mirror of
https://github.com/php/php-src.git
synced 2025-01-08 20:17:28 +08:00
dfd8237aec
Belatedly, we're porting the respective upstream patch[1].
[1] <60bfb401ad
>
2658 lines
73 KiB
C
2658 lines
73 KiB
C
/*
|
|
* The two pass scaling function is based on:
|
|
* Filtered Image Rescaling
|
|
* Based on Gems III
|
|
* - Schumacher general filtered image rescaling
|
|
* (pp. 414-424)
|
|
* by Dale Schumacher
|
|
*
|
|
* Additional changes by Ray Gardener, Daylon Graphics Ltd.
|
|
* December 4, 1999
|
|
*
|
|
* Ported to libgd by Pierre Joye. Support for multiple channels
|
|
* added (argb for now).
|
|
*
|
|
* Initial sources code is avaibable in the Gems Source Code Packages:
|
|
* http://www.acm.org/pubs/tog/GraphicsGems/GGemsIII.tar.gz
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Summary:
|
|
|
|
- Horizontal filter contributions are calculated on the fly,
|
|
as each column is mapped from src to dst image. This lets
|
|
us omit having to allocate a temporary full horizontal stretch
|
|
of the src image.
|
|
|
|
- If none of the src pixels within a sampling region differ,
|
|
then the output pixel is forced to equal (any of) the source pixel.
|
|
This ensures that filters do not corrupt areas of constant color.
|
|
|
|
- Filter weight contribution results, after summing, are
|
|
rounded to the nearest pixel color value instead of
|
|
being casted to ILubyte (usually an int or char). Otherwise,
|
|
artifacting occurs.
|
|
|
|
*/
|
|
|
|
/*
|
|
Additional functions are available for simple rotation or up/downscaling.
|
|
downscaling using the fixed point implementations are usually much faster
|
|
than the existing gdImageCopyResampled while having a similar or better
|
|
quality.
|
|
|
|
For image rotations, the optimized versions have a lazy antialiasing for
|
|
the edges of the images. For a much better antialiased result, the affine
|
|
function is recommended.
|
|
*/
|
|
|
|
/*
|
|
TODO:
|
|
- Optimize pixel accesses and loops once we have continuous buffer
|
|
- Add scale support for a portion only of an image (equivalent of copyresized/resampled)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include <gd.h>
|
|
#include "gdhelpers.h"
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma optimize("t", on)
|
|
# include <emmintrin.h>
|
|
#endif
|
|
|
|
#ifndef HAVE_FLOORF
|
|
# define HAVE_FLOORF 0
|
|
#endif
|
|
#if HAVE_FLOORF == 0
|
|
# ifndef floorf
|
|
/* float floorf(float x);*/
|
|
# define floorf(x) ((float)(floor(x)))
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef MIN
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
#endif
|
|
#define MIN3(a,b,c) ((a)<(b)?(MIN(a,c)):(MIN(b,c)))
|
|
#ifndef MAX
|
|
#define MAX(a,b) ((a)<(b)?(b):(a))
|
|
#endif
|
|
#define MAX3(a,b,c) ((a)<(b)?(MAX(b,c)):(MAX(a,c)))
|
|
|
|
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
|
|
|
|
/* only used here, let do a generic fixed point integers later if required by other
|
|
part of GD */
|
|
typedef long gdFixed;
|
|
