ppp/pppd/sys-osf.c

1738 lines
40 KiB
C

/*
* System-dependent procedures for pppd under Digital UNIX (OSF/1).
*
* Copyright (c) 1994 The Australian National University.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, provided that the above copyright
* notice appears in all copies. This software is provided without any
* warranty, express or implied. The Australian National University
* makes no representations about the suitability of this software for
* any purpose.
*
* IN NO EVENT SHALL THE AUSTRALIAN NATIONAL UNIVERSITY BE LIABLE TO ANY
* PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
* THE AUSTRALIAN NATIONAL UNIVERSITY HAVE BEEN ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* THE AUSTRALIAN NATIONAL UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE AUSTRALIAN NATIONAL UNIVERSITY HAS NO
* OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
* OR MODIFICATIONS.
*/
#ifndef lint
static char rcsid[] = "$Id: sys-osf.c,v 1.20 1999/03/16 22:53:48 paulus Exp $";
#endif
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <signal.h>
#include <malloc.h>
#include <utmp.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_arp.h>
#include <net/route.h>
#include <net/ppp_defs.h>
#include <net/pppio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "pppd.h"
static int pppfd;
static int fdmuxid = -1;
static int iffd;
static int sockfd;
static int restore_term;
static struct termios inittermios;
static struct winsize wsinfo; /* Initial window size info */
static pid_t tty_sid; /* PID of our session leader */
extern u_char inpacket_buf[]; /* borrowed from main.c */
static int link_mtu, link_mru;
#define NMODULES 32
static int tty_nmodules;
static char tty_modules[NMODULES][FMNAMESZ+1];
static int closed_stdio;
static int initfdflags = -1;
static int orig_ttyfd = -1;
static int if_is_up; /* Interface has been marked up */
static u_int32_t ifaddrs[2]; /* local and remote addresses */
static u_int32_t default_route_gateway; /* Gateway for default route added */
static u_int32_t proxy_arp_addr; /* Addr for proxy arp entry added */
#define MAX_POLLFDS 32
static struct pollfd pollfds[MAX_POLLFDS];
static int n_pollfds;
/* Prototypes for procedures local to this file. */
static int translate_speed __P((int));
static int baud_rate_of __P((int));
static int get_ether_addr __P((u_int32_t, struct sockaddr *));
static int strioctl __P((int, int, void *, int, int));
/*
* sys_init - System-dependent initialization.
*/
void
sys_init()
{
int x;
openlog("pppd", LOG_PID | LOG_NDELAY, LOG_PPP);
setlogmask(LOG_UPTO(LOG_INFO));
if (debug)
setlogmask(LOG_UPTO(LOG_DEBUG));
/* Get an internet socket for doing socket ioctl's on. */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
fatal("Couldn't create IP socket: %m");
if (default_device)
tty_sid = getsid((pid_t)0);
/*
* Open the ppp device.
*/
pppfd = open("/dev/streams/ppp", O_RDWR | O_NONBLOCK, 0);
if (pppfd < 0)
fatal("Can't open /dev/streams/ppp: %m");
if (kdebugflag) {
x = PPPDBG_LOG + PPPDBG_DRIVER;
strioctl(pppfd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
/* Assign a new PPA and get its unit number. */
if (strioctl(pppfd, PPPIO_NEWPPA, &ifunit, 0, sizeof(int)) < 0)
fatal("Can't create new PPP interface: %m");
/*
* Open the ppp device again and push the if_ppp module on it.
*/
iffd = open("/dev/streams/ppp", O_RDWR, 0);
if (iffd < 0)
fatal("Can't open /dev/streams/ppp (2): %m");
if (kdebugflag) {
x = PPPDBG_LOG + PPPDBG_DRIVER;
strioctl(iffd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
if (strioctl(iffd, PPPIO_ATTACH, &ifunit, sizeof(int), 0) < 0)
fatal("Couldn't attach ppp interface to device: %m");
if (ioctl(iffd, I_PUSH, "if_ppp") < 0)
fatal("Can't push ppp interface module: %m");
if (kdebugflag) {
x = PPPDBG_LOG + PPPDBG_IF;
strioctl(iffd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
if (strioctl(iffd, PPPIO_NEWPPA, &ifunit, sizeof(int), 0) < 0)
fatal("Couldn't create ppp interface unit: %m");
x = PPP_IP;
if (strioctl(iffd, PPPIO_BIND, &x, sizeof(int), 0) < 0)
fatal("Couldn't bind ppp interface to IP SAP: %m");
n_pollfds = 0;
}
/*
* sys_cleanup - restore any system state we modified before exiting:
* mark the interface down, delete default route and/or proxy arp entry.
* This shouldn't call die() because it's called from die().
*/
void
sys_cleanup()
{
if (if_is_up)
sifdown(0);
if (ifaddrs[0])
cifaddr(0, ifaddrs[0], ifaddrs[1]);
if (default_route_gateway)
cifdefaultroute(0, 0, default_route_gateway);
if (proxy_arp_addr)
cifproxyarp(0, proxy_arp_addr);
}
/*
* sys_close - Clean up in a child process before execing.
*/
void
sys_close()
{
close(iffd);
close(pppfd);
close(sockfd);
closelog();
}
/*
* sys_check_options - check the options that the user specified
*/
int
sys_check_options()
{
return 1;
}
/*
* daemon - Detach us from controlling terminal session.
*/
int
daemon(nochdir, noclose)
int nochdir, noclose;
{
int pid;
if ((pid = fork()) < 0)
return -1;
if (pid != 0)
exit(0); /* parent dies */
setsid();
if (!nochdir)
chdir("/");
if (!noclose) {
fclose(stdin); /* don't need stdin, stdout, stderr */
fclose(stdout);
fclose(stderr);
}
return 0;
}
/*
* note_debug_level - note a change in the debug level.
