rework, fixup, cleanup

Allocate gpt_disk on stack, allocate when needed, rather than multiple
times for every partition.

Huge code cleanup, rerun clang-format, etc

Many changes here inspired by Eric's earlier work.
This commit is contained in:
Caleb Connolly 2023-06-23 20:16:24 +01:00
parent 7f852512b6
commit 04f4ac81ea
No known key found for this signature in database
GPG Key ID: 0583312B195F64B6
7 changed files with 660 additions and 682 deletions

View File

@ -54,7 +54,7 @@ BreakConstructorInitializersBeforeComma: false
#BreakConstructorInitializers: BeforeComma # Unknown to clang-format-4.0
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: false
ColumnLimit: 80
ColumnLimit: 100
CommentPragmas: '^ IWYU pragma:'
#CompactNamespaces: false # Unknown to clang-format-4.0
ConstructorInitializerAllOnOneLineOrOnePerLine: false
@ -89,16 +89,16 @@ ObjCSpaceBeforeProtocolList: true
# Taken from git's rules
#PenaltyBreakAssignment: 10 # Unknown to clang-format-4.0
PenaltyBreakBeforeFirstCallParameter: 30
PenaltyBreakBeforeFirstCallParameter: 50
PenaltyBreakComment: 10
PenaltyBreakFirstLessLess: 0
PenaltyBreakString: 10
PenaltyExcessCharacter: 100
PenaltyExcessCharacter: 30
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: false
SortIncludes: false
SortIncludes: true
#SortUsingDeclarations: false # Unknown to clang-format-4.0
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
@ -114,7 +114,7 @@ SpacesInContainerLiterals: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp03
Standard: Cpp11
TabWidth: 8
UseTab: Always
...

