_valid = 1;
}
if (!slot_name_valid) {
fprintf(stderr, "%s: Invalid slot name\n", __func__);
goto error;
}
for (i=0; i < ARRAY_SIZE(ptn_list); i++) {
memset(buf, '\0', sizeof(buf));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1,
"%s/%s%s\n",
BOOT_DEV_DIR,
ptn_list[i],
AB_SLOT_A_SUFFIX
);
if (stat(buf, &st)) {
//partition does not have _a version
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1,
"%s/%s%s\n",
BOOT_DEV_DIR,
ptn_list[i],
AB_SLOT_B_SUFFIX
);
if (stat(buf, &st)) {
//partition does not have _a version
continue;
}
memset(partName, '\0', sizeof(partName));
snprintf(partName,
sizeof(partName) - 1,
"%s%s\n",
ptn_list[i],
slot);
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n",
__func__);
goto error;
}
rc = gpt_disk_get_disk_info(partName, disk);
if (rc != 0) {
fprintf(stderr, "%s: Failed to get disk info for %s\n",
__func__,
partName);
goto error;
}
pentry = gpt_disk_get_pentry(disk, partName, PRIMARY_GPT);
pentry_bak = gpt_disk_get_pentry(disk, partName, SECONDARY_GPT);
if (!pentry || !pentry_bak) {
fprintf(stderr, "%s: Failed to get pentry/pentry_bak for %s\n",
__func__,
partName);
goto error;
}
attr = pentry + AB_FLAG_OFFSET;
attr_bak = pentry_bak + AB_FLAG_OFFSET;
if (ab_attr == ATTR_BOOT_SUCCESSFUL) {
*attr = (*attr) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
*attr_bak = (*attr_bak) |
AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
} else if (ab_attr == ATTR_UNBOOTABLE) {
*attr = (*attr) | AB_PARTITION_ATTR_UNBOOTABLE;
*attr_bak = (*attr_bak) | AB_PARTITION_ATTR_UNBOOTABLE;
} else if (ab_attr == ATTR_SLOT_ACTIVE) {
*attr = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
*attr_bak = (*attr) | AB_PARTITION_ATTR_SLOT_ACTIVE;
} else {
fprintf(stderr, "%s: Unrecognized attr\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update crc for %s\n",
__func__,
partName);
goto error;
}
if (gpt_disk_commit(disk)) {
fprintf(stderr, "%s: Failed to write back entry for %s\n",
__func__,
partName);
goto error;
}
gpt_disk_free(disk);
disk = NULL;
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_number_slots(struct boot_control_module *module)
{
struct dirent *de = NULL;
DIR *dir_bootdev = NULL;
unsigned slot_count = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
dir_bootdev = opendir(BOOTDEV_DIR);
if (!dir_bootdev) {
fprintf(stderr, "%s: Failed to open bootdev dir (%s)\n",
__func__,
strerror(errno));
goto error;
}
while ((de = readdir(dir_bootdev))) {
if (de->d_name[0] == '.')
continue;
static_assert(AB_SLOT_A_SUFFIX[0] == '_', "Breaking change to slot A suffix");
static_assert(AB_SLOT_B_SUFFIX[0] == '_', "Breaking change to slot B suffix");
if (!strncmp(de->d_name, BOOT_IMG_PTN_NAME,
strlen(BOOT_IMG_PTN_NAME)) && !!strncmp(de->d_name, "boot_aging\n", strlen("boot_aging"))) {
slot_count++;
}
}
closedir(dir_bootdev);
return slot_count;
error:
if (dir_bootdev)
closedir(dir_bootdev);
return 0;
}
static unsigned int get_current_slot(struct boot_control_module *module)
{
uint32_t num_slots = 0;
char bootSlotProp[MAX_CMDLINE_SIZE] = {'\0'};
unsigned i = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
num_slots = get_number_slots(module);
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
get_kernel_cmdline_arg(BOOT_SLOT_PROP, bootSlotProp, "_a");
if (!strncmp(bootSlotProp, "N/A\n", strlen("N/A"))) {
fprintf(stderr, "%s: Unable to read boot slot property\n",
__func__);
goto error;
}
//Iterate through a list of partitons named as boot+suffix
//and see which one is currently active.