*/
void
note_debug_level()
{
if (debug) {
setlogmask(LOG_UPTO(LOG_DEBUG));
} else {
setlogmask(LOG_UPTO(LOG_WARNING));
}
}
/*
* ppp_available - check whether the system has any ppp interfaces
*/
int
ppp_available()
{
struct stat buf;
return stat("/dev/streams/ppp", &buf) >= 0;
}
char pipename[] = "/dev/streams/pipe";
/*
* streampipe -- Opens a STREAMS based pipe. Used by streamify().
*/
int
streampipe(int fd[2])
{
if ((fd[0]=open(pipename, O_RDWR)) == -1)
return(-1);
else if ((fd[1]=open(pipename, O_RDWR)) == -1) {
close(fd[0]);
return(-1);
} else if (ioctl(fd[0], I_PIPE, fd[1]) != 0) {
close(fd[0]);
close(fd[1]);
return(-1);
} else {
return(ioctl(fd[0], I_PUSH, "pipemod"));
}
}
/*
* streamify -- Needed for Digital UNIX, since some tty devices are not STREAMS
* modules (but ptys are, and pipes can be).
*/
#define BUFFSIZE 1000 /* Size of buffer for streamify() */
int
streamify(int fd)
{
int fdes[2];
fd_set readfds;
int ret, fret, rret, maxfd;
static char buffer[BUFFSIZE];
struct sigaction sa;
if (streampipe(fdes) != 0)
error("streampipe(): %m\n");
else if (isastream(fdes[0]) == 1) {
if ((fret=fork()) < 0) {
error("fork(): %m\n");
} else if (fret == 0) {
/* Process to forward things from pipe to tty */
sigemptyset(&(sa.sa_mask));
sa.sa_handler = SIG_DFL;
sa.sa_flags = 0;
sigaction(SIGHUP, &sa, NULL); /* Go back to default actions */
sigaction(SIGINT, &sa, NULL); /* for changed signals. */
sigaction(SIGTERM, &sa, NULL);
sigaction(SIGCHLD, &sa, NULL);
sigaction(SIGUSR1, &sa, NULL);
sigaction(SIGUSR2, &sa, NULL);
close(fdes[0]);
maxfd = (fdes[1]>fd)?fdes[1]:fd;
while (1) {
FD_ZERO(&readfds);
FD_SET(fdes[1], &readfds);
FD_SET(fd, &readfds);
ret = select(maxfd+1, &readfds, NULL, NULL, NULL);
if (FD_ISSET(fd, &readfds)) {
rret = read(fd, buffer, BUFFSIZE);
if (rret == 0) {
SYSDEBUG(("slave died: EOF on tty."));
exit(0);
} else {
write(fdes[1], buffer, rret);
}
}
if (FD_ISSET(fdes[1], &readfds)) {
rret = read(fdes[1], buffer, BUFFSIZE);
if (rret == 0) {
SYSDEBUG(("slave died: EOF on pipe."));
exit(0);
} else {
write(fd, buffer, rret);
}
}
}
} else {
close(fdes[1]);
orig_ttyfd = fd;
return(fdes[0]);
}
}
return(-1);
}
/*
* establish_ppp - Turn the serial port into a ppp interface.
*/
int
establish_ppp(fd)
int fd;
{
int i;
if (isastream(fd) != 1) {
if ((ttyfd = fd = streamify(fd)) < 0)
fatal("Couldn't get a STREAMS module!\n");
}
/* Pop any existing modules off the tty stream. */
for (i = 0;; ++i) {
if (ioctl(fd, I_LOOK, tty_modules[i]) < 0
|| ioctl(fd, I_POP, 0) < 0)
break;
error("popping module %s\n", tty_modules[i]);
}
tty_nmodules = i;
/* Push the async hdlc module and the compressor module. */
if (ioctl(fd, I_PUSH, "ppp_ahdl") < 0)
fatal("Couldn't push PPP Async HDLC module: %m");
if (ioctl(fd, I_PUSH, "ppp_comp") < 0)
error("Couldn't push PPP compression module: %m");
/* read mode, message non-discard mode */
if (ioctl(fd, I_SRDOPT, RMSGN|RPROTNORM) < 0)
fatal("ioctl(I_SRDOPT, RMSGN): %m");
/* Link the serial port under the PPP multiplexor. */
if ((fdmuxid = ioctl(pppfd, I_LINK, fd)) < 0)
fatal("Can't link tty to PPP mux: %m");
/* close stdin, stdout, stderr if they might refer to the device */
if (default_device && !closed_stdio) {
int i;
for (i = 0; i <= 2; ++i)
if (i != fd && i != sockfd)
close(i);
closed_stdio = 1;
}
/*
* Set device for non-blocking reads.
* XXX why do we need to do this? don't we use pppfd not fd?
*/
if ((initfdflags = fcntl(fd, F_GETFL)) == -1
|| fcntl(fd, F_SETFL, initfdflags | O_NONBLOCK) == -1) {
warn("Couldn't set device to non-blocking mode: %m");
}
return pppfd;
}
/*
* restore_loop - reattach the ppp unit to the loopback.
* This doesn't need to do anything because disestablish_ppp does it.
*/
void
restore_loop()
{
}
/*
* disestablish_ppp - Restore the serial port to normal operation.
* It attempts to reconstruct the stream with the previously popped
* modules. This shouldn't call die() because it's called from die().
*/
void
disestablish_ppp(fd)
int fd;
{
int i;
if (fdmuxid >= 0) {
if (ioctl(pppfd, I_UNLINK, fdmuxid) < 0) {
if (!hungup)
error("Can't unlink tty from PPP mux: %m");
}
fdmuxid = -1;
/* Reset non-blocking mode on the file descriptor. */
if (initfdflags != -1 && fcntl(fd, F_SETFL, initfdflags) < 0)
warn("Couldn't restore device fd flags: %m");
initfdflags = -1;
if (!hungup) {
while (ioctl(fd, I_POP, 0) >= 0)
;
for (i = tty_nmodules - 1; i >= 0; --i)
if (ioctl(fd, I_PUSH, tty_modules[i]) < 0)
error("Couldn't restore tty module %s: %m",
tty_modules[i]);
}
if (hungup && default_device && tty_sid > 0) {
/*
* If we have received a hangup, we need to send a SIGHUP
* to the terminal's controlling process. The reason is
* that the original stream head for the terminal hasn't
* seen the M_HANGUP message (it went up through the ppp
* driver to the stream head for our fd to /dev/ppp).