/* Integer to fixed point */
|
|
#define gd_itofx(x) ((x) << 8)
|
|
|
|
/* Float to fixed point */
|
|
#define gd_ftofx(x) (long)((x) * 256)
|
|
|
|
/* Double to fixed point */
|
|
#define gd_dtofx(x) (long)((x) * 256)
|
|
|
|
/* Fixed point to integer */
|
|
#define gd_fxtoi(x) ((x) >> 8)
|
|
|
|
/* Fixed point to float */
|
|
# define gd_fxtof(x) ((float)(x) / 256)
|
|
|
|
/* Fixed point to double */
|
|
#define gd_fxtod(x) ((double)(x) / 256)
|
|
|
|
/* Multiply a fixed by a fixed */
|
|
#define gd_mulfx(x,y) (((x) * (y)) >> 8)
|
|
|
|
/* Divide a fixed by a fixed */
|
|
#define gd_divfx(x,y) (((x) << 8) / (y))
|
|
|
|
typedef struct
|
|
{
|
|
double *Weights; /* Normalized weights of neighboring pixels */
|
|
int Left,Right; /* Bounds of source pixels window */
|
|
} ContributionType; /* Contirbution information for a single pixel */
|
|
|
|
typedef struct
|
|
{
|
|
ContributionType *ContribRow; /* Row (or column) of contribution weights */
|
|
unsigned int WindowSize, /* Filter window size (of affecting source pixels) */
|
|
LineLength; /* Length of line (no. or rows / cols) */
|
|
} LineContribType;
|
|
|
|
/* Each core filter has its own radius */
|
|
#define DEFAULT_FILTER_BICUBIC 3.0
|
|
#define DEFAULT_FILTER_BOX 0.5
|
|
#define DEFAULT_FILTER_GENERALIZED_CUBIC 0.5
|
|
#define DEFAULT_FILTER_RADIUS 1.0
|
|
#define DEFAULT_LANCZOS8_RADIUS 8.0
|
|
#define DEFAULT_LANCZOS3_RADIUS 3.0
|
|
#define DEFAULT_HERMITE_RADIUS 1.0
|
|
#define DEFAULT_BOX_RADIUS 0.5
|
|
#define DEFAULT_TRIANGLE_RADIUS 1.0
|
|
#define DEFAULT_BELL_RADIUS 1.5
|
|
#define DEFAULT_CUBICSPLINE_RADIUS 2.0
|
|
#define DEFAULT_MITCHELL_RADIUS 2.0
|
|
#define DEFAULT_COSINE_RADIUS 1.0
|
|
#define DEFAULT_CATMULLROM_RADIUS 2.0
|
|
#define DEFAULT_QUADRATIC_RADIUS 1.5
|
|
#define DEFAULT_QUADRATICBSPLINE_RADIUS 1.5
|
|
#define DEFAULT_CUBICCONVOLUTION_RADIUS 3.0
|
|
#define DEFAULT_GAUSSIAN_RADIUS 1.0
|
|
#define DEFAULT_HANNING_RADIUS 1.0
|
|
#define DEFAULT_HAMMING_RADIUS 1.0
|
|
#define DEFAULT_SINC_RADIUS 1.0
|
|
#define DEFAULT_WELSH_RADIUS 1.0
|
|
|
|
enum GD_RESIZE_FILTER_TYPE{
|
|
FILTER_DEFAULT = 0,
|
|
FILTER_BELL,
|
|
FILTER_BESSEL,
|
|
FILTER_BLACKMAN,
|
|
FILTER_BOX,
|
|
FILTER_BSPLINE,
|
|
FILTER_CATMULLROM,
|
|
FILTER_COSINE,
|
|
FILTER_CUBICCONVOLUTION,
|
|
FILTER_CUBICSPLINE,
|
|
FILTER_HERMITE,
|
|
FILTER_LANCZOS3,
|
|
FILTER_LANCZOS8,
|
|
FILTER_MITCHELL,
|
|
FILTER_QUADRATIC,
|
|
FILTER_QUADRATICBSPLINE,
|
|
FILTER_TRIANGLE,
|
|
FILTER_GAUSSIAN,
|
|
FILTER_HANNING,
|
|
FILTER_HAMMING,
|
|
FILTER_SINC,
|
|
FILTER_WELSH,
|
|
|
|
FILTER_CALLBACK = 999
|
|
};
|
|
|
|
typedef enum GD_RESIZE_FILTER_TYPE gdResizeFilterType;
|
|
|
|
static double KernelBessel_J1(const double x)
|
|
{
|
|
double p, q;
|
|
|
|
register long i;
|
|
|
|
static const double
|
|
Pone[] =
|
|
{
|
|
0.581199354001606143928050809e+21,
|
|
-0.6672106568924916298020941484e+20,
|
|
0.2316433580634002297931815435e+19,
|
|
-0.3588817569910106050743641413e+17,
|
|
0.2908795263834775409737601689e+15,
|
|