for (i = 0; slot_suffix_arr[i] != NULL ; i++) {
if (!strncmp(bootSlotProp,
slot_suffix_arr[i],
strlen(slot_suffix_arr[i]))) {
printf("%s current_slot = %d\n", __func__, i);
return i;
}
}
error:
//The HAL spec requires that we return a number between
//0 to num_slots - 1. Since something went wrong here we
//are just going to return the default slot.
return 0;
}
static int boot_control_check_slot_sanity(struct boot_control_module *module,
unsigned slot)
{
printf("%s\n", __func__);
if (!module)
return -1;
uint32_t num_slots = get_number_slots(module);
if ((num_slots < 1) || (slot > num_slots - 1)) {
fprintf(stderr, "Invalid slot number");
return -1;
}
return 0;
}
int mark_boot_successful(struct boot_control_module *module)
{
printf("%s\n", __func__);
unsigned cur_slot = 0;
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
cur_slot = get_current_slot(module);
if (update_slot_attribute(slot_suffix_arr[cur_slot],
ATTR_BOOT_SUCCESSFUL)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark boot successful\n", __func__);
return -1;
}
const char *get_suffix(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
if (boot_control_check_slot_sanity(module, slot) != 0)
return NULL;
else
return slot_suffix_arr[slot];
}
//Return a gpt disk structure representing the disk that holds
//partition.
static struct gpt_disk* boot_ctl_get_disk_info(char *partition)
{
printf("%s\n", __func__);
struct gpt_disk *disk = NULL;
if (!partition)
return NULL;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk\n",
__func__);
goto error;
}
if (gpt_disk_get_disk_info(partition, disk)) {
fprintf(stderr, "failed to get disk info for %s\n",
partition);
goto error;
}
return disk;
error:
if (disk)
gpt_disk_free(disk);
return NULL;
}
//The argument here is a vector of partition names(including the slot suffix)
//that lie on a single disk
static int boot_ctl_set_active_slot_for_partitions(vector<string> part_list,
unsigned slot)
{
printf("%s\n", __func__);
char buf[PATH_MAX] = {0};
struct gpt_disk *disk = NULL;
char slotA[MAX_GPT_NAME_SIZE + 1] = {0};
char slotB[MAX_GPT_NAME_SIZE + 1] = {0};
char active_guid[TYPE_GUID_SIZE + 1] = {0};
char inactive_guid[TYPE_GUID_SIZE + 1] = {0};
//Pointer to the partition entry of current 'A' partition
uint8_t *pentryA = NULL;
uint8_t *pentryA_bak = NULL;
//Pointer to partition entry of current 'B' partition
uint8_t *pentryB = NULL;
uint8_t *pentryB_bak = NULL;
struct stat st;
vector<string>::iterator partition_iterator;
for (partition_iterator = part_list.begin();
partition_iterator != part_list.end();
partition_iterator++) {
//Chop off the slot suffix from the partition name to
//make the string easier to work with.
string prefix = *partition_iterator;
if (prefix.size() < (strlen(AB_SLOT_A_SUFFIX) + 1)) {
fprintf(stderr, "Invalid partition name: %s\n", prefix.c_str());
goto error;
}
prefix.resize(prefix.size() - strlen(AB_SLOT_A_SUFFIX));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s\n", BOOT_DEV_DIR,
prefix.c_str(),
AB_SLOT_A_SUFFIX);
if (stat(buf, &st))
continue;
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s\n", BOOT_DEV_DIR,
prefix.c_str(),
AB_SLOT_B_SUFFIX);
if (stat(buf, &st))
continue;
memset(slotA, 0, sizeof(slotA));
memset(slotB, 0, sizeof(slotA));
snprintf(slotA, sizeof(slotA) - 1, "%s%s\n", prefix.c_str(),
AB_SLOT_A_SUFFIX);
snprintf(slotB, sizeof(slotB) - 1,"%s%s\n", prefix.c_str(),
AB_SLOT_B_SUFFIX);
//Get the disk containing the partitions that were passed in.