*/
dbglog("sending hangup to %d", tty_sid);
if (kill(tty_sid, SIGHUP) < 0)
error("couldn't kill pgrp: %m");
}
if (orig_ttyfd >= 0) {
close(fd);
(void)wait((void *)0);
ttyfd = orig_ttyfd;
orig_ttyfd = -1;
}
}
}
/*
* Check whether the link seems not to be 8-bit clean.
*/
void
clean_check()
{
int x;
char *s;
if (strioctl(pppfd, PPPIO_GCLEAN, &x, 0, sizeof(x)) < 0)
return;
s = NULL;
switch (~x) {
case RCV_B7_0:
s = "bit 7 set to 1";
break;
case RCV_B7_1:
s = "bit 7 set to 0";
break;
case RCV_EVNP:
s = "odd parity";
break;
case RCV_ODDP:
s = "even parity";
break;
}
if (s != NULL) {
warn("Serial link is not 8-bit clean:");
warn("All received characters had %s", s);
}
}
/*
* List of valid speeds.
*/
struct speed {
int speed_int, speed_val;
} speeds[] = {
#ifdef B50
{ 50, B50 },
#endif
#ifdef B75
{ 75, B75 },
#endif
#ifdef B110
{ 110, B110 },
#endif
#ifdef B134
{ 134, B134 },
#endif
#ifdef B150
{ 150, B150 },
#endif
#ifdef B200
{ 200, B200 },
#endif
#ifdef B300
{ 300, B300 },
#endif
#ifdef B600
{ 600, B600 },
#endif
#ifdef B1200
{ 1200, B1200 },
#endif
#ifdef B1800
{ 1800, B1800 },
#endif
#ifdef B2000
{ 2000, B2000 },
#endif
#ifdef B2400
{ 2400, B2400 },
#endif
#ifdef B3600
{ 3600, B3600 },
#endif
#ifdef B4800
{ 4800, B4800 },
#endif
#ifdef B7200
{ 7200, B7200 },
#endif
#ifdef B9600
{ 9600, B9600 },
#endif
#ifdef B19200
{ 19200, B19200 },
#endif
#ifdef B38400
{ 38400, B38400 },
#endif
#ifdef EXTA
{ 19200, EXTA },
#endif
#ifdef EXTB
{ 38400, EXTB },
#endif
#ifdef B57600
{ 57600, B57600 },
#endif
#ifdef B115200
{ 115200, B115200 },
#endif
{ 0, 0 }
};
/*
* Translate from bits/second to a speed_t.
*/
static int
translate_speed(bps)
int bps;
{
struct speed *speedp;
if (bps == 0)
return 0;
for (speedp = speeds; speedp->speed_int; speedp++)
if (bps == speedp->speed_int)
return speedp->speed_val;
warn("speed %d not supported", bps);
return 0;
}
/*
* Translate from a speed_t to bits/second.
*/
static int
baud_rate_of(speed)
int speed;
{
struct speed *speedp;
if (speed == 0)
return 0;
for (speedp = speeds; speedp->speed_int; speedp++)
if (speed == speedp->speed_val)
return speedp->speed_int;
return 0;
}
/*
* set_up_tty: Set up the serial port on `fd' for 8 bits, no parity,
* at the requested speed, etc. If `local' is true, set CLOCAL
* regardless of whether the modem option was specified.
*/
void
set_up_tty(fd, local)
int fd, local;
{
int speed;
struct termios tios;
if (tcgetattr(fd, &tios) < 0)
fatal("tcgetattr: %m");
if (!restore_term) {
inittermios = tios;
ioctl(fd, TIOCGWINSZ, &wsinfo);
}
tios.c_cflag &= ~(CSIZE | CSTOPB | PARENB | CLOCAL);
if (crtscts > 0)
tios.c_cflag |= CRTSCTS;
else if (crtscts < 0)
tios.c_cflag &= ~CRTSCTS;
tios.c_cflag |= CS8 | CREAD | HUPCL;
if (local || !modem)
tios.c_cflag |= CLOCAL;
tios.c_iflag = IGNBRK | IGNPAR;
tios.c_oflag = 0;
tios.c_lflag = 0;
tios.c_cc[VMIN] = 1;
tios.c_cc[VTIME] = 0;
if (crtscts == -2) {
tios.c_iflag |= IXON | IXOFF;
tios.c_cc[VSTOP] = 0x13; /* DC3 = XOFF = ^S */
tios.c_cc[VSTART] = 0x11; /* DC1 = XON = ^Q */
}
speed = translate_speed(inspeed);
if (speed) {
cfsetospeed(&tios, speed);
cfsetispeed(&tios, speed);
} else {
speed = cfgetospeed(&tios);
/*
* We can't proceed if the serial port speed is 0,
* since that implies that the serial port is disabled.
*/
if (speed == B0)
fatal("Baud rate for %s is 0; need explicit baud rate", devnam);
}
if (tcsetattr(fd, TCSAFLUSH, &tios) < 0)
fatal("tcsetattr: %m");
baud_rate = inspeed = baud_rate_of(speed);
restore_term = 1;
}
/*
* restore_tty - restore the terminal to the saved settings.
*/
void
restore_tty(fd)
int fd;
{
if (restore_term) {
if (!default_device) {
/*
* Turn off echoing, because otherwise we can get into
* a loop with the tty and the modem echoing to each other.
* We presume we are the sole user of this tty device, so
* when we close it, it will revert to its defaults anyway.