-0.1322983480332126453125473247e+13,
|
|
0.3413234182301700539091292655e+10,
|
|
-0.4695753530642995859767162166e+7,
|
|
0.270112271089232341485679099e+4
|
|
},
|
|
Qone[] =
|
|
{
|
|
0.11623987080032122878585294e+22,
|
|
0.1185770712190320999837113348e+20,
|
|
0.6092061398917521746105196863e+17,
|
|
0.2081661221307607351240184229e+15,
|
|
0.5243710262167649715406728642e+12,
|
|
0.1013863514358673989967045588e+10,
|
|
0.1501793594998585505921097578e+7,
|
|
0.1606931573481487801970916749e+4,
|
|
0.1e+1
|
|
};
|
|
|
|
p = Pone[8];
|
|
q = Qone[8];
|
|
for (i=7; i >= 0; i--)
|
|
{
|
|
p = p*x*x+Pone[i];
|
|
q = q*x*x+Qone[i];
|
|
}
|
|
return (double)(p/q);
|
|
}
|
|
|
|
static double KernelBessel_P1(const double x)
|
|
{
|
|
double p, q;
|
|
|
|
register long i;
|
|
|
|
static const double
|
|
Pone[] =
|
|
{
|
|
0.352246649133679798341724373e+5,
|
|
0.62758845247161281269005675e+5,
|
|
0.313539631109159574238669888e+5,
|
|
0.49854832060594338434500455e+4,
|
|
0.2111529182853962382105718e+3,
|
|
0.12571716929145341558495e+1
|
|
},
|
|
Qone[] =
|
|
{
|
|
0.352246649133679798068390431e+5,
|
|
0.626943469593560511888833731e+5,
|
|
0.312404063819041039923015703e+5,
|
|
0.4930396490181088979386097e+4,
|
|
0.2030775189134759322293574e+3,
|
|
0.1e+1
|
|
};
|
|
|
|
p = Pone[5];
|
|
q = Qone[5];
|
|
for (i=4; i >= 0; i--)
|
|
{
|
|
p = p*(8.0/x)*(8.0/x)+Pone[i];
|
|
q = q*(8.0/x)*(8.0/x)+Qone[i];
|
|
}
|
|
return (double)(p/q);
|
|
}
|
|
|
|
static double KernelBessel_Q1(const double x)
|
|
{
|
|
double p, q;
|
|
|
|
register long i;
|
|
|
|
static const double
|
|
Pone[] =
|
|
{
|
|
0.3511751914303552822533318e+3,
|
|
0.7210391804904475039280863e+3,
|
|
0.4259873011654442389886993e+3,
|
|
0.831898957673850827325226e+2,
|
|
0.45681716295512267064405e+1,
|
|
0.3532840052740123642735e-1
|
|
},
|
|
Qone[] =
|
|
{
|
|
0.74917374171809127714519505e+4,
|
|
0.154141773392650970499848051e+5,
|
|
0.91522317015169922705904727e+4,
|
|
0.18111867005523513506724158e+4,
|
|
0.1038187585462133728776636e+3,
|
|
0.1e+1
|
|
};
|
|
|
|
p = Pone[5];
|
|
q = Qone[5];
|
|
for (i=4; i >= 0; i--)
|
|
{
|
|
p = p*(8.0/x)*(8.0/x)+Pone[i];
|
|
q = q*(8.0/x)*(8.0/x)+Qone[i];
|
|
}
|
|
return (double)(p/q);
|
|
}
|
|
|
|
static double KernelBessel_Order1(double x)
|
|
{
|
|
double p, q;
|
|
|
|
if (x == 0.0)
|
|
return (0.0f);
|
|
p = x;
|
|
if (x < 0.0)
|
|
x=(-x);
|
|
if (x < 8.0)
|
|
return (p*KernelBessel_J1(x));
|
|
q = (double)sqrt(2.0f/(M_PI*x))*(double)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
|
|
(-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
|
|
if (p < 0.0f)
|
|
q = (-q);
|
|
return (q);
|
|
}
|
|
|
|
static double filter_bessel(const double x)
|
|
{
|
|
if (x == 0.0f)
|
|
return (double)(M_PI/4.0f);
|
|
return (KernelBessel_Order1((double)M_PI*x)/(2.0f*x));
|
|
}
|
|
|
|
|
|
static double filter_blackman(const double x)
|
|
{
|
|
return (0.42f+0.5f*(double)cos(M_PI*x)+0.08f*(double)cos(2.0f*M_PI*x));
|
|
}
|
|
|
|
/**
|
|
* Bicubic interpolation kernel (a=-1):
|
|
\verbatim