//All partitions passed in must lie on the same disk.
if (!disk) {
disk = boot_ctl_get_disk_info(slotA);
if (!disk)
goto error;
}
//Get partition entry for slot A & B from the primary
//and backup tables.
pentryA = gpt_disk_get_pentry(disk, slotA, PRIMARY_GPT);
pentryA_bak = gpt_disk_get_pentry(disk, slotA, SECONDARY_GPT);
pentryB = gpt_disk_get_pentry(disk, slotB, PRIMARY_GPT);
pentryB_bak = gpt_disk_get_pentry(disk, slotB, SECONDARY_GPT);
if ( !pentryA || !pentryA_bak || !pentryB || !pentryB_bak) {
//None of these should be NULL since we have already
//checked for A & B versions earlier.
fprintf(stderr, "Slot pentries for %s not found.\n",
prefix.c_str());
goto error;
}
memset(active_guid, '\0', sizeof(active_guid));
memset(inactive_guid, '\0', sizeof(inactive_guid));
if (get_partition_attribute(slotA, ATTR_SLOT_ACTIVE) == 1) {
//A is the current active slot
memcpy((void*)active_guid, (const void*)pentryA,
TYPE_GUID_SIZE);
memcpy((void*)inactive_guid,(const void*)pentryB,
TYPE_GUID_SIZE);
} else if (get_partition_attribute(slotB,
ATTR_SLOT_ACTIVE) == 1) {
//B is the current active slot
memcpy((void*)active_guid, (const void*)pentryB,
TYPE_GUID_SIZE);
memcpy((void*)inactive_guid, (const void*)pentryA,
TYPE_GUID_SIZE);
} else {
fprintf(stderr, "Both A & B are inactive..Aborting");
goto error;
}
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))){
//Mark A as active in primary table
UPDATE_SLOT(pentryA, active_guid, SLOT_ACTIVE);
//Mark A as active in backup table
UPDATE_SLOT(pentryA_bak, active_guid, SLOT_ACTIVE);
//Mark B as inactive in primary table
UPDATE_SLOT(pentryB, inactive_guid, SLOT_INACTIVE);
//Mark B as inactive in backup table
UPDATE_SLOT(pentryB_bak, inactive_guid, SLOT_INACTIVE);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))){
//Mark B as active in primary table
UPDATE_SLOT(pentryB, active_guid, SLOT_ACTIVE);
//Mark B as active in backup table
UPDATE_SLOT(pentryB_bak, active_guid, SLOT_ACTIVE);
//Mark A as inavtive in primary table
UPDATE_SLOT(pentryA, inactive_guid, SLOT_INACTIVE);
//Mark A as inactive in backup table
UPDATE_SLOT(pentryA_bak, inactive_guid, SLOT_INACTIVE);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (disk) {
if (gpt_disk_update_crc(disk) != 0) {
fprintf(stderr, "%s: Failed to update gpt_disk crc\n",
__func__);
goto error;
}
}
}
//write updated content to disk
if (disk) {
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
goto error;
}
gpt_disk_free(disk);
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
unsigned get_active_boot_slot(struct boot_control_module *module)
{
printf("%s\n", __func__);
if (!module) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
// The HAL spec requires that we return a number between
// 0 to num_slots - 1. Since something went wrong here we
// are just going to return the default slot.