*/
inittermios.c_lflag &= ~(ECHO | ECHONL);
}
if (tcsetattr(fd, TCSAFLUSH, &inittermios) < 0)
if (!hungup && errno != ENXIO)
warn("tcsetattr: %m");
ioctl(fd, TIOCSWINSZ, &wsinfo);
restore_term = 0;
}
}
/*
* setdtr - control the DTR line on the serial port.
* This is called from die(), so it shouldn't call die().
*/
void
setdtr(fd, on)
int fd, on;
{
int modembits = TIOCM_DTR;
ioctl(fd, (on? TIOCMBIS: TIOCMBIC), &modembits);
}
/*
* open_loopback - open the device we use for getting packets
* in demand mode. Under Digital Unix, we use our existing fd
* to the ppp driver.
*/
int
open_ppp_loopback()
{
return pppfd;
}
/*
* output - Output PPP packet.
*/
void
output(unit, p, len)
int unit;
u_char *p;
int len;
{
struct strbuf data;
int retries;
struct pollfd pfd;
if (debug)
dbglog("sent %P", p, len);
data.len = len;
data.buf = (caddr_t) p;
retries = 4;
while (putmsg(pppfd, NULL, &data, 0) < 0) {
if (--retries < 0 || (errno != EWOULDBLOCK && errno != EAGAIN)) {
if (errno != ENXIO)
error("Couldn't send packet: %m");
break;
}
pfd.fd = pppfd;
pfd.events = POLLOUT;
poll(&pfd, 1, 250); /* wait for up to 0.25 seconds */
}
}
/*
* wait_input - wait until there is data available on fd,
* for the length of time specified by *timo (indefinite
* if timo is NULL).
*/
void
wait_input(timo)
struct timeval *timo;
{
int t;
t = timo == NULL? -1: timo->tv_sec * 1000 + timo->tv_usec / 1000;
if (poll(pollfds, n_pollfds, t) < 0 && errno != EINTR)
fatal("poll: %m");
}
/*
* add_fd - add an fd to the set that wait_input waits for.
*/
void add_fd(int fd)
{
int n;
for (n = 0; n < n_pollfds; ++n)
if (pollfds[n].fd == fd)
return;
if (n_pollfds < MAX_POLLFDS) {
pollfds[n_pollfds].fd = fd;
pollfds[n_pollfds].events = POLLIN | POLLPRI | POLLHUP;
++n_pollfds;
} else
error("Too many inputs!");
}
/*
* remove_fd - remove an fd from the set that wait_input waits for.
*/
void remove_fd(int fd)
{
int n;
for (n = 0; n < n_pollfds; ++n) {
if (pollfds[n].fd == fd) {
while (++n < n_pollfds)
pollfds[n-1] = pollfds[n];
--n_pollfds;
break;
}
}
}
#if 0
/*
* wait_loop_output - wait until there is data available on the
* loopback, for the length of time specified by *timo (indefinite
* if timo is NULL).
*/
void
wait_loop_output(timo)
struct timeval *timo;
{
wait_input(timo);
}
/*
* wait_time - wait for a given length of time or until a
* signal is received.
*/
void
wait_time(timo)
struct timeval *timo;
{
int n;
n = select(0, NULL, NULL, NULL, timo);
if (n < 0 && errno != EINTR)
fatal("select: %m");
}
#endif
/*
* read_packet - get a PPP packet from the serial device.
*/
int
read_packet(buf)
u_char *buf;
{
struct strbuf ctrl, data;
int flags, len;
unsigned char ctrlbuf[64];
for (;;) {
data.maxlen = PPP_MRU + PPP_HDRLEN;
data.buf = (caddr_t) buf;
ctrl.maxlen = sizeof(ctrlbuf);
ctrl.buf = (caddr_t) ctrlbuf;
flags = 0;
len = getmsg(pppfd, &ctrl, &data, &flags);
if (len < 0) {
if (errno = EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return -1;
fatal("Error reading packet: %m");
}
if (ctrl.len <= 0)
return data.len;
/*
* Got a M_PROTO or M_PCPROTO message. Huh?
*/
if (debug)
dbglog("got ctrl msg len=%d", ctrl.len);
}
}
/*
* get_loop_output - get outgoing packets from the ppp device,
* and detect when we want to bring the real link up.
* Return value is 1 if we need to bring up the link, 0 otherwise.
*/
int
get_loop_output()
{
int len;
int rv = 0;
while ((len = read_packet(inpacket_buf)) > 0) {
if (loop_frame(inpacket_buf, len))
rv = 1;
}
return rv;
}
/*
* ppp_send_config - configure the transmit characteristics of
* the ppp interface.
*/
void
ppp_send_config(unit, mtu, asyncmap, pcomp, accomp)
int unit, mtu;
u_int32_t asyncmap;
int pcomp, accomp;
{
int cf[2];
link_mtu = mtu;
if (strioctl(pppfd, PPPIO_MTU, &mtu, sizeof(mtu), 0) < 0) {
if (hungup && errno == ENXIO)
return;
error("Couldn't set MTU: %m");
}
if (strioctl(pppfd, PPPIO_XACCM, &asyncmap, sizeof(asyncmap), 0) < 0) {
error("Couldn't set transmit ACCM: %m");
}
cf[0] = (pcomp? COMP_PROT: 0) + (accomp? COMP_AC: 0);
cf[1] = COMP_PROT | COMP_AC;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
error("Couldn't set prot/AC compression: %m");
}
}
/*
* ppp_set_xaccm - set the extended transmit ACCM for the interface.
*/
void
ppp_set_xaccm(unit, accm)
int unit;
ext_accm accm;
{
if (strioctl(pppfd, PPPIO_XACCM, accm, sizeof(ext_accm), 0) < 0) {
if (!hungup || errno != ENXIO)
warn("Couldn't set extended ACCM: %m");
}
}
/*
* ppp_recv_config - configure the receive-side characteristics of
* the ppp interface.