|
|
/
|
|
| 1-2|t|**2+|t|**3 , if |t| < 1
|
|
h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
|
|
| 0 , otherwise
|
|
\
|
|
\endverbatim
|
|
* ***bd*** 2.2004
|
|
*/
|
|
static double filter_bicubic(const double t)
|
|
{
|
|
const double abs_t = (double)fabs(t);
|
|
const double abs_t_sq = abs_t * abs_t;
|
|
if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
|
|
if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Generalized cubic kernel (for a=-1 it is the same as BicubicKernel):
|
|
\verbatim
|
|
/
|
|
| (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
|
|
h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
|
|
| 0 , otherwise
|
|
\
|
|
\endverbatim
|
|
* Often used values for a are -1 and -1/2.
|
|
*/
|
|
static double filter_generalized_cubic(const double t)
|
|
{
|
|
const double a = -DEFAULT_FILTER_GENERALIZED_CUBIC;
|
|
double abs_t = (double)fabs(t);
|
|
double abs_t_sq = abs_t * abs_t;
|
|
if (abs_t < 1) return (a + 2) * abs_t_sq * abs_t - (a + 3) * abs_t_sq + 1;
|
|
if (abs_t < 2) return a * abs_t_sq * abs_t - 5 * a * abs_t_sq + 8 * a * abs_t - 4 * a;
|
|
return 0;
|
|
}
|
|
|
|
/* CubicSpline filter, default radius 2 */
|
|
static double filter_cubic_spline(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
|
|
if (x < 1.0 ) {
|
|
const double x2 = x*x;
|
|
|
|
return (0.5 * x2 * x - x2 + 2.0 / 3.0);
|
|
}
|
|
if (x < 2.0) {
|
|
return (pow(2.0 - x, 3.0)/6.0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* CubicConvolution filter, default radius 3 */
|
|
static double filter_cubic_convolution(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
const double x2 = x1 * x1;
|
|
const double x2_x = x2 * x;
|
|
|
|
if (x <= 1.0) return ((4.0 / 3.0)* x2_x - (7.0 / 3.0) * x2 + 1.0);
|
|
if (x <= 2.0) return (- (7.0 / 12.0) * x2_x + 3 * x2 - (59.0 / 12.0) * x + 2.5);
|
|
if (x <= 3.0) return ( (1.0/12.0) * x2_x - (2.0 / 3.0) * x2 + 1.75 * x - 1.5);
|
|
return 0;
|
|
}
|
|
|
|
static double filter_box(double x) {
|
|
if (x < - DEFAULT_FILTER_BOX)
|
|
return 0.0f;
|
|
if (x < DEFAULT_FILTER_BOX)
|
|
return 1.0f;
|
|
return 0.0f;
|
|
}
|
|
|
|
static double filter_catmullrom(const double x)
|
|
{
|
|
if (x < -2.0)
|
|
return(0.0f);
|
|
if (x < -1.0)
|
|
return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
|
|
if (x < 0.0)
|
|
return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
|
|
if (x < 1.0)
|
|
return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
|
|
if (x < 2.0)
|
|
return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
|
|
return(0.0f);
|
|
}
|
|
|
|
static double filter_filter(double t)
|
|
{
|
|
/* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
|
|
if(t < 0.0) t = -t;
|
|
if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
|
|
return(0.0);
|
|
}
|
|
|
|
|
|
/* Lanczos8 filter, default radius 8 */
|
|
static double filter_lanczos8(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
#define R DEFAULT_LANCZOS8_RADIUS
|
|
|
|
if ( x == 0.0) return 1;
|
|
|
|
if ( x < R) {
|