return 0;
}
uint32_t num_slots = get_number_slots(module);
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
for (uint32_t i = 0; i < num_slots; i++) {
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[i]);
if (get_partition_attribute(bootPartition, ATTR_SLOT_ACTIVE) == 1) {
return i;
}
}
fprintf(stderr, "%s: Failed to find the active boot slot\n", __func__);
return 0;
}
int set_active_boot_slot(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
map<string, vector<string>> ptn_map;
vector<string> ptn_vec;
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
uint32_t i;
int rc = -1;
int is_ufs = gpt_utils_is_ufs_device();
map<string, vector<string>>::iterator map_iter;
if (boot_control_check_slot_sanity(module, slot)) {
fprintf(stderr, "%s: Bad arguments\n", __func__);
goto error;
}
//The partition list just contains prefixes(without the _a/_b) of the
//partitions that support A/B. In order to get the layout we need the
//actual names. To do this we append the slot suffix to every member
//in the list.
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
//XBL is handled differrently for ufs devices so ignore it
if (is_ufs && !strncmp(ptn_list[i], PTN_XBL, strlen(PTN_XBL)))
continue;
//The partition list will be the list of _a partitions
string cur_ptn = ptn_list[i];
cur_ptn.append(AB_SLOT_A_SUFFIX);
ptn_vec.push_back(cur_ptn);
}
//The partition map gives us info in the following format:
// [path_to_block_device_1]--><partitions on device 1>
// [path_to_block_device_2]--><partitions on device 2>
// ...
// ...
// eg:
// [/dev/block/sdb]---><system, boot, rpm, tz,....>
if (gpt_utils_get_partition_map(ptn_vec, ptn_map)) {
fprintf(stderr, "%s: Failed to get partition map\n",
__func__);
goto error;
}
for (map_iter = ptn_map.begin(); map_iter != ptn_map.end(); map_iter++){
if (map_iter->second.size() < 1)
continue;
if (boot_ctl_set_active_slot_for_partitions(map_iter->second, slot)) {
fprintf(stderr, "%s: Failed to set active slot for partitions \n", __func__);;
goto error;
}
}
if (is_ufs) {
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))){
//Set xbl_a as the boot lun
rc = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))){
//Set xbl_b as the boot lun
rc = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (rc) {
fprintf(stderr, "%s: Failed to switch xbl boot partition\n",
__func__);
goto error;
}
}
return 0;
error:
return -1;
}
int set_slot_as_unbootable(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
if (update_slot_attribute(slot_suffix_arr[slot],
ATTR_UNBOOTABLE)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark slot unbootable\n", __func__);
return -1;
}
int is_slot_bootable(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition,
sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_UNBOOTABLE);
if (attr >= 0)
return !attr;
error:
return -1;
}
int is_slot_marked_successful(struct boot_control_module *module, unsigned slot)
{
printf("%s\n", __func__);
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = {0};
if (boot_control_check_slot_sanity(module, slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition,
sizeof(bootPartition) - 1,
"boot%s", slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_BOOT_SUCCESSFUL);
if (attr >= 0)
return attr;
error:
return -1;
}
const struct boot_control_module HAL_MODULE_INFO_SYM = {
.init = boot_control_init,
.getNumberSlots = get_number_slots,
.getCurrentSlot = get_current_slot,
.markBootSuccessful = mark_boot_successful,
.setActiveBootSlot = set_active_boot_slot,
.setSlotAsUnbootable = set_slot_as_unbootable,
.isSlotBootable = is_slot_bootable,
.getSuffix = get_suffix,
.isSlotMarkedSuccessful = is_slot_marked_successful,
.getActiveBootSlot = get_active_boot_slot,
};

1557
gpt-utils.cpp Normal file

File diff suppressed because it is too large Load Diff

196
gpt-utils.h Normal file
View File

@ -0,0 +1,196 @@
/*
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __GPT_UTILS_H__
#define __GPT_UTILS_H__
#include <vector>
#include <string>
#include <map>
#ifdef __cplusplus
extern "C" {
#endif
#include <unistd.h>
#include <stdlib.h>
/******************************************************************************
* GPT HEADER DEFINES