*/
void
ppp_recv_config(unit, mru, asyncmap, pcomp, accomp)
int unit, mru;
u_int32_t asyncmap;
int pcomp, accomp;
{
int cf[2];
link_mru = mru;
if (strioctl(pppfd, PPPIO_MRU, &mru, sizeof(mru), 0) < 0) {
if (hungup && errno == ENXIO)
return;
error("Couldn't set MRU: %m");
}
if (strioctl(pppfd, PPPIO_RACCM, &asyncmap, sizeof(asyncmap), 0) < 0) {
error("Couldn't set receive ACCM: %m");
}
cf[0] = (pcomp? DECOMP_PROT: 0) + (accomp? DECOMP_AC: 0);
cf[1] = DECOMP_PROT | DECOMP_AC;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
error("Couldn't set prot/AC decompression: %m");
}
}
/*
* ccp_test - ask kernel whether a given compression method
* is acceptable for use.
*
* In Digital UNIX the memory buckets for chunks >16K are not
* primed when the system comes up. That means we're not
* likely to get the memory needed for the compressor on
* the first try. The way we work around this is to have
* the driver spin off a thread to go get the memory for us
* (we can't block at that point in a streams context.)
*
* This code synchronizes with the thread when it has returned
* with the memory we need. The driver will continue to return
* with EAGAIN until the thread comes back. We give up here
* if after 10 attempts in one second we still don't have memory.
* It's up to the driver to not lose track of that memory if
* thread takes too long to return.
*/
int
ccp_test(unit, opt_ptr, opt_len, for_transmit)
int unit, opt_len, for_transmit;
u_char *opt_ptr;
{
struct timeval tval;
int i;
tval.tv_sec = 0;
tval.tv_usec = 100000;
for (i = 0; i < 10; ++i) {
if (strioctl(pppfd, (for_transmit? PPPIO_XCOMP: PPPIO_RCOMP),
opt_ptr, opt_len, 0) >= 0) {
return 1;
}
if (errno != EAGAIN)
break;
wait_time(&tval);
}
if (errno != 0)
error("hard failure trying to get memory for a compressor: %m");
return (errno == ENOSR)? 0: -1;
}
/*
* ccp_flags_set - inform kernel about the current state of CCP.
*/
void
ccp_flags_set(unit, isopen, isup)
int unit, isopen, isup;
{
int cf[2];
cf[0] = (isopen? CCP_ISOPEN: 0) + (isup? CCP_ISUP: 0);
cf[1] = CCP_ISOPEN | CCP_ISUP | CCP_ERROR | CCP_FATALERROR;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (!hungup || errno != ENXIO)
error("Couldn't set kernel CCP state: %m");
}
}
/*
* get_idle_time - return how long the link has been idle.
*/
int
get_idle_time(u, ip)
int u;
struct ppp_idle *ip;
{
return strioctl(pppfd, PPPIO_GIDLE, ip, 0, sizeof(struct ppp_idle)) >= 0;
}
/*
* ccp_fatal_error - returns 1 if decompression was disabled as a
* result of an error detected after decompression of a packet,
* 0 otherwise. This is necessary because of patent nonsense.
*/
int
ccp_fatal_error(unit)
int unit;
{
int cf[2];
cf[0] = cf[1] = 0;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (errno != ENXIO && errno != EINVAL)
error("Couldn't get compression flags: %m");
return 0;
}
return cf[0] & CCP_FATALERROR;
}
/*
* sifvjcomp - config tcp header compression
*/
int
sifvjcomp(u, vjcomp, xcidcomp, xmaxcid)
int u, vjcomp, xcidcomp, xmaxcid;
{
int cf[2];
char maxcid[2];
if (vjcomp) {
maxcid[0] = xcidcomp;
maxcid[1] = 15; /* XXX should be rmaxcid */
if (strioctl(pppfd, PPPIO_VJINIT, maxcid, sizeof(maxcid), 0) < 0) {
error("Couldn't initialize VJ compression: %m");
}
}
cf[0] = (vjcomp? COMP_VJC + DECOMP_VJC: 0) /* XXX this is wrong */
+ (xcidcomp? COMP_VJCCID + DECOMP_VJCCID: 0);
cf[1] = COMP_VJC + DECOMP_VJC + COMP_VJCCID + DECOMP_VJCCID;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (vjcomp)
error("Couldn't enable VJ compression: %m");
}
return 1;
}
/*
* sifup - Config the interface up and enable IP packets to pass.
*/
int
sifup(u)
int u;
{
struct ifreq ifr;
strlcpy(ifr.ifr_name, sizeof(ifr.ifr_name), ifname);
if (ioctl(sockfd, SIOCGIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface up (get): %m");
return 0;
}
ifr.ifr_flags |= IFF_UP;
if (ioctl(sockfd, SIOCSIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface up (set): %m");
return 0;
}
if_is_up = 1;
return 1;
}
/*
* sifdown - Config the interface down and disable IP.
*/
int
sifdown(u)
int u;
{
struct ifreq ifr;
strlcpy(ifr.ifr_name, sizeof(ifr.ifr_name), ifname);
if (ioctl(sockfd, SIOCGIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface down (get): %m");
return 0;
}
if ((ifr.ifr_flags & IFF_UP) != 0) {
ifr.ifr_flags &= ~IFF_UP;
if (ioctl(sockfd, SIOCSIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface down (set): %m");
return 0;
}
}
if_is_up = 0;
return 1;
}
/*
* sifnpmode - Set the mode for handling packets for a given NP.
*/
int
sifnpmode(u, proto, mode)
int u;
int proto;
enum NPmode mode;
{
int npi[2];
npi[0] = proto;
npi[1] = (int) mode;
if (strioctl(pppfd, PPPIO_NPMODE, npi, 2 * sizeof(int), 0) < 0) {
error("ioctl(set NP %d mode to %d): %m", proto, mode);
return 0;
}
return 1;
}
#define INET_ADDR(x) (((struct sockaddr_in *) &(x))->sin_addr.s_addr)
/*
* SET_SA_FAMILY - initialize a struct sockaddr, setting the sa_family field.