View File

@ -13,28 +13,28 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* along with this program. If not, see <http:// www.gnu.org/licenses/>.
*/
#include <map>
#include <list>
#include <string>
#include <vector>
#include <errno.h>
#include <regex>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <list>
#include <map>
#include <regex>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <vector>
#include "utils.h"
#include "gpt-utils.h"
#include "ufs-bsg.h"
#include "utils.h"
#include "bootctrl.h"
@ -47,15 +47,14 @@
#define SLOT_ACTIVE 1
#define SLOT_INACTIVE 2
#define UPDATE_SLOT(pentry, guid, slot_state) \
({ \
memcpy(pentry, guid, TYPE_GUID_SIZE); \
if (slot_state == SLOT_ACTIVE) \
*(pentry + AB_FLAG_OFFSET) = AB_SLOT_ACTIVE_VAL; \
else if (slot_state == SLOT_INACTIVE) \
*(pentry + AB_FLAG_OFFSET) = \
(*(pentry + AB_FLAG_OFFSET) & \
~AB_PARTITION_ATTR_SLOT_ACTIVE); \
#define UPDATE_SLOT(pentry, guid, slot_state) \
({ \
memcpy(pentry, guid, TYPE_GUID_SIZE); \
if (slot_state == SLOT_ACTIVE) \
*(pentry + AB_FLAG_OFFSET) = AB_SLOT_ACTIVE_VAL; \
else if (slot_state == SLOT_INACTIVE) \
*(pentry + AB_FLAG_OFFSET) = \
(*(pentry + AB_FLAG_OFFSET) & ~AB_PARTITION_ATTR_SLOT_ACTIVE); \
})
using namespace std;
@ -76,8 +75,7 @@ void get_kernel_cmdline_arg(const char *arg, char *buf, const char *def)
fd = open("/proc/cmdline", O_RDONLY);
int rc = read(fd, pcmd, MAX_CMDLINE_SIZE);
if (rc < 0) {
fprintf(stderr, "Couldn't open /proc/cmdline: %d (%s)\n", rc,
strerror(errno));
fprintf(stderr, "Couldn't open /proc/cmdline: %d (%s)\n", rc, strerror(errno));
goto error;
}
close(fd);
@ -99,133 +97,137 @@ error:
strcpy(buf, def);
}
//Get the value of one of the attribute fields for a partition.
static int get_partition_attribute(char *partname,
// Get the value of one of the attribute fields for a partition.
static int get_partition_attribute(struct gpt_disk *disk, char *partname,
enum part_attr_type part_attr)
{
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
uint8_t *pentry = nullptr;
int retval = -1;
uint8_t *attr = NULL;
uint8_t *attr = nullptr;
if (!partname)
goto error;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n", __func__);
goto error;
}
if (gpt_disk_get_disk_info(partname, disk)) {
fprintf(stderr, "%s: Failed to get disk info\n", __func__);
goto error;
return -1;
// Will initialise the disk if null, or reinitialise it if
// it's for a partition on a different disk
if (gpt_disk_get_disk_info(partname, disk) < 0) {
fprintf(stderr, "%s: gpt_disk_get_disk_info failed\n", __func__);
return -1;
}
pentry = gpt_disk_get_pentry(disk, partname, PRIMARY_GPT);
if (!pentry) {
fprintf(stderr, "%s: pentry does not exist in disk struct\n",
__func__);
goto error;
fprintf(stderr, "%s: pentry does not exist in disk struct\n", __func__);
return -1;
}
attr = pentry + AB_FLAG_OFFSET;
LOGD("get_partition_attribute() partname = %s, attr = 0x%x\n", partname,
*attr);
if (part_attr == ATTR_SLOT_ACTIVE) {
LOGD("%s() partname = %s, attr = 0x%x\n", __func__, partname, *attr);
switch (part_attr) {
case ATTR_SLOT_ACTIVE:
retval = !!(*attr & AB_PARTITION_ATTR_SLOT_ACTIVE);
LOGD("ATTR_SLOT_ACTIVE, retval = %d\n", retval);
} else if (part_attr == ATTR_BOOT_SUCCESSFUL) {
break;
case ATTR_BOOT_SUCCESSFUL:
retval = !!(*attr & AB_PARTITION_ATTR_BOOT_SUCCESSFUL);
LOGD("AB_PARTITION_ATTR_BOOT_SUCCESSFUL, retval = %d\n",
retval);
} else if (part_attr == ATTR_UNBOOTABLE) {
LOGD("AB_PARTITION_ATTR_BOOT_SUCCESSFUL, retval = %d\n", retval);
break;
case ATTR_UNBOOTABLE:
retval = !!(*attr & AB_PARTITION_ATTR_UNBOOTABLE);
LOGD("AB_PARTITION_ATTR_UNBOOTABLE, retval = %d\n", retval);
} else {
break;
default:
retval = -1;
}
gpt_disk_free(disk);
return retval;
error:
if (disk)
gpt_disk_free(disk);
return retval;
}
//Set a particular attribute for all the partitions in a
//slot
static int update_slot_attribute(const char *slot, enum part_attr_type ab_attr)
// Set a particular attribute for all the partitions in a
// slot
static int update_slot_attribute(struct gpt_disk *disk, const char *slot,
enum part_attr_type ab_attr)
{
unsigned int i = 0;
char buf[PATH_MAX];
struct stat st;
struct gpt_disk *disk = NULL;
uint8_t *pentry = NULL;
uint8_t *pentry_bak = NULL;
uint8_t *pentry = nullptr;
uint8_t *pentry_bak = nullptr;
int rc = -1;
uint8_t *attr = NULL;
uint8_t *attr_bak = NULL;
uint8_t *attr = nullptr;
uint8_t *attr_bak = nullptr;
char partName[MAX_GPT_NAME_SIZE + 1] = { 0 };
const char ptn_list[][MAX_GPT_NAME_SIZE - 1] = { AB_PTN_LIST };
static const char ptn_list[][MAX_GPT_NAME_SIZE - 1] = { AB_PTN_LIST };
int slot_name_valid = 0;
char devpath[PATH_MAX] = { 0 };
if (!slot) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
return -1;
}
for (i = 0; slot_suffix_arr[i] != NULL; i++) {
if (!strncmp(slot, slot_suffix_arr[i],
strlen(slot_suffix_arr[i])))
for (i = 0; slot_suffix_arr[i] != nullptr; i++) {
if (!strncmp(slot, slot_suffix_arr[i], strlen(slot_suffix_arr[i])))
slot_name_valid = 1;
}
if (!slot_name_valid) {
fprintf(stderr, "%s: Invalid slot name\n", __func__);
goto error;
return -1;
}
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
memset(buf, '\0', sizeof(buf));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
ptn_list[i], AB_SLOT_A_SUFFIX);
// Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR, ptn_list[i],
AB_SLOT_A_SUFFIX);
if (stat(buf, &st) < 0) {
//partition does not have _a version
// partition does not have _a version
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
ptn_list[i], AB_SLOT_B_SUFFIX);
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR, ptn_list[i],
AB_SLOT_B_SUFFIX);
if (stat(buf, &st) < 0) {
//partition does not have _b version
// partition does not have _b version
continue;
}
memset(partName, '\0', sizeof(partName));
snprintf(partName, sizeof(partName) - 1, "%s%s", ptn_list[i],
slot);
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk struct\n",
__func__);
goto error;
snprintf(partName, sizeof(partName) - 1, "%s%s", ptn_list[i], slot);
// If the current partition is for a different disk (e.g. /dev/sde when the current disk is /dev/sda)
// Then commit the current disk
if (!partition_is_for_disk(partName, disk, devpath, sizeof(devpath))) {
if (!gpt_disk_commit(disk)) {
fprintf(stderr, "%s: Failed to commit disk\n", __func__);
return -1;
}
}
rc = gpt_disk_get_disk_info(partName, disk);
if (rc != 0) {
fprintf(stderr, "%s: Failed to get disk info for %s\n",
__func__, partName);
goto error;
fprintf(stderr, "%s: Failed to get disk info for %s\n", __func__, partName);
return -1;
}
pentry = gpt_disk_get_pentry(disk, partName, PRIMARY_GPT);
pentry_bak = gpt_disk_get_pentry(disk, partName, SECONDARY_GPT);
if (!pentry || !pentry_bak) {
fprintf(stderr,
"%s: Failed to get pentry/pentry_bak for %s\n",
__func__, partName);
goto error;
fprintf(stderr, "%s: Failed to get pentry/pentry_bak for %s\n", __func__,
partName);
return -1;
}
attr = pentry + AB_FLAG_OFFSET;
LOGD("%s: got pentry for part '%s': 0x%lx (at flags: 0x%x)\n",
__func__, partName, *(uint64_t *)pentry, *attr);
LOGD("%s: got pentry for part '%s': 0x%lx (at flags: 0x%x)\n", __func__, partName,