******************************************************************************/
#define GPT_SIGNATURE "EFI PART"
#define HEADER_SIZE_OFFSET 12
#define HEADER_CRC_OFFSET 16
#define PRIMARY_HEADER_OFFSET 24
#define BACKUP_HEADER_OFFSET 32
#define FIRST_USABLE_LBA_OFFSET 40
#define LAST_USABLE_LBA_OFFSET 48
#define PENTRIES_OFFSET 72
#define PARTITION_COUNT_OFFSET 80
#define PENTRY_SIZE_OFFSET 84
#define PARTITION_CRC_OFFSET 88
#define TYPE_GUID_OFFSET 0
#define TYPE_GUID_SIZE 16
#define PTN_ENTRY_SIZE 128
#define UNIQUE_GUID_OFFSET 16
#define FIRST_LBA_OFFSET 32
#define LAST_LBA_OFFSET 40
#define ATTRIBUTE_FLAG_OFFSET 48
#define PARTITION_NAME_OFFSET 56
#define MAX_GPT_NAME_SIZE 72
/******************************************************************************
* AB RELATED DEFINES
******************************************************************************/
//Bit 48 onwords in the attribute field are the ones where we are allowed to
//store our AB attributes.
#define AB_FLAG_OFFSET (ATTRIBUTE_FLAG_OFFSET + 6)
#define GPT_DISK_INIT_MAGIC 0xABCD
#define AB_PARTITION_ATTR_SLOT_ACTIVE (0x1<<2)
#define AB_PARTITION_ATTR_BOOT_SUCCESSFUL (0x1<<6)
#define AB_PARTITION_ATTR_UNBOOTABLE (0x1<<7)
#define AB_SLOT_ACTIVE_VAL 0xF
#define AB_SLOT_INACTIVE_VAL 0x0
#define AB_SLOT_ACTIVE 1
#define AB_SLOT_INACTIVE 0
#define AB_SLOT_A_SUFFIX "_a"
#define AB_SLOT_B_SUFFIX "_b"
#define PTN_XBL "xbl"
#define PTN_SWAP_LIST PTN_XBL, \
"abl", "aop", "apdp", "cmnlib", "cmnlib64", \
"devcfg", "dtbo", "hyp", "keymaster", "msadp", \
"qupfw", "storsec", "tz", "vbmeta", "vbmeta_system", "xbl_config"
#define AB_PTN_LIST PTN_SWAP_LIST, "boot", "system", "vendor", "modem", "system_ext", "product"
#define BOOT_DEV_DIR "/dev/disk/by-partlabel"
/******************************************************************************
* HELPER MACROS
******************************************************************************/
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
/******************************************************************************
* TYPES
******************************************************************************/
enum boot_update_stage {
UPDATE_MAIN = 1,
UPDATE_BACKUP,
UPDATE_FINALIZE
};
enum gpt_instance {
PRIMARY_GPT = 0,
SECONDARY_GPT
};
enum boot_chain {
NORMAL_BOOT = 0,
BACKUP_BOOT
};
struct gpt_disk {
//GPT primary header
uint8_t *hdr;
//primary header crc
uint32_t hdr_crc;
//GPT backup header
uint8_t *hdr_bak;
//backup header crc
uint32_t hdr_bak_crc;
//Partition entries array
uint8_t *pentry_arr;
//Partition entries array for backup table
uint8_t *pentry_arr_bak;
//Size of the pentry array
uint32_t pentry_arr_size;
//Size of each element in the pentry array
uint32_t pentry_size;
//CRC of the partition entry array
uint32_t pentry_arr_crc;
//CRC of the backup partition entry array
uint32_t pentry_arr_bak_crc;
//Path to block dev representing the disk
char devpath[PATH_MAX];
//Block size of disk
uint32_t block_size;
uint32_t is_initialized;
};
/******************************************************************************
* FUNCTION PROTOTYPES
******************************************************************************/
int prepare_boot_update(enum boot_update_stage stage);
//GPT disk methods
struct gpt_disk* gpt_disk_alloc();
//Free previously allocated gpt_disk struct
void gpt_disk_free(struct gpt_disk *disk);
//Get the details of the disk holding the partition whose name
//is passed in via dev
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk);
//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t* gpt_disk_get_pentry(struct gpt_disk *disk,
const char *partname,
enum gpt_instance instance);
//Update the crc fields of the modified disk structure
int gpt_disk_update_crc(struct gpt_disk *disk);
//Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk);
//Return if the current device is UFS based or not
int gpt_utils_is_ufs_device();
//Swtich betwieen using either the primary or the backup
//boot LUN for boot. This is required since UFS boot partitions
//cannot have a backup GPT which is what we use for failsafe
//updates of the other 'critical' partitions. This function will
//not be invoked for emmc targets and on UFS targets is only required
//to be invoked for XBL.