|
return R * sin(x*M_PI) * sin(x * M_PI/ R) / (x * M_PI * x * M_PI);
|
|
}
|
|
return 0.0;
|
|
#undef R
|
|
}
|
|
|
|
|
|
/* Lanczos3 filter, default radius 3 */
|
|
static double filter_lanczos3(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
#define R DEFAULT_LANCZOS3_RADIUS
|
|
|
|
if ( x == 0.0) return 1;
|
|
|
|
if ( x < R)
|
|
{
|
|
return R * sin(x*M_PI) * sin(x * M_PI / R) / (x * M_PI * x * M_PI);
|
|
}
|
|
return 0.0;
|
|
#undef R
|
|
}
|
|
|
|
/* Hermite filter, default radius 1 */
|
|
static double filter_hermite(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
|
|
if (x < 1.0) return ((2.0 * x - 3) * x * x + 1.0 );
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
/* Trangle filter, default radius 1 */
|
|
static double filter_triangle(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
if (x < 1.0) return (1.0 - x);
|
|
return 0.0;
|
|
}
|
|
|
|
/* Bell filter, default radius 1.5 */
|
|
static double filter_bell(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
|
|
if (x < 0.5) return (0.75 - x*x);
|
|
if (x < 1.5) return (0.5 * pow(x - 1.5, 2.0));
|
|
return 0.0;
|
|
}
|
|
|
|
/* Mitchell filter, default radius 2.0 */
|
|
static double filter_mitchell(const double x)
|
|
{
|
|
#define KM_B (1.0f/3.0f)
|
|
#define KM_C (1.0f/3.0f)
|
|
#define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
|
|
#define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
|
|
#define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
|
#define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
|
|
#define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
|
|
#define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
|
|
#define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
|
|
|
|
if (x < -2.0)
|
|
return(0.0f);
|
|
if (x < -1.0)
|
|
return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
|
|
if (x < 0.0f)
|
|
return(KM_P0+x*x*(KM_P2-x*KM_P3));
|
|
if (x < 1.0f)
|
|
return(KM_P0+x*x*(KM_P2+x*KM_P3));
|
|
if (x < 2.0f)
|
|
return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
|
|
return(0.0f);
|
|
}
|
|
|
|
|
|
|
|
/* Cosine filter, default radius 1 */
|
|
static double filter_cosine(const double x)
|
|
{
|
|
if ((x >= -1.0) && (x <= 1.0)) return ((cos(x * M_PI) + 1.0)/2.0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Quadratic filter, default radius 1.5 */
|
|
static double filter_quadratic(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
|
|
if (x <= 0.5) return (- 2.0 * x * x + 1);
|
|
if (x <= 1.5) return (x * x - 2.5* x + 1.5);
|
|
return 0.0;
|
|
}
|
|
|
|
static double filter_bspline(const double x)
|
|
{
|
|
if (x>2.0f) {
|
|
return 0.0f;
|
|
} else {
|
|
double a, b, c, d;
|
|
/* Was calculated anyway cause the "if((x-1.0f) < 0)" */
|
|
const double xm1 = x - 1.0f;
|
|
const double xp1 = x + 1.0f;
|
|
const double xp2 = x + 2.0f;
|
|
|
|
if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2;
|
|
if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
|
|
if (x <= 0) c = 0.0f; else c = x*x*x;