*(uint64_t *)pentry, *attr);
attr_bak = pentry_bak + AB_FLAG_OFFSET;
switch (ab_attr) {
case ATTR_BOOT_SUCCESSFUL:
*attr = (*attr) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
*attr_bak =
(*attr_bak) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
*attr_bak = (*attr_bak) | AB_PARTITION_ATTR_BOOT_SUCCESSFUL;
break;
case ATTR_UNBOOTABLE:
*attr = (*attr) | AB_PARTITION_ATTR_UNBOOTABLE;
@ -241,106 +243,75 @@ static int update_slot_attribute(const char *slot, enum part_attr_type ab_attr)
break;
default:
fprintf(stderr, "%s: Unrecognized attr\n", __func__);
goto error;
return -1;
}
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update crc for %s\n",
__func__, partName);
goto error;
}
if (gpt_disk_commit(disk)) {
fprintf(stderr,
"%s: Failed to write back entry for %s\n",
__func__, partName);
goto error;
}
gpt_disk_free(disk);
disk = NULL;
}
if (gpt_disk_commit(disk)) {
fprintf(stderr, "%s: Failed to write back entry for %s\n", __func__,
partName);
return -1;
}
return 0;
error:
if (disk)
gpt_disk_free(disk);
return -1;
}
/*
* Returns 0 for no slots, or the number of slots found.
* Fun semantic note: Having "1" slot (ie just a "boot" partition)
* is the same as having "no slots".
*
* This function will never return 1.
*/
unsigned get_number_slots()
{
struct dirent *de = NULL;
DIR *dir_bootdev = NULL;
unsigned slot_count = 0;
struct dirent *de = nullptr;
DIR *dir_bootdev = nullptr;
static int slot_count = 0;
// If we've already counted the slots, return the cached value.
// If there are no slots then we'll always rerun the search...
if (slot_count > 0)
return slot_count;
static_assert(AB_SLOT_A_SUFFIX[0] == '_', "Breaking change to slot A suffix");
static_assert(AB_SLOT_B_SUFFIX[0] == '_', "Breaking change to slot B suffix");
dir_bootdev = opendir(BOOTDEV_DIR);
// Shouldn't this be an assert?
if (!dir_bootdev) {
fprintf(stderr, "%s: Failed to open bootdev dir (%s)\n",
__func__, strerror(errno));
goto error;
fprintf(stderr, "%s: Failed to open bootdev dir (%s)\n", __func__, strerror(errno));
return 0;
}
while ((de = readdir(dir_bootdev))) {
if (de->d_name[0] == '.')
continue;
static_assert(AB_SLOT_A_SUFFIX[0] == '_',
"Breaking change to slot A suffix");
static_assert(AB_SLOT_B_SUFFIX[0] == '_',
"Breaking change to slot B suffix");
if (!strncmp(de->d_name, BOOT_IMG_PTN_NAME,
strlen(BOOT_IMG_PTN_NAME)) &&
!!strncmp(de->d_name, "boot_aging\n",
strlen("boot_aging"))) {
if (!strncmp(de->d_name, BOOT_IMG_PTN_NAME, strlen(BOOT_IMG_PTN_NAME)) &&
!!strncmp(de->d_name, "boot_aging\n", strlen("boot_aging"))) {
slot_count++;
}
}
closedir(dir_bootdev);
return slot_count;
error:
if (dir_bootdev)
closedir(dir_bootdev);
return 0;
}
static unsigned int get_current_slot()
{
uint32_t num_slots = 0;
char bootSlotProp[MAX_CMDLINE_SIZE] = { '\0' };
unsigned i = 0;
num_slots = get_number_slots();
if (num_slots <= 1) {
//Slot 0 is the only slot around.
return 0;
}
get_kernel_cmdline_arg(BOOT_SLOT_PROP, bootSlotProp, "_a");
if (!strncmp(bootSlotProp, "N/A\n", strlen("N/A"))) {
fprintf(stderr, "%s: Unable to read boot slot property\n",
__func__);
goto error;
}
//Iterate through a list of partitons named as boot+suffix
//and see which one is currently active.
for (i = 0; slot_suffix_arr[i] != NULL; i++) {
if (!strncmp(bootSlotProp, slot_suffix_arr[i],
strlen(slot_suffix_arr[i]))) {
//printf("%s current_slot = %d\n", __func__, i);
return i;
}
}
error:
//The HAL spec requires that we return a number between
//0 to num_slots - 1. Since something went wrong here we
//are just going to return the default slot.
return 0;
if (slot_count < 0)
slot_count = 0;
closedir(dir_bootdev);
return slot_count;
}
static int boot_control_check_slot_sanity(unsigned slot)
{
uint32_t num_slots = get_number_slots();
if ((num_slots < 1) || (slot > num_slots - 1)) {
fprintf(stderr, "Invalid slot number");
fprintf(stderr, "Invalid slot number %u\n", slot);
return -1;
}
return 0;
}
int get_boot_attr(unsigned slot, enum part_attr_type attr)
int get_boot_attr(struct gpt_disk *disk, unsigned slot, enum part_attr_type attr)
{
char bootPartition[MAX_GPT_NAME_SIZE + 1] = { 0 };
@ -348,16 +319,50 @@ int get_boot_attr(unsigned slot, enum part_attr_type attr)
fprintf(stderr, "%s: Argument check failed\n", __func__);
return -1;
}
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
return get_partition_attribute(bootPartition, attr);
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s", slot_suffix_arr[slot]);
return get_partition_attribute(disk, bootPartition, attr);
}
static unsigned int get_current_slot_from_kernel_cmdline()
{
uint32_t num_slots = 0;
char bootSlotProp[MAX_CMDLINE_SIZE] = { '\0' };
unsigned i = 0;
num_slots = get_number_slots();
if (num_slots <= 1) {
// Slot 0 is the only slot around.
return 0;
}
get_kernel_cmdline_arg(BOOT_SLOT_PROP, bootSlotProp, "_a");
if (!strncmp(bootSlotProp, "N/A\n", strlen("N/A"))) {
fprintf(stderr, "%s: Unable to read boot slot property\n", __func__);
return 0;
}
// Iterate through a list of partitons named as boot+suffix
// and see which one is currently active.
for (i = 0; slot_suffix_arr[i] != nullptr; i++) {
if (!strncmp(bootSlotProp, slot_suffix_arr[i], strlen(slot_suffix_arr[i]))) {
// printf("%s current_slot = %d\n", __func__, i);
return i;
}
}
// The HAL spec requires that we return a number between
// 0 to num_slots - 1. Since something went wrong here we
// are just going to return the default slot.
return 0;
}
int is_slot_bootable(unsigned slot)
{
int attr = 0;
attr = get_boot_attr(slot, ATTR_UNBOOTABLE);
struct gpt_disk disk = { 0 };
attr = get_boot_attr(&disk, slot, ATTR_UNBOOTABLE);
if (attr >= 0)
return !attr;
@ -366,30 +371,38 @@ int is_slot_bootable(unsigned slot)
int mark_boot_successful(unsigned slot)
{
int successful = get_boot_attr(slot, ATTR_BOOT_SUCCESSFUL);
struct gpt_disk disk = { 0 };
int successful = get_boot_attr(&disk, slot, ATTR_BOOT_SUCCESSFUL);
int bootable = get_boot_attr(&disk, slot, ATTR_UNBOOTABLE);
int ret = 0;
if (successful < 0 || bootable < 0) {
fprintf(stderr, "SLOT %s: Failed to read attributes\n", slot_suffix_arr[slot]);
ret = -1;
goto out;
}
if (!is_slot_bootable(slot)) {
printf("SLOT %s: was marked unbootable, fixing this"
" (I hope you know what you're doing...)\n",
slot_suffix_arr[slot]);
update_slot_attribute(slot_suffix_arr[slot], ATTR_BOOTABLE);
update_slot_attribute(&disk, slot_suffix_arr[slot], ATTR_BOOTABLE);
}
if (successful) {
fprintf(stderr, "SLOT %s: already marked successful\n",
slot_suffix_arr[slot]);
return 0;
fprintf(stderr, "SLOT %s: already marked successful\n", slot_suffix_arr[slot]);
goto out;
}
if (update_slot_attribute(slot_suffix_arr[slot],
ATTR_BOOT_SUCCESSFUL)) {
goto error;
if (update_slot_attribute(&disk, slot_suffix_arr[slot], ATTR_BOOT_SUCCESSFUL)) {
fprintf(stderr, "SLOT %s: Failed to mark boot successful\n", slot_suffix_arr[slot]);
ret = -1;
goto out;
}
return 0;
error:
fprintf(stderr, "SLOT %s: Failed to mark boot successful\n",
slot_suffix_arr[slot]);
return -1;
out:
gpt_disk_free(&disk);
return ret;
}