//
//The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/block/sdb) that corresponds
// to the /dev/block/bootdevice/by-name/xbl(bak) symlink
//
//- Once we have the block device 'node' name(sdb in the above example)
// use this node to to locate the scsi generic device that represents
// it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
//the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain);
//Given a vector of partition names as a input and a reference to a map,
//populate the map to indicate which physical disk each of the partitions
//sits on. The key in the map is the path to the block device where the
//partition lies and the value is a vector of strings indicating which of
//the passed in partition names sits on that device.
int gpt_utils_get_partition_map(std::vector<std::string>& partition_list,
std::map<std::string,std::vector<std::string>>& partition_map);
#ifdef __cplusplus
}
#endif
#endif /* __GPT_UTILS_H__ */

30
include/scsi/ufs/ioctl.h Normal file
View File

@ -0,0 +1,30 @@
/****************************************************************************
****************************************************************************
***
*** This header was automatically generated from a Linux kernel header
*** of the same name, to make information necessary for userspace to
*** call into the kernel available to libc. It contains only constants,
*** structures, and macros generated from the original header, and thus,
*** contains no copyrightable information.
***
*** To edit the content of this header, modify the corresponding
*** source file (e.g. under external/kernel-headers/original/) then
*** run bionic/libc/kernel/tools/update_all.py
***
*** Any manual change here will be lost the next time this script will
*** be run. You've been warned!
***
****************************************************************************
****************************************************************************/
#ifndef UAPI_UFS_IOCTL_H_
#define UAPI_UFS_IOCTL_H_
#include <linux/types.h>
#define UFS_IOCTL_QUERY 0x5388
struct ufs_ioctl_query_data {
__u32 opcode;
__u8 idn;
__u16 buf_size;
__u8 buffer[0];
};
#endif

86
include/scsi/ufs/ufs.h Normal file
View File