*/
#define SET_SA_FAMILY(addr, family) \
BZERO((char *) &(addr), sizeof(addr)); \
addr.sa_family = (family); \
addr.sa_len = sizeof ((addr))
/*
* sifaddr - Config the interface IP addresses and netmask.
*/
int
sifaddr(u, o, h, m)
int u;
u_int32_t o, h, m;
{
struct ifreq ifr;
struct ifaliasreq addreq;
int ret;
ret = 1;
/* flush old address, if any
*/
bzero(&ifr, sizeof (ifr));
strlcpy(ifr.ifr_name, sizeof (ifr.ifr_name), ifname);
SET_SA_FAMILY(ifr.ifr_addr, AF_INET);
((struct sockaddr_in *) &ifr.ifr_addr)->sin_addr.s_addr = o;
if ((ioctl(sockfd, (int)SIOCDIFADDR, (caddr_t) &ifr) < 0)
&& errno != EADDRNOTAVAIL) {
error("ioctl(SIOCDIFADDR): %m");
ret = 0;
}
bzero(&addreq, sizeof (addreq));
strlcpy(addreq.ifra_name, sizeof (addreq.ifra_name), ifname);
SET_SA_FAMILY(addreq.ifra_addr, AF_INET);
SET_SA_FAMILY(addreq.ifra_broadaddr, AF_INET);
((struct sockaddr_in *)&addreq.ifra_addr)->sin_addr.s_addr = o;
((struct sockaddr_in *)&addreq.ifra_broadaddr)->sin_addr.s_addr = h;
if (m != 0) {
((struct sockaddr_in *)&addreq.ifra_mask)->sin_addr.s_addr = m;
addreq.ifra_mask.sa_len = sizeof (struct sockaddr);
info("Setting interface mask to %s\n", ip_ntoa(m));
}
/* install new src/dst and (possibly) netmask
*/
if (ioctl(sockfd, SIOCPIFADDR, &addreq) < 0) {
error("ioctl(SIOCPIFADDR): %m");
ret = 0;
}
ifr.ifr_metric = link_mtu;
if (ioctl(sockfd, SIOCSIPMTU, &ifr) < 0) {
error("Couldn't set IP MTU: %m");
ret = 0;
}
ifaddrs[0] = o;
ifaddrs[1] = h;
return (ret);
}
/*
* cifaddr - Clear the interface IP addresses, and delete routes
* through the interface if possible.
*/
int
cifaddr(u, o, h)
int u;
u_int32_t o, h;
{
struct ifreq ifr;
ifaddrs[0] = 0;
ifaddrs[1] = 0;
bzero(&ifr, sizeof (ifr));
strlcpy(ifr.ifr_name, sizeof (ifr.ifr_name), ifname);
SET_SA_FAMILY(ifr.ifr_addr, AF_INET);
((struct sockaddr_in *) &ifr.ifr_addr)->sin_addr.s_addr = o;
if (ioctl(sockfd, (int)SIOCDIFADDR, (caddr_t) &ifr) < 0) {
error("ioctl(SIOCDIFADDR): %m");
return 0;
}
return 1;
}
/*
* sifdefaultroute - assign a default route through the address given.
*/
int
sifdefaultroute(u, l, g)
int u;
u_int32_t l, g;
{
struct ortentry rt;
BZERO(&rt, sizeof(rt));
SET_SA_FAMILY(rt.rt_dst, AF_INET);
SET_SA_FAMILY(rt.rt_gateway, AF_INET);
((struct sockaddr_in *) &rt.rt_gateway)->sin_addr.s_addr = g;
rt.rt_flags = RTF_GATEWAY;
if (ioctl(sockfd, (int)SIOCADDRT, &rt) < 0) {
error("default route ioctl(SIOCADDRT): %m");
return 0;
}
default_route_gateway = g;
return 1;
}
/*
* cifdefaultroute - delete a default route through the address given.
*/
int
cifdefaultroute(u, l, g)
int u;
u_int32_t l, g;
{
struct ortentry rt;
BZERO(&rt, sizeof(rt));
SET_SA_FAMILY(rt.rt_dst, AF_INET);
SET_SA_FAMILY(rt.rt_gateway, AF_INET);
((struct sockaddr_in *) &rt.rt_gateway)->sin_addr.s_addr = g;
rt.rt_flags = RTF_GATEWAY;
if (ioctl(sockfd, (int)SIOCDELRT, &rt) < 0) {
error("default route ioctl(SIOCDELRT): %m");
return 0;
}
default_route_gateway = 0;
return 1;
}
/*
* sifproxyarp - Make a proxy ARP entry for the peer.
*/
int
sifproxyarp(unit, hisaddr)
int unit;
u_int32_t hisaddr;
{
struct arpreq arpreq;
BZERO(&arpreq, sizeof(arpreq));
/*
* Get the hardware address of an interface on the same subnet
* as our local address.
*/
if (!get_ether_addr(hisaddr, &arpreq.arp_ha)) {
warn("Cannot determine ethernet address for proxy ARP");
return 0;
}
SET_SA_FAMILY(arpreq.arp_pa, AF_INET);
((struct sockaddr_in *) &arpreq.arp_pa)->sin_addr.s_addr = hisaddr;
arpreq.arp_flags = ATF_PERM | ATF_PUBL;
if (ioctl(sockfd, (int)SIOCSARP, (caddr_t)&arpreq) < 0) {
error("ioctl(SIOCSARP): %m");
return 0;
}
proxy_arp_addr = hisaddr;
return 1;
}
/*
* cifproxyarp - Delete the proxy ARP entry for the peer.
*/
int
cifproxyarp(unit, hisaddr)
int unit;
u_int32_t hisaddr;
{
struct arpreq arpreq;
BZERO(&arpreq, sizeof(arpreq));
SET_SA_FAMILY(arpreq.arp_pa, AF_INET);
((struct sockaddr_in *) &arpreq.arp_pa)->sin_addr.s_addr = hisaddr;
if (ioctl(sockfd, (int)SIOCDARP, (caddr_t)&arpreq) < 0) {
error("ioctl(SIOCDARP): %m");
return 0;
}
proxy_arp_addr = 0;
return 1;
}
/*
* get_ether_addr - get the hardware address of an interface on the
* the same subnet as ipaddr.