const char *get_suffix(unsigned slot)
@ -400,236 +413,186 @@ const char *get_suffix(unsigned slot)
return slot_suffix_arr[slot];
}
//Return a gpt disk structure representing the disk that holds
//partition.
static struct gpt_disk *boot_ctl_get_disk_info(char *partition)
{
struct gpt_disk *disk = NULL;
if (!partition)
return NULL;
disk = gpt_disk_alloc();
if (!disk) {
fprintf(stderr, "%s: Failed to alloc disk\n", __func__);
goto error;
}
if (gpt_disk_get_disk_info(partition, disk)) {
fprintf(stderr, "failed to get disk info for %s\n", partition);
goto error;
}
return disk;
error:
if (disk)
gpt_disk_free(disk);
return NULL;
}
//The argument here is a vector of partition names(including the slot suffix)
//that lie on a single disk
static int boot_ctl_set_active_slot_for_partitions(vector<string> part_list,
// The argument here is a vector of partition names(including the slot suffix)
// that lie on a single disk
static int boot_ctl_set_active_slot_for_partitions(struct gpt_disk *disk, vector<string> part_list,
unsigned slot)
{
char buf[PATH_MAX] = { 0 };
struct gpt_disk *disk = NULL;
char slotA[MAX_GPT_NAME_SIZE + 1] = { 0 };
char slotB[MAX_GPT_NAME_SIZE + 1] = { 0 };
char active_guid[TYPE_GUID_SIZE + 1] = { 0 };
char inactive_guid[TYPE_GUID_SIZE + 1] = { 0 };
int rc;
//Pointer to the partition entry of current 'A' partition
uint8_t *pentryA = NULL;
uint8_t *pentryA_bak = NULL;
//Pointer to partition entry of current 'B' partition
uint8_t *pentryB = NULL;
uint8_t *pentryB_bak = NULL;
// Pointer to the partition entry of current 'A' partition
uint8_t *pentryA = nullptr;
uint8_t *pentryA_bak = nullptr;
// Pointer to partition entry of current 'B' partition
uint8_t *pentryB = nullptr;
uint8_t *pentryB_bak = nullptr;
struct stat st;
vector<string>::iterator partition_iterator;
LOGD("Marking slot %s as active:\n", slot_suffix_arr[slot]);
for (partition_iterator = part_list.begin();
partition_iterator != part_list.end(); partition_iterator++) {
//Chop off the slot suffix from the partition name to
//make the string easier to work with.
for (partition_iterator = part_list.begin(); partition_iterator != part_list.end();
partition_iterator++) {
// Chop off the slot suffix from the partition name to
// make the string easier to work with.
string prefix = *partition_iterator;
LOGD("Part: %s\n", prefix.c_str());
if (prefix.size() < (strlen(AB_SLOT_A_SUFFIX) + 1)) {
fprintf(stderr, "Invalid partition name: %s\n",
prefix.c_str());
goto error;
fprintf(stderr, "Invalid partition name: %s\n", prefix.c_str());
return -1;
}
prefix.resize(prefix.size() - strlen(AB_SLOT_A_SUFFIX));
//Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
prefix.c_str(), AB_SLOT_A_SUFFIX);
// Check if A/B versions of this ptn exist
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR, prefix.c_str(),
AB_SLOT_A_SUFFIX);
LOGD("\t_a Path: '%s'\n", buf);
rc = stat(buf, &st);
if (rc < 0) {
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc,
strerror(errno));
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc, strerror(errno));
continue;
}
memset(buf, '\0', sizeof(buf));
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR,
prefix.c_str(), AB_SLOT_B_SUFFIX);
LOGD("\t_b Path: '%s'\n", buf);
snprintf(buf, sizeof(buf) - 1, "%s/%s%s", BOOT_DEV_DIR, prefix.c_str(),
AB_SLOT_B_SUFFIX);
// LOGD("\t_b Path: '%s'\n", buf);
rc = stat(buf, &st);
if (rc < 0) {
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc,
strerror(errno));
fprintf(stderr, "Failed to stat() path: %d: %s\n", rc, strerror(errno));
continue;
}
memset(slotA, 0, sizeof(slotA));
memset(slotB, 0, sizeof(slotA));
snprintf(slotA, sizeof(slotA) - 1, "%s%s", prefix.c_str(),
AB_SLOT_A_SUFFIX);
snprintf(slotB, sizeof(slotB) - 1, "%s%s", prefix.c_str(),
AB_SLOT_B_SUFFIX);
//Get the disk containing the partitions that were passed in.
//All partitions passed in must lie on the same disk.
if (!disk) {
disk = boot_ctl_get_disk_info(slotA);
if (!disk)
goto error;
snprintf(slotA, sizeof(slotA) - 1, "%s%s", prefix.c_str(), AB_SLOT_A_SUFFIX);
snprintf(slotB, sizeof(slotB) - 1, "%s%s", prefix.c_str(), AB_SLOT_B_SUFFIX);
// Get the disk containing the partitions that were passed in.
// All partitions passed in must lie on the same disk.
if (!gpt_disk_is_valid(disk)) {
if (gpt_disk_get_disk_info(slotA, disk) < 0)
return -1;
}
//Get partition entry for slot A & B from the primary
//and backup tables.
// Get partition entry for slot A & B from the primary
// and backup tables.
pentryA = gpt_disk_get_pentry(disk, slotA, PRIMARY_GPT);
pentryA_bak = gpt_disk_get_pentry(disk, slotA, SECONDARY_GPT);
pentryB = gpt_disk_get_pentry(disk, slotB, PRIMARY_GPT);
pentryB_bak = gpt_disk_get_pentry(disk, slotB, SECONDARY_GPT);
if (!pentryA || !pentryA_bak || !pentryB || !pentryB_bak) {
//None of these should be NULL since we have already
//checked for A & B versions earlier.
fprintf(stderr, "Slot pentries for %s not found.\n",
prefix.c_str());
goto error;
// None of these should be NULL since we have already
// checked for A & B versions earlier.
fprintf(stderr, "Slot pentries for %s not found.\n", prefix.c_str());
return -1;
}
LOGD("\tAB attr (A): 0x%x (backup: 0x%x)\n",
*(uint16_t *)(pentryA + AB_FLAG_OFFSET),
LOGD("\tAB attr (A): 0x%x (backup: 0x%x)\n", *(uint16_t *)(pentryA + AB_FLAG_OFFSET),
*(uint16_t *)(pentryA_bak + AB_FLAG_OFFSET));
LOGD("\tAB attr (B): 0x%x (backup: 0x%x)\n",
*(uint16_t *)(pentryB + AB_FLAG_OFFSET),
LOGD("\tAB attr (B): 0x%x (backup: 0x%x)\n", *(uint16_t *)(pentryB + AB_FLAG_OFFSET),
*(uint16_t *)(pentryB_bak + AB_FLAG_OFFSET));
memset(active_guid, '\0', sizeof(active_guid));
memset(inactive_guid, '\0', sizeof(inactive_guid));
if (get_partition_attribute(slotA, ATTR_SLOT_ACTIVE) == 1) {
//A is the current active slot
memcpy((void *)active_guid, (const void *)pentryA,
TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryB,
TYPE_GUID_SIZE);
} else if (get_partition_attribute(slotB, ATTR_SLOT_ACTIVE) ==
1) {
//B is the current active slot
memcpy((void *)active_guid, (const void *)pentryB,
TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryA,
TYPE_GUID_SIZE);
if (get_partition_attribute(disk, slotA, ATTR_SLOT_ACTIVE) == 1) {
// A is the current active slot
memcpy((void *)active_guid, (const void *)pentryA, TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryB, TYPE_GUID_SIZE);
} else if (get_partition_attribute(disk, slotB, ATTR_SLOT_ACTIVE) == 1) {
// B is the current active slot
memcpy((void *)active_guid, (const void *)pentryB, TYPE_GUID_SIZE);
memcpy((void *)inactive_guid, (const void *)pentryA, TYPE_GUID_SIZE);
} else {
fprintf(stderr, "Both A & B are inactive..Aborting");
goto error;
return -1;
}
// printf("\tActive GUID: %s\n", active_guid);
// printf("\tInactive GUID: %s\n", active_guid);
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))) {
//Mark A as active in primary table
UPDATE_SLOT(pentryA, active_guid, SLOT_ACTIVE);
//Mark A as active in backup table
UPDATE_SLOT(pentryA_bak, active_guid, SLOT_ACTIVE);
//Mark B as inactive in primary table
UPDATE_SLOT(pentryB, inactive_guid, SLOT_INACTIVE);