@ -0,0 +1,86 @@
/****************************************************************************
****************************************************************************
***
*** This header was automatically generated from a Linux kernel header
*** of the same name, to make information necessary for userspace to
*** call into the kernel available to libc. It contains only constants,
*** structures, and macros generated from the original header, and thus,
*** contains no copyrightable information.
***
*** To edit the content of this header, modify the corresponding
*** source file (e.g. under external/kernel-headers/original/) then
*** run bionic/libc/kernel/tools/update_all.py
***
*** Any manual change here will be lost the next time this script will
*** be run. You've been warned!
***
****************************************************************************
****************************************************************************/
#ifndef UAPI_UFS_H_
#define UAPI_UFS_H_
#define MAX_QUERY_IDN 0x18
enum flag_idn {
QUERY_FLAG_IDN_FDEVICEINIT = 0x01,
QUERY_FLAG_IDN_PERMANENT_WPE = 0x02,
QUERY_FLAG_IDN_PWR_ON_WPE = 0x03,
QUERY_FLAG_IDN_BKOPS_EN = 0x04,
QUERY_FLAG_IDN_RESERVED1 = 0x05,
QUERY_FLAG_IDN_PURGE_ENABLE = 0x06,
QUERY_FLAG_IDN_RESERVED2 = 0x07,
QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL = 0x08,
QUERY_FLAG_IDN_BUSY_RTC = 0x09,
QUERY_FLAG_IDN_MANUAL_GC_CONT = 0x0E,
};
enum attr_idn {
QUERY_ATTR_IDN_BOOT_LU_EN = 0x00,
QUERY_ATTR_IDN_RESERVED = 0x01,
QUERY_ATTR_IDN_POWER_MODE = 0x02,
QUERY_ATTR_IDN_ACTIVE_ICC_LVL = 0x03,
QUERY_ATTR_IDN_OOO_DATA_EN = 0x04,
QUERY_ATTR_IDN_BKOPS_STATUS = 0x05,
QUERY_ATTR_IDN_PURGE_STATUS = 0x06,
QUERY_ATTR_IDN_MAX_DATA_IN = 0x07,
QUERY_ATTR_IDN_MAX_DATA_OUT = 0x08,
QUERY_ATTR_IDN_DYN_CAP_NEEDED = 0x09,
QUERY_ATTR_IDN_REF_CLK_FREQ = 0x0A,
QUERY_ATTR_IDN_CONF_DESC_LOCK = 0x0B,
QUERY_ATTR_IDN_MAX_NUM_OF_RTT = 0x0C,
QUERY_ATTR_IDN_EE_CONTROL = 0x0D,
QUERY_ATTR_IDN_EE_STATUS = 0x0E,
QUERY_ATTR_IDN_SECONDS_PASSED = 0x0F,
QUERY_ATTR_IDN_CNTX_CONF = 0x10,
QUERY_ATTR_IDN_CORR_PRG_BLK_NUM = 0x11,
QUERY_ATTR_IDN_MANUAL_GC_STATUS = 0x17,
};
#define QUERY_ATTR_IDN_BOOT_LU_EN_MAX 0x02
enum desc_idn {
QUERY_DESC_IDN_DEVICE = 0x0,
QUERY_DESC_IDN_CONFIGURAION = 0x1,
QUERY_DESC_IDN_UNIT = 0x2,
QUERY_DESC_IDN_RFU_0 = 0x3,
QUERY_DESC_IDN_INTERCONNECT = 0x4,
QUERY_DESC_IDN_STRING = 0x5,
QUERY_DESC_IDN_RFU_1 = 0x6,
QUERY_DESC_IDN_GEOMETRY = 0x7,
QUERY_DESC_IDN_POWER = 0x8,
QUERY_DESC_IDN_HEALTH = 0x9,
QUERY_DESC_IDN_RFU_2 = 0xA,
QUERY_DESC_IDN_MAX,
};
enum query_opcode {
UPIU_QUERY_OPCODE_NOP = 0x0,
UPIU_QUERY_OPCODE_READ_DESC = 0x1,
UPIU_QUERY_OPCODE_WRITE_DESC = 0x2,
UPIU_QUERY_OPCODE_READ_ATTR = 0x3,
UPIU_QUERY_OPCODE_WRITE_ATTR = 0x4,
UPIU_QUERY_OPCODE_READ_FLAG = 0x5,
UPIU_QUERY_OPCODE_SET_FLAG = 0x6,
UPIU_QUERY_OPCODE_CLEAR_FLAG = 0x7,
UPIU_QUERY_OPCODE_TOGGLE_FLAG = 0x8,
UPIU_QUERY_OPCODE_MAX,
};
#define UPIU_QUERY_OPCODE_HIGH_HPB 0x5500
#define UPIU_QUERY_OPCODE_HIGH(opcode) ((opcode) >> 16)
#define UPIU_QUERY_OPCODE_LOW(opcode) ((opcode) & 0xffff)
#endif