*/
#define MAX_IFS 32
static int
get_ether_addr(ipaddr, hwaddr)
u_int32_t ipaddr;
struct sockaddr *hwaddr;
{
struct ifreq *ifr, *ifend;
u_int32_t ina, mask;
struct ifreq ifreq;
struct ifconf ifc;
struct ifreq ifs[MAX_IFS];
struct ifdevea ifdevreq;
ifc.ifc_len = sizeof(ifs);
ifc.ifc_req = ifs;
if (ioctl(sockfd, SIOCGIFCONF, &ifc) < 0) {
error("ioctl(SIOCGIFCONF): %m");
return 0;
}
/*
* Scan through looking for an interface with an Internet
* address on the same subnet as `ipaddr'.
*/
ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len);
for (ifr = ifc.ifc_req; ifr < ifend; ifr++) {
if (ifr->ifr_addr.sa_family == AF_INET) {
/*
* Check that the interface is up, and not point-to-point
* or loopback.
*/
strlcpy(ifreq.ifr_name, sizeof(ifreq.ifr_name), ifr->ifr_name);
if (ioctl(sockfd, SIOCGIFFLAGS, &ifreq) < 0)
continue;
if ((ifreq.ifr_flags &
(IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP))
!= (IFF_UP|IFF_BROADCAST))
continue;
/*
* Get its netmask and check that it's on the right subnet.
*/
if (ioctl(sockfd, SIOCGIFNETMASK, &ifreq) < 0)
continue;
ina = ((struct sockaddr_in *) &ifr->ifr_addr)->sin_addr.s_addr;
mask = ((struct sockaddr_in *) &ifreq.ifr_addr)->sin_addr.s_addr;
if ((ipaddr & mask) != (ina & mask))
continue;
break;
} else {
if (ifr->ifr_addr.sa_len > sizeof (ifr->ifr_addr))
ifr = (struct ifreq *)((caddr_t)ifr + (ifr->ifr_addr.sa_len - sizeof (ifr->ifr_addr)));
}
}
if (ifr >= ifend)
return 0;
info("found interface %s for proxy arp", ifr->ifr_name);
strlcpy(ifdevreq.ifr_name, sizeof(ifdevreq.ifr_name), ifr->ifr_name);
if (ioctl(sockfd, (int)SIOCRPHYSADDR, &ifdevreq) < 0) {
perror("ioctl(SIOCRPHYSADDR)");
return(0);
}
hwaddr->sa_family = AF_UNSPEC;
memcpy(hwaddr->sa_data, ifdevreq.current_pa, sizeof(ifdevreq.current_pa));
return 1;
}
#define WTMPFILE "/usr/adm/wtmp"
void
logwtmp(line, name, host)
const char *line, *name, *host;
{
int fd;
struct stat buf;
struct utmp ut;
if ((fd = open(WTMPFILE, O_WRONLY|O_APPEND, 0)) < 0)
return;
if (!fstat(fd, &buf)) {
strlcpy(ut.ut_line, sizeof(ut.ut_line), line);
strlcpy(ut.ut_name, sizeof(ut.ut_name), name);
strlcpy(ut.ut_host, sizeof(ut.ut_host), host);
(void)time(&ut.ut_time);
if (write(fd, (char *)&ut, sizeof(struct utmp)) != sizeof(struct utmp))
(void)ftruncate(fd, buf.st_size);
}
close(fd);
}
/*
* Return user specified netmask, modified by any mask we might determine
* for address `addr' (in network byte order).
* Here we scan through the system's list of interfaces, looking for
* any non-point-to-point interfaces which might appear to be on the same
* network as `addr'. If we find any, we OR in their netmask to the
* user-specified netmask.
*/
u_int32_t
GetMask(addr)
u_int32_t addr;
{
u_int32_t mask, nmask, ina;
struct ifreq *ifr, *ifend, ifreq;
struct ifconf ifc;
addr = ntohl(addr);
if (IN_CLASSA(addr)) /* determine network mask for address class */
nmask = IN_CLASSA_NET;
else if (IN_CLASSB(addr))
nmask = IN_CLASSB_NET;
else
nmask = IN_CLASSC_NET;
/* class D nets are disallowed by bad_ip_adrs */
mask = netmask | htonl(nmask);
/*
* Scan through the system's network interfaces.
*/
ifc.ifc_len = MAX_IFS * sizeof(struct ifreq);
ifc.ifc_req = (struct ifreq *)alloca(ifc.ifc_len);
if (ifc.ifc_req == 0)
return mask;
if (ioctl(sockfd, SIOCGIFCONF, &ifc) < 0) {
warn("Couldn't get system interface list: %m");
return mask;
}
ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len);
for (ifr = ifc.ifc_req; ifr < ifend; ifr++) {
/*
* Check the interface's internet address.
*/
if (ifr->ifr_addr.sa_family == AF_INET) {
ina = INET_ADDR(ifr->ifr_addr);
if ((ntohl(ina) & nmask) != (addr & nmask))
continue;
/*
* Check that the interface is up, and not point-to-point or loopback.
*/
strlcpy(ifreq.ifr_name, sizeof(ifreq.ifr_name), ifr->ifr_name);
if (ioctl(sockfd, SIOCGIFFLAGS, &ifreq) < 0)
continue;
if ((ifreq.ifr_flags & (IFF_UP|IFF_POINTOPOINT|IFF_LOOPBACK))
!= IFF_UP)
continue;
/*
* Get its netmask and OR it into our mask.
*/
if (ioctl(sockfd, SIOCGIFNETMASK, &ifreq) < 0)
continue;
mask |= INET_ADDR(ifreq.ifr_addr);
break;
} else {
if (ifr->ifr_addr.sa_len > sizeof (ifr->ifr_addr))
ifr = (struct ifreq *)((caddr_t)ifr + (ifr->ifr_addr.sa_len - sizeof (ifr->ifr_addr)));
}
}
return mask;
}
/*
* have_route_to - determine if the system has any route to
* a given IP address. `addr' is in network byte order.