//Mark B as inactive in backup table
UPDATE_SLOT(pentryB_bak, inactive_guid, SLOT_INACTIVE);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))) {
//Mark B as active in primary table
UPDATE_SLOT(pentryB, active_guid, SLOT_ACTIVE);
//Mark B as active in backup table
UPDATE_SLOT(pentryB_bak, active_guid, SLOT_ACTIVE);
//Mark A as inavtive in primary table
UPDATE_SLOT(pentryA, inactive_guid, SLOT_INACTIVE);
//Mark A as inactive in backup table
UPDATE_SLOT(pentryA_bak, inactive_guid, SLOT_INACTIVE);
} else {
//Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk) != 0) {
fprintf(stderr, "%s: Failed to update gpt_disk crc\n",
__func__);
goto error;
}
}
//write updated content to disk
if (disk) {
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
goto error;
}
gpt_disk_free(disk);
}
return 0;
int a_state = slot == 0 ? SLOT_ACTIVE : SLOT_INACTIVE;
int b_state = slot == 1 ? SLOT_ACTIVE : SLOT_INACTIVE;
error:
if (disk)
gpt_disk_free(disk);
return -1;
// This check *Really* shouldn't be here... But I don't know this codebase
// well enough to remove it.
if (slot > 1) {
fprintf(stderr, "%s: Unknown slot %d!\n", __func__, slot);
return -1;
}
// Mark A as active in primary table
UPDATE_SLOT(pentryA, active_guid, a_state);
// Mark A as active in backup table
UPDATE_SLOT(pentryA_bak, active_guid, a_state);
// Mark B as inactive in primary table
UPDATE_SLOT(pentryB, inactive_guid, b_state);
// Mark B as inactive in backup table
UPDATE_SLOT(pentryB_bak, inactive_guid, b_state);
}
// write updated content to disk
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
return -1;
}
return 0;
}
unsigned get_active_boot_slot()
{
struct gpt_disk disk = { 0 };
uint32_t num_slots = get_number_slots();
if (num_slots <= 1) {
//Slot 0 is the only slot around.
// Slot 0 is the only slot around.
return 0;
}
for (uint32_t i = 0; i < num_slots; i++) {
if (get_boot_attr(i, ATTR_SLOT_ACTIVE))
if (get_boot_attr(&disk, i, ATTR_SLOT_ACTIVE)) {
gpt_disk_free(&disk);
return i;
}
}
fprintf(stderr, "%s: Failed to find the active boot slot\n", __func__);
gpt_disk_free(&disk);
return 0;
}
int set_active_boot_slot(unsigned slot)
{
map<string, vector<string> > ptn_map;
map<string, vector<string>> ptn_map;
vector<string> ptn_vec;
const char ptn_list[][MAX_GPT_NAME_SIZE] = { AB_PTN_LIST };
struct gpt_disk disk = { 0 };
uint32_t i;
int rc = -1;
map<string, vector<string> >::iterator map_iter;
map<string, vector<string>>::iterator map_iter;
bool ismmc;
if (boot_control_check_slot_sanity(slot)) {
fprintf(stderr, "%s: Bad arguments\n", __func__);
goto error;
goto out;
}
ismmc = gpt_utils_is_partition_backed_by_emmc(PTN_XBL AB_SLOT_A_SUFFIX);
if (!ismmc && ufs_bsg_dev_open() < 0) {
goto error;
goto out;
}
//The partition list just contains prefixes(without the _a/_b) of the
//partitions that support A/B. In order to get the layout we need the
//actual names. To do this we append the slot suffix to every member
//in the list.
// The partition list just contains prefixes(without the _a/_b) of the
// partitions that support A/B. In order to get the layout we need the
// actual names. To do this we append the slot suffix to every member
// in the list.
for (i = 0; i < ARRAY_SIZE(ptn_list); i++) {
//XBL is handled differrently for ufs devices so ignore it
// XBL is handled differrently for ufs devices so ignore it
if (!ismmc && !strncmp(ptn_list[i], PTN_XBL, strlen(PTN_XBL)))
continue;
//The partition list will be the list of _a partitions
// The partition list will be the list of _a partitions
string cur_ptn = ptn_list[i];
cur_ptn.append(AB_SLOT_A_SUFFIX);
ptn_vec.push_back(cur_ptn);
}
//The partition map gives us info in the following format:
// The partition map gives us info in the following format:
// [path_to_block_device_1]--><partitions on device 1>
// [path_to_block_device_2]--><partitions on device 2>
// ...
@ -638,19 +601,14 @@ int set_active_boot_slot(unsigned slot)
// [/dev/block/sdb]---><system, boot, rpm, tz,....>
if (gpt_utils_get_partition_map(ptn_vec, ptn_map)) {
fprintf(stderr, "%s: Failed to get partition map\n", __func__);
goto error;
goto out;
}
for (map_iter = ptn_map.begin(); map_iter != ptn_map.end();
map_iter++) {
for (map_iter = ptn_map.begin(); map_iter != ptn_map.end(); map_iter++) {
if (map_iter->second.size() < 1)
continue;
if (boot_ctl_set_active_slot_for_partitions(map_iter->second,
slot)) {
fprintf(stderr,
"%s: Failed to set active slot for partitions \n",
__func__);
;
goto error;
if (boot_ctl_set_active_slot_for_partitions(&disk, map_iter->second, slot)) {
fprintf(stderr, "%s: Failed to set active slot for partitions \n", __func__);
goto out;
}
}
@ -658,68 +616,59 @@ int set_active_boot_slot(unsigned slot)
if (ismmc)
return 0;
if (!strncmp(slot_suffix_arr[slot], AB_SLOT_A_SUFFIX,
strlen(AB_SLOT_A_SUFFIX))) {
//Set xbl_a as the boot lun
if (slot == 0) {
// Set xbl_a as the boot lun
rc = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
} else if (!strncmp(slot_suffix_arr[slot], AB_SLOT_B_SUFFIX,
strlen(AB_SLOT_B_SUFFIX))) {
//Set xbl_b as the boot lun
} else if (slot == 1) {
// Set xbl_b as the boot lun
rc = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
} else {
//Something has gone terribly terribly wrong
// Something has gone terribly terribly wrong
fprintf(stderr, "%s: Unknown slot suffix!\n", __func__);
goto error;
goto out;
}
if (rc) {
fprintf(stderr,
"%s: Failed to switch xbl boot partition\n",
__func__);
goto error;
fprintf(stderr, "%s: Failed to switch xbl boot partition\n", __func__);
goto out;
}
gpt_disk_free(&disk);
return 0;
error:
out:
gpt_disk_free(&disk);
return -1;
}
int set_slot_as_unbootable(unsigned slot)
{
if (boot_control_check_slot_sanity(slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
if (update_slot_attribute(slot_suffix_arr[slot], ATTR_UNBOOTABLE)) {
goto error;
}
return 0;
error:
fprintf(stderr, "%s: Failed to mark slot unbootable\n", __func__);
return -1;
struct gpt_disk disk = { 0 };
int ret;
if (boot_control_check_slot_sanity(slot) != 0)
return -1;
ret = update_slot_attribute(&disk, slot_suffix_arr[slot], ATTR_UNBOOTABLE);
gpt_disk_free(&disk);
return ret;
}
int is_slot_marked_successful(unsigned slot)
{
int attr = 0;
char bootPartition[MAX_GPT_NAME_SIZE + 1] = { 0 };
int ret;
struct gpt_disk disk = { 0 };
if (boot_control_check_slot_sanity(slot) != 0) {
fprintf(stderr, "%s: Argument check failed\n", __func__);
goto error;
}
snprintf(bootPartition, sizeof(bootPartition) - 1, "boot%s",
slot_suffix_arr[slot]);
attr = get_partition_attribute(bootPartition, ATTR_BOOT_SUCCESSFUL);
LOGD("%s: slot = %d, attr = 0x%x\n", __func__, slot, attr);
if (attr >= 0)
return attr;
error:
return -1;
if (boot_control_check_slot_sanity(slot) != 0)
return -1;
ret = get_boot_attr(&disk, slot, ATTR_BOOT_SUCCESSFUL);
gpt_disk_free(&disk);
return ret;
}
const struct boot_control_module bootctl = {
.getCurrentSlot = get_current_slot,
.getCurrentSlot = get_current_slot_from_kernel_cmdline,
.markBootSuccessful = mark_boot_successful,
.setActiveBootSlot = set_active_boot_slot,
.setSlotAsUnbootable = set_slot_as_unbootable,

View File

@ -30,27 +30,28 @@
#define _LARGEFILE64_SOURCE /* enable lseek64() */
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/fs.h>
#include <limits.h>
#include <dirent.h>
#include <inttypes.h>
#include <linux/kernel.h>
#include "assert.h"
#include <asm/byteorder.h>
#include <map>
#include <vector>
#include <string>
#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <map>
#include <stdio.h>
#include <string.h>
#include <string>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <vector>
#include <zlib.h>
#include "utils.h"
#include "gpt-utils.h"
#include "utils.h"
/* list the names of the backed-up partitions to be swapped */
/* extension used for the backup partitions - tzbak, abootbak, etc. */
@ -61,16 +62,16 @@
#define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b"
/* GPT defines */
#define MAX_LUNS 26
//Size of the buffer that needs to be passed to the UFS ioctl
// Size of the buffer that needs to be passed to the UFS ioctl
#define UFS_ATTR_DATA_SIZE 32
//This will allow us to get the root lun path from the path to the partition.
//i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
//the boot critical luns lie between sda to sdz which is acceptable because
//only user added external disks,etc would lie beyond that limit which do not
//contain partitions that interest us here.
// This will allow us to get the root lun path from the path to the partition.
// i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
// the boot critical luns lie between sda to sdz which is acceptable because
// only user added external disks,etc would lie beyond that limit which do not
// contain partitions that interest us here.
#define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1)
//From /dev/disk/sda get just sda
// From /dev/disk/sda get just sda
#define LUN_NAME_START_LOC (sizeof("/dev/") - 1)
#define BOOT_LUN_A_ID 1
#define BOOT_LUN_B_ID 2
@ -78,26 +79,22 @@
* MACROS
******************************************************************************/
#define GET_4_BYTES(ptr) \
((uint32_t) * ((uint8_t *)(ptr)) | \
((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))
#define GET_4_BYTES(ptr) \
((uint32_t) * ((uint8_t *)(ptr)) | ((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | ((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))
#define GET_8_BYTES(ptr) \
((uint64_t) * ((uint8_t *)(ptr)) | \
((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \
((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \
((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \
((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | \
((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))
#define GET_8_BYTES(ptr) \
((uint64_t) * ((uint8_t *)(ptr)) | ((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \
((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \
((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \
((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | ((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))
#define PUT_4_BYTES(ptr, y) \
*((uint8_t *)(ptr)) = (y)&0xff; \
*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
#define PUT_4_BYTES(ptr, y) \
*((uint8_t *)(ptr)) = (y)&0xff; \
*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
*((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
/******************************************************************************
@ -105,8 +102,8 @@
******************************************************************************/
using namespace std;
enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC };
//List of LUN's containing boot critical images.
//Required in the case of UFS devices
// List of LUN's containing boot critical images.
// Required in the case of UFS devices
struct update_data {
char lun_list[MAX_LUNS][PATH_MAX];
uint32_t num_valid_entries;
@ -122,8 +119,7 @@ void DumpHex(const void *data, size_t size)
ascii[16] = '\0';
for (i = 0; i < size; ++i) {
printf("%02X ", ((unsigned char *)data)[i]);
if (((unsigned char *)data)[i] >= ' ' &&
((unsigned char *)data)[i] <= '~') {
if (((unsigned char *)data)[i] >= ' ' && ((unsigned char *)data)[i] <= '~') {
ascii[i % 16] = ((unsigned char *)data)[i];
} else {
ascii[i % 16] = '.';
@ -166,8 +162,8 @@ static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
int r;
if (lseek64(fd, offset, SEEK_SET) < 0) {
fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n",
offset, strerror(errno));
fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n", offset,
strerror(errno));
return -1;
}
@ -177,14 +173,13 @@ static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
r = read(fd, buf, len);
if (r < 0) {
fprintf(stderr, "block dev %s failed: %s\n",
rw ? "write" : "read\n", strerror(errno));
fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read\n",
strerror(errno));
} else {
if (rw) {
r = fsync(fd);
if (r < 0)
fprintf(stderr, "fsync failed: %s\n",
strerror(errno));
fprintf(stderr, "fsync failed: %s\n", strerror(errno));
} else {
r = 0;
}
@ -204,14 +199,12 @@ static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
* \param [in] pentries_end Partition entries array end pointer
* \param [in] pentry_size Single partition entry size [bytes]
*
* \return First partition entry pointer that matches the name or NULL
* \return First partition entry pointer that matches the name or null
*
* ==========================================================================
*/
static uint8_t *gpt_pentry_seek(const char *ptn_name,
const uint8_t *pentries_start,
const uint8_t *pentries_end,
uint32_t pentry_size)
static uint8_t *gpt_pentry_seek(const char *ptn_name, const uint8_t *pentries_start,
const uint8_t *pentries_end, uint32_t pentry_size)
{
char *pentry_name;
unsigned len = strlen(ptn_name);
@ -225,26 +218,24 @@ static uint8_t *gpt_pentry_seek(const char *ptn_name,
for (i = 0; i < sizeof(name8); i++)
name8[i] = pentry_name[i * 2];
if (!strncmp(ptn_name, name8, len))
if (name8[len] == 0 ||
!strcmp(&name8[len], BAK_PTN_NAME_EXT))
return (uint8_t *)(pentry_name -
PARTITION_NAME_OFFSET);
if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
return (uint8_t *)(pentry_name - PARTITION_NAME_OFFSET);
}
return NULL;
return nullptr;
}
// Defined in ufs-bsg.cpp
int32_t set_boot_lun(uint8_t lun_id);
//Swtich betwieen using either the primary or the backup
//boot LUN for boot. This is required since UFS boot partitions
//cannot have a backup GPT which is what we use for failsafe
//updates of the other 'critical' partitions. This function will
//not be invoked for emmc targets and on UFS targets is only required
//to be invoked for XBL.
// Swtich betwieen using either the primary or the backup
// boot LUN for boot. This is required since UFS boot partitions
// cannot have a backup GPT which is what we use for failsafe
// updates of the other 'critical' partitions. This function will
// not be invoked for emmc targets and on UFS targets is only required
// to be invoked for XBL.
//
//The algorithm to do this is as follows:
// The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/disk/sdb) that corresponds
// to the /dev/disk/bootdevice/by-name/xbl(bak) symlink
//
@ -253,12 +244,12 @@ int32_t set_boot_lun(uint8_t lun_id);
// it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
//the boot lun to either LUNA or LUNB
// the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
{
struct stat st;
uint8_t boot_lun_id = 0;
const char *boot_dev = NULL;
const char *boot_dev = nullptr;
(void)st;
(void)boot_dev;
@ -270,8 +261,7 @@ int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
else if (!stat(XBL_AB_SECONDARY, &st))
boot_dev = XBL_AB_SECONDARY;
else {
fprintf(stderr, "%s: Failed to locate secondary xbl\n",
__func__);
fprintf(stderr, "%s: Failed to locate secondary xbl\n", __func__);
goto error;
}
} else if (chain == NORMAL_BOOT) {
@ -281,20 +271,19 @@ int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
else if (!stat(XBL_AB_PRIMARY, &st))
boot_dev = XBL_AB_PRIMARY;
else {
fprintf(stderr, "%s: Failed to locate primary xbl\n",
__func__);
fprintf(stderr, "%s: Failed to locate primary xbl\n", __func__);
goto error;
}
} else {
fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
goto error;
}
//We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
//the same time. If not the current configuration is invalid.
// We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
// the same time. If not the current configuration is invalid.
if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) &&
(stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) {
fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n",
__func__, strerror(errno));
fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n", __func__,
strerror(errno));
goto error;
}
LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev);
@ -307,30 +296,25 @@ error:
return -1;
}
//Given a parttion name(eg: rpm) get the path to the block device that
//represents the GPT disk the partition resides on. In the case of emmc it
//would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
//through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
//the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname, char *buf,
size_t buflen)
// Given a parttion name(eg: rpm) get the path to the block device that
// represents the GPT disk the partition resides on. In the case of emmc it
// would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
// through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
// the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname, char *buf, size_t buflen)
{
struct stat st;
char path[PATH_MAX] = { 0 };
int i;
(void)st;
if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
return -1;
}
//Need to find the lun that holds partition partname
// Need to find the lun that holds partition partname
snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname);
// if (rc = stat(path, &st)) {
// LOGD("stat failed: errno=%d\n", errno);
// goto error;
// }
buf = realpath(path, buf);
if (!buf) {
return -1;
@ -344,28 +328,30 @@ static int get_dev_path_from_partition_name(const char *partname, char *buf,
buf[i] = 0;
}
return 0;
}
int gpt_utils_get_partition_map(vector<string> &ptn_list,
map<string, vector<string> > &partition_map)
int gpt_utils_get_partition_map(vector<string> &ptn_list, map<string, vector<string>> &partition_map)
{
char devpath[PATH_MAX] = { '\0' };
map<string, vector<string> >::iterator it;
map<string, vector<string>>::iterator it;
if (ptn_list.size() < 1) {
fprintf(stderr, "%s: Invalid ptn list\n", __func__);
return -1;
}
//Go through the passed in list
// Go through the passed in list
for (uint32_t i = 0; i < ptn_list.size(); i++) {
//Key in the map is the path to the device that holds the
//partition
if (get_dev_path_from_partition_name(
ptn_list[i].c_str(), devpath, sizeof(devpath))) {
//Not necessarily an error. The partition may just
//not be present.
// Key in the map is the path to the device that holds the
// partition
if (get_dev_path_from_partition_name(ptn_list[i].c_str(), devpath, sizeof(devpath))) {
// Not necessarily an error. The partition may just
// not be present.
continue;
}
string path = devpath;
it = partition_map.find(path);
if (it != partition_map.end()) {
@ -373,144 +359,153 @@ int gpt_utils_get_partition_map(vector<string> &ptn_list,
} else {
vector<string> str_vec;
str_vec.push_back(ptn_list[i]);
partition_map.insert(
pair<string, vector<string> >(path, str_vec));
partition_map.insert(pair<string, vector<string>>(path, str_vec));
}
memset(devpath, '\0', sizeof(devpath));
}
return 0;
}
//Get the block size of the disk represented by decsriptor fd
// Get the block size of the disk represented by decsriptor fd
static uint32_t gpt_get_block_size(int fd)
{
uint32_t block_size = 0;
if (fd < 0) {
fprintf(stderr, "%s: invalid descriptor\n", __func__);
goto error;
}
if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n",
__func__, strerror(errno));
fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n", __func__,
strerror(errno));
goto error;
}
return block_size;
error:
return 0;
}
//Write the GPT header present in the passed in buffer back to the
//disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd,
enum gpt_instance instance)
// Write the GPT header present in the passed in buffer back to the
// disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd, enum gpt_instance instance)
{
uint32_t block_size = 0;
off_t gpt_header_offset = 0;
if (!gpt_header || fd < 0) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
LOGD("%s: Block size is : %d\n", __func__, block_size);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get block size\n", __func__);
goto error;
}
if (instance == PRIMARY_GPT)
gpt_header_offset = block_size;
else
gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
if (gpt_header_offset <= 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n",
__func__);
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
goto error;
}
LOGD("%s: Writing back header to offset %ld\n", __func__,
gpt_header_offset);
LOGD("%s: Writing back header to offset %ld\n", __func__, gpt_header_offset);
if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
fprintf(stderr, "%s: Failed to write back GPT header\n",
__func__);
fprintf(stderr, "%s: Failed to write back GPT header\n", __func__);
goto error;
}
return 0;
error:
return -1;
}
//Read out the GPT header for the disk that contains the partition partname
static uint8_t *gpt_get_header(const char *partname, enum gpt_instance instance)
// Read out the GPT headers for the disk that contains the partition partname
static int gpt_get_headers(const char *partname, uint8_t **primary, uint8_t **backup)
{
uint8_t *hdr = NULL;
uint8_t *hdr = nullptr;
char devpath[PATH_MAX] = { 0 };
off_t hdr_offset = 0;
uint32_t block_size = 0;
int instance;
int fd = -1;
if (!partname) {
fprintf(stderr, "%s: Invalid partition name\n", __func__);
goto error;
}
if (get_dev_path_from_partition_name(partname, devpath,
sizeof(devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__,
partname);
if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, partname);
goto error;
}
fd = open(devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s : %s\n", __func__,
devpath, strerror(errno));
goto error;
fprintf(stderr, "%s: Failed to open %s : %s\n", __func__, devpath, strerror(errno));
return -1;
}
block_size = gpt_get_block_size(fd);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get gpt block size for %s\n",