* For demand mode to work properly, we have to ignore routes
* through our own interface.
*/
int have_route_to(u_int32_t addr)
{
char buf[sizeof(struct rt_msghdr) + (sizeof(struct sockaddr_in))];
int status;
int s, n;
struct rt_msghdr *rtm;
struct sockaddr_in *sin;
int msglen = sizeof(*rtm) + (sizeof(*sin));
char *cp;
char msg[2048];
rtm = (struct rt_msghdr *)buf;
memset(rtm, 0, msglen);
rtm->rtm_msglen = msglen;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = RTM_GET;
rtm->rtm_addrs = RTA_DST;
/* rtm->rtm_addrs, rtm_flags should be set on output */
sin = (struct sockaddr_in *)((u_char *)rtm + sizeof(*rtm));
sin->sin_len = sizeof(*sin);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = addr;
status = 0;
if ((s = socket(PF_ROUTE, SOCK_RAW, 0)) < 0)
return -1;
if (write(s, (char *)rtm, msglen) != msglen) {
close(s);
return status == ESRCH? 0: -1;
}
n = read(s, msg, 2048);
close(s);
if (n <= 0)
return -1;
rtm = (struct rt_msghdr *) msg;
if (rtm->rtm_version != RTM_VERSION)
return -1;
/* here we try to work out if the route is through our own interface */
cp = (char *)(rtm + 1);
if (rtm->rtm_addrs & RTA_DST) {
struct sockaddr *sa = (struct sockaddr *) cp;
cp = (char *)(((unsigned long)cp + sa->sa_len
+ sizeof(long) - 1) & ~(sizeof(long) - 1));
}
if (rtm->rtm_addrs & RTA_GATEWAY) {
sin = (struct sockaddr_in *) cp;
if (sin->sin_addr.s_addr == ifaddrs[0]
|| sin->sin_addr.s_addr == ifaddrs[1])
return 0; /* route is through our interface */
}
return 1;
}
static int
strioctl(fd, cmd, ptr, ilen, olen)
int fd, cmd, ilen, olen;
void *ptr;
{
struct strioctl str;
str.ic_cmd = cmd;
str.ic_timout = 0;
str.ic_len = ilen;
str.ic_dp = ptr;
if (ioctl(fd, I_STR, &str) == -1)
return -1;
if (str.ic_len != olen)
dbglog("strioctl: expected %d bytes, got %d for cmd %x\n",
olen, str.ic_len, cmd);
return 0;
}
/*
* Use the hostid as part of the random number seed.
*/
int
get_host_seed()
{
return gethostid();
}
/*
* Code for locking/unlocking the serial device.
* This code is derived from chat.c.
*/
#if !defined(HDB) && !defined(SUNOS3)
#define HDB 1 /* ascii lock files are the default */
#endif
#ifndef LOCK_DIR
# if HDB
# define PIDSTRING
# define LOCK_PREFIX "/usr/spool/locks/LCK.."
# else /* HDB */
# define LOCK_PREFIX "/usr/spool/uucp/LCK.."
# endif /* HDB */
#endif /* LOCK_DIR */
static char *lock_file; /* name of lock file created */
/*
* lock - create a lock file for the named device.
*/
int
lock(dev)
char *dev;
{
char hdb_lock_buffer[12];
int fd, pid, n;
char *p;
size_t l;
if ((p = strrchr(dev, '/')) != NULL)
dev = p + 1;
l = strlen(LOCK_PREFIX) + strlen(dev) + 1;
lock_file = malloc(l);
if (lock_file == NULL)
novm("lock file name");
slprintf(lock_file, l, "%s%s", LOCK_PREFIX, dev);
while ((fd = open(lock_file, O_EXCL | O_CREAT | O_RDWR, 0644)) < 0) {
if (errno == EEXIST
&& (fd = open(lock_file, O_RDONLY, 0)) >= 0) {
/* Read the lock file to find out who has the device locked */
#ifdef PIDSTRING
n = read(fd, hdb_lock_buffer, 11);
if (n > 0) {
hdb_lock_buffer[n] = 0;
pid = atoi(hdb_lock_buffer);
}
#else
n = read(fd, &pid, sizeof(pid));
#endif
if (n <= 0) {
error("Can't read pid from lock file %s", lock_file);
close(fd);
} else {
if (kill(pid, 0) == -1 && errno == ESRCH) {
/* pid no longer exists - remove the lock file */
if (unlink(lock_file) == 0) {
close(fd);
notice("Removed stale lock on %s (pid %d)",
dev, pid);
continue;
} else
warn("Couldn't remove stale lock on %s",
dev);
} else
notice("Device %s is locked by pid %d",
dev, pid);
}
close(fd);
} else
error("Can't create lock file %s: %m", lock_file);
free(lock_file);
lock_file = NULL;
return -1;
}
#ifdef PIDSTRING
slprintf(hdb_lock_buffer, sizeof(hdb_lock_buffer), "%10d\n", getpid());
write(fd, hdb_lock_buffer, 11);
#else
pid = getpid();
write(fd, &pid, sizeof pid);
#endif
close(fd);
return 0;
}
/*
* unlock - remove our lockfile
*/
void
unlock()
{
if (lock_file) {
unlink(lock_file);
free(lock_file);
lock_file = NULL;
}
}
int
set_filters(pass, active)
struct bpf_program *pass, *active;
{
return 1;
}
int
bpf_compile(program, buf, optimize)
struct bpf_program *program;
char *buf;
int optimize;
{
return 0;
}
char *
bpf_geterr()
{
return 0;
}
u_int
bpf_filter(pc, p, wirelen, buflen)
struct bpf_insn *pc;
u_char *p;
u_int wirelen;
u_int buflen;
{
return 0;
}