__func__, partname);
fprintf(stderr, "%s: Failed to get gpt block size for %s\n", __func__, partname);
goto error;
}
hdr = (uint8_t *)calloc(block_size, 1);
if (!hdr) {
fprintf(stderr,
"%s: Failed to allocate memory for gpt header\n",
__func__);
for (instance = PRIMARY_GPT; instance <= SECONDARY_GPT; instance++) {
hdr = (uint8_t *)calloc(block_size, 1);
if (!hdr) {
fprintf(stderr, "%s: Failed to allocate memory for gpt header\n", __func__);
}
if (instance == PRIMARY_GPT)
hdr_offset = block_size;
else {
hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
}
if (hdr_offset < 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
goto error;
}
if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
fprintf(stderr, "%s: Failed to read GPT header from device\n", __func__);
goto error;
}
if (instance == PRIMARY_GPT)
*primary = hdr;
else
*backup = hdr;
}
if (instance == PRIMARY_GPT)
hdr_offset = block_size;
else {
hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
}
if (hdr_offset < 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n",
__func__);
goto error;
}
if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
fprintf(stderr, "%s: Failed to read GPT header from device\n",
__func__);
goto error;
}
//DumpHex(hdr, block_size);
close(fd);
return hdr;
return 0;
error:
if (fd >= 0)
close(fd);
close(fd);
if (hdr)
free(hdr);
return NULL;
return -1;
}
//Returns the partition entry array based on the
//passed in buffer which contains the gpt header.
//The fd here is the descriptor for the 'disk' which
//holds the partition
// Returns the partition entry array based on the
// passed in buffer which contains the gpt header.
// The fd here is the descriptor for the 'disk' which
// holds the partition
static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
{
uint64_t pentries_start = 0;
uint32_t pentry_size = 0;
uint32_t block_size = 0;
uint32_t pentries_arr_size = 0;
uint8_t *pentry_arr = NULL;
uint8_t *pentry_arr = nullptr;
int rc = 0;
if (!hdr) {
fprintf(stderr, "%s: Invalid header\n", __func__);
@ -522,32 +517,27 @@ static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n",
__func__);
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
goto error;
}
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size =
GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
pentry_arr = (uint8_t *)calloc(1, pentries_arr_size);
if (!pentry_arr) {
fprintf(stderr,
"%s: Failed to allocate memory for partition array\n",
__func__);
fprintf(stderr, "%s: Failed to allocate memory for partition array\n", __func__);
goto error;
}
rc = blk_rw(fd, 0, pentries_start, pentry_arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n",
__func__);
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
goto error;
}
return pentry_arr;
error:
if (pentry_arr)
free(pentry_arr);
return NULL;
return nullptr;
}
static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
@ -563,23 +553,19 @@ static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n",
__func__);
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
goto error;
}
LOGD("%s : Block size is %d\n", __func__, block_size);
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size =
GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64
"\n",
__func__, pentries_arr_size, pentries_start);
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64 "\n", __func__,
pentries_arr_size, pentries_start);
LOGD("pentries_start: %lu\n", pentries_start);
rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n",
__func__);
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
goto error;
}
return 0;
@ -587,100 +573,134 @@ error:
return -1;
}
//Allocate a handle used by calls to the "gpt_disk" api's
struct gpt_disk *gpt_disk_alloc()
{
struct gpt_disk *disk;
disk = (struct gpt_disk *)malloc(sizeof(struct gpt_disk));
if (!disk) {
fprintf(stderr, "%s: Failed to allocate memory\n", __func__);
goto end;
}
memset(disk, 0, sizeof(struct gpt_disk));
end:
return disk;
}
//Free previously allocated/initialized handle
/*
* Free previously allocated/initialized handle
* This function is always safe and must be called
* before discarding the handle.
* it is called automatically by gpt_disk_get_disk_info()
*/
void gpt_disk_free(struct gpt_disk *disk)
{
if (!disk)
return;
if (disk->hdr)
if (disk->hdr) {
free(disk->hdr);
if (disk->hdr_bak)
disk->hdr = nullptr;
}
if (disk->hdr_bak) {
free(disk->hdr_bak);
if (disk->pentry_arr)
disk->hdr_bak = nullptr;
}
if (disk->pentry_arr) {
free(disk->pentry_arr);
if (disk->pentry_arr_bak)
disk->pentry_arr = nullptr;
}
if (disk->pentry_arr_bak) {
free(disk->pentry_arr_bak);
free(disk);
disk->pentry_arr_bak = nullptr;
}
disk->is_initialized = 0;
return;
}
//fills up the passed in gpt_disk struct with information about the
//disk represented by path dev. Returns 0 on success and -1 on error.
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *dsk)
bool gpt_disk_is_valid(struct gpt_disk *disk)
{
return disk->is_initialized == GPT_DISK_INIT_MAGIC;
}
/*
* Check if a partition by-path is for the disk we have info for
* and populate the blockdev path.
* e.g. for /dev/disk/by-partlabel/system_a blockdev would be /dev/sda
*/
bool partition_is_for_disk(const char *part, struct gpt_disk *disk, char *blockdev, int blockdev_len)
{
int ret;
ret = get_dev_path_from_partition_name(part, blockdev, blockdev_len);
if (ret) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, part);
return false;
}
if (!strcmp(blockdev, disk->devpath)) {
return true;
}
return false;
}
/*
* fills up the passed in gpt_disk struct with information about the
* disk represented by path dev. Returns 0 on success and -1 on error.
*/
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk)
{
struct gpt_disk *disk = NULL;
int fd = -1;
uint32_t gpt_header_size = 0;
char devpath[PATH_MAX] = { 0 };
if (!dsk || !dev) {
if (!disk || !dev) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
disk = dsk;
disk->hdr = gpt_get_header(dev, PRIMARY_GPT);
if (!disk->hdr) {
fprintf(stderr, "%s: Failed to get primary header\n", __func__);
if (partition_is_for_disk(dev, disk, devpath, sizeof(devpath))) {
return 0;
}
if (disk->is_initialized == GPT_DISK_INIT_MAGIC) {
// We already have a valid disk handle. Free it.
LOGD("%s: Freeing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
gpt_disk_free(disk);
}
// devpath popualted by partition_is_for_disk
strncpy(disk->devpath, devpath, sizeof(disk->devpath));
if (gpt_get_headers(dev, &disk->hdr, &disk->hdr_bak)) {
fprintf(stderr, "%s: Failed to get GPT headers\n", __func__);
goto error;
}
assert(disk->hdr != nullptr);
assert(disk->hdr_bak != nullptr);
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
// FIXME: pointer offsets crc bleh
disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
disk->hdr_bak = gpt_get_header(dev, SECONDARY_GPT);
if (!disk->hdr_bak) {
fprintf(stderr, "%s: Failed to get backup header\n", __func__);
goto error;
}
disk->hdr_bak_crc = crc32(0, disk->hdr_bak, gpt_header_size);
//Descriptor for the block device. We will use this for further
//modifications to the partition table
if (get_dev_path_from_partition_name(dev, disk->devpath,
sizeof(disk->devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__,
dev);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__,
disk->devpath, strerror(errno));
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
strerror(errno));
goto error;
}
assert(disk->pentry_arr == nullptr);
disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
if (!disk->pentry_arr) {
fprintf(stderr, "%s: Failed to obtain partition entry array\n",
__func__);
fprintf(stderr, "%s: Failed to obtain partition entry array\n", __func__);
goto error;
}
assert(disk->pentry_arr_bak == nullptr);
disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
if (!disk->pentry_arr_bak) {
fprintf(stderr,
"%s: Failed to obtain backup partition entry array\n",
__func__);
fprintf(stderr, "%s: Failed to obtain backup partition entry array\n", __func__);
goto error;
}
disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
disk->pentry_arr_size =
GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) *
disk->pentry_size;
disk->pentry_arr_size = GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) * disk->pentry_size;
disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
disk->pentry_arr_bak_crc =
GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
disk->block_size = gpt_get_block_size(fd);
close(fd);
disk->is_initialized = GPT_DISK_INIT_MAGIC;
@ -691,49 +711,54 @@ error:
return -1;
}
//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname,
enum gpt_instance instance)
// Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname, enum gpt_instance instance)
{
uint8_t *ptn_arr = NULL;
uint8_t *ptn_arr = nullptr;
if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
fprintf(stderr, "%s: disk handle not initialised\n", __func__);
return nullptr;
}
ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr :
disk->pentry_arr_bak;
return (gpt_pentry_seek(partname, ptn_arr,
ptn_arr + disk->pentry_arr_size,
ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr : disk->pentry_arr_bak;
return (gpt_pentry_seek(partname, ptn_arr, ptn_arr + disk->pentry_arr_size,
disk->pentry_size));
error:
return NULL;
}
//Update CRC values for the various components of the gpt_disk
//structure. This function should be called after any of the fields
//have been updated before the structure contents are written back to
//disk.
int gpt_disk_update_crc(struct gpt_disk *disk)
// Update CRC values for the various components of the gpt_disk
// structure. This function should be called after any of the fields
// have been updated before the structure contents are written back to
// disk.
static int gpt_disk_update_crc(struct gpt_disk *disk)
{
uint32_t gpt_header_size = 0;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: invalid argument\n", __func__);
goto error;
fprintf(stderr, "%s: disk not initialised!\n", __func__);
return -1;
}
//Recalculate the CRC of the primary partiton array
disk->pentry_arr_crc =
crc32(0, disk->pentry_arr, disk->pentry_arr_size);
//Recalculate the CRC of the backup partition array
disk->pentry_arr_bak_crc =
crc32(0, disk->pentry_arr_bak, disk->pentry_arr_size);
//Update the partition CRC value in the primary GPT header
#ifdef DEBUG
uint32_t old_crc = disk->pentry_arr_crc;
#endif
// Recalculate the CRC of the primary partiton array
disk->pentry_arr_crc = crc32(0, disk->pentry_arr, disk->pentry_arr_size);
LOGD("%s() disk %8s GPT hdr len %u crc: %08x -> %08x\n", __func__, disk->devpath,
disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);
// DumpHex(disk->pentry_arr, disk->pentry_arr_size);
// Recalculate the CRC of the backup partition array
disk->pentry_arr_bak_crc = crc32(0, disk->pentry_arr_bak, disk->pentry_arr_size);
// Update the partition CRC value in the primary GPT header
PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
//Update the partition CRC value in the backup GPT header
PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET,
disk->pentry_arr_bak_crc);
//Update the CRC value of the primary header
// Update the partition CRC value in the backup GPT header
PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET, disk->pentry_arr_bak_crc);
// Update the CRC value of the primary header
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
//Header CRC is calculated with its own CRC field set to 0
// Header CRC is calculated with its own CRC field set to 0
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
disk->hdr_crc = crc32(0, disk->hdr, gpt_header_size);
@ -741,52 +766,55 @@ int gpt_disk_update_crc(struct gpt_disk *disk)
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
return 0;
error:
return -1;
}
//Write the contents of struct gpt_disk back to the actual disk
// Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk)
{
int fd = -1;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: Invalid args\n", __func__);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__,
disk->devpath, strerror(errno));
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update CRC values\n", __func__);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
strerror(errno));
goto error;
}
LOGD("%s: Writing back primary GPT header\n", __func__);
//Write the primary header
// Write the primary header
if (gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
fprintf(stderr, "%s: Failed to update primary GPT header\n",
__func__);
fprintf(stderr, "%s: Failed to update primary GPT header\n", __func__);
goto error;
}
LOGD("%s: Writing back primary partition array\n", __func__);
//Write back the primary partition array
// Write back the primary partition array
if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
fprintf(stderr,
"%s: Failed to write primary GPT partition arr\n",
__func__);
fprintf(stderr, "%s: Failed to write primary GPT partition arr\n", __func__);
goto error;
}
// Write the backup header
if (gpt_set_header(disk->hdr_bak, fd, SECONDARY_GPT) != 0) {
fprintf(stderr, "%s: Failed to update backup GPT header\n",
__func__);
fprintf(stderr, "%s: Failed to update backup GPT header\n", __func__);
goto error;
}
LOGD("%s: Writing back backup partition array\n", __func__);
// Write back the backup partition array
if (gpt_set_pentry_arr(disk->hdr_bak, fd, disk->pentry_arr_bak)) {
fprintf(stderr,
"%s: Failed to write backup GPT partition arr\n",
__func__);
fprintf(stderr, "%s: Failed to write backup GPT partition arr\n", __func__);
goto error;
}
fsync(fd);
@ -798,13 +826,14 @@ error:
return -1;
}
//Determine whether to handle the given partition as eMMC or UFS, using the
//name of the backing device.
// Determine whether to handle the given partition as eMMC or UFS, using the
// name of the backing device.
//
//Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
//will tend to prefer UFS behavior. If it incorrectly reports this, then the
//program should exit (e.g. by failing) before making any changes.
bool gpt_utils_is_partition_backed_by_emmc(const char *part) {
// Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
// will tend to prefer UFS behavior. If it incorrectly reports this, then the
// program should exit (e.g. by failing) before making any changes.
bool gpt_utils_is_partition_backed_by_emmc(const char *part)
{
char devpath[PATH_MAX] = { '\0' };
if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath)))

View File

@ -123,20 +123,19 @@ struct gpt_disk {
};
//GPT disk methods
struct gpt_disk *gpt_disk_alloc();
bool gpt_disk_is_valid(struct gpt_disk *disk);
//Free previously allocated gpt_disk struct
void gpt_disk_free(struct gpt_disk *disk);
//Get the details of the disk holding the partition whose name
//is passed in via dev
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk);
bool partition_is_for_disk(const char *part, struct gpt_disk *disk, char *blockdev, int blockdev_len);
//Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname,
enum gpt_instance instance);
//Update the crc fields of the modified disk structure
int gpt_disk_update_crc(struct gpt_disk *disk);
//Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk);

View File

@ -1,9 +1,15 @@
project('qbootctl', 'cpp')
project('qbootctl', 'cpp', default_options : ['c_std=c11', 'cpp_std=c++17'])
cc = meson.get_compiler('cpp')
deps = [
dependency('zlib'),
]
if not cc.has_header('linux/bsg.h')
error('linux-headers not found')
endif
src = [
'qbootctl.cpp',
'bootctrl_impl.cpp',

View File

@ -15,17 +15,12 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <map>
#include <list>
#include <string>
#include <vector>
#include <errno.h>
#include <regex>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <cstdint>
#include <stdint.h>
#include "bootctrl.h"
@ -107,7 +102,7 @@ int get_slot_info(struct slot_info *slots)
slots[active_slot].active = true;
for (size_t i = 0; i < 2; i++) {
for (int i = 0; i < 2; i++) {
rc = impl->isSlotMarkedSuccessful(i);
if (rc < 0)
return rc;
@ -130,7 +125,7 @@ void dump_info()
printf("Current slot: %s\n",
current_slot >= 0 ? impl->getSuffix(current_slot) : "N/A");
for (size_t i = 0; i < 2; i++) {
for (int i = 0; i < 2; i++) {
printf("SLOT %s:\n", impl->getSuffix(i));
printf("\tActive : %d\n", slots[i].active);
printf("\tSuccessful : %d\n", slots[i].successful);

View File

@ -2,7 +2,7 @@
#define __UTILS_H__
// Enable debug logging
//#define DEBUG 1
// #define DEBUG 1
#ifdef DEBUG
#define LOGD(fmt, ...) printf(fmt, ##__VA_ARGS__)