|
|
if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
|
|
|
|
return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
|
|
}
|
|
}
|
|
|
|
/* QuadraticBSpline filter, default radius 1.5 */
|
|
static double filter_quadratic_bspline(const double x1)
|
|
{
|
|
const double x = x1 < 0.0 ? -x1 : x1;
|
|
|
|
if (x <= 0.5) return (- x * x + 0.75);
|
|
if (x <= 1.5) return (0.5 * x * x - 1.5 * x + 1.125);
|
|
return 0.0;
|
|
}
|
|
|
|
static double filter_gaussian(const double x)
|
|
{
|
|
/* return(exp((double) (-2.0 * x * x)) * sqrt(2.0 / M_PI)); */
|
|
return (double)(exp(-2.0f * x * x) * 0.79788456080287f);
|
|
}
|
|
|
|
static double filter_hanning(const double x)
|
|
{
|
|
/* A Cosine windowing function */
|
|
return(0.5 + 0.5 * cos(M_PI * x));
|
|
}
|
|
|
|
static double filter_hamming(const double x)
|
|
{
|
|
/* should be
|
|
(0.54+0.46*cos(M_PI*(double) x));
|
|
but this approximation is sufficient */
|
|
if (x < -1.0f)
|
|
return 0.0f;
|
|
if (x < 0.0f)
|
|
return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
|
|
if (x < 1.0f)
|
|
return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
|
|
return 0.0f;
|
|
}
|
|
|
|
static double filter_power(const double x)
|
|
{
|
|
const double a = 2.0f;
|
|
if (fabs(x)>1) return 0.0f;
|
|
return (1.0f - (double)fabs(pow(x,a)));
|
|
}
|
|
|
|
static double filter_sinc(const double x)
|
|
{
|
|
/* X-scaled Sinc(x) function. */
|
|
if (x == 0.0) return(1.0);
|
|
return (sin(M_PI * (double) x) / (M_PI * (double) x));
|
|
}
|
|
|
|
static double filter_welsh(const double x)
|
|
{
|
|
/* Welsh parabolic windowing filter */
|
|
if (x < 1.0)
|
|
return(1 - x*x);
|
|
return(0.0);
|
|
}
|
|
|
|
|
|
/* Copied from upstream's libgd */
|
|
static inline int _color_blend (const int dst, const int src)
|
|
{
|
|
const int src_alpha = gdTrueColorGetAlpha(src);
|
|
|
|
if( src_alpha == gdAlphaOpaque ) {
|
|
return src;
|
|
} else {
|
|
const int dst_alpha = gdTrueColorGetAlpha(dst);
|
|
|
|
if( src_alpha == gdAlphaTransparent ) return dst;
|
|
if( dst_alpha == gdAlphaTransparent ) {
|
|
return src;
|
|
} else {
|
|
register int alpha, red, green, blue;
|
|
const int src_weight = gdAlphaTransparent - src_alpha;
|
|
const int dst_weight = (gdAlphaTransparent - dst_alpha) * src_alpha / gdAlphaMax;
|
|
const int tot_weight = src_weight + dst_weight;
|
|
|
|
alpha = src_alpha * dst_alpha / gdAlphaMax;
|
|
|
|
red = (gdTrueColorGetRed(src) * src_weight
|
|
+ gdTrueColorGetRed(dst) * dst_weight) / tot_weight;
|
|
green = (gdTrueColorGetGreen(src) * src_weight
|
|
+ gdTrueColorGetGreen(dst) * dst_weight) / tot_weight;
|
|
blue = (gdTrueColorGetBlue(src) * src_weight
|
|
+ gdTrueColorGetBlue(dst) * dst_weight) / tot_weight;
|
|
|
|
return ((alpha << 24) + (red << 16) + (green << 8) + blue);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int _setEdgePixel(const gdImagePtr src, unsigned int x, unsigned int y, gdFixed coverage, const int bgColor)
|
|
{
|
|
const gdFixed f_127 = gd_itofx(127);
|
|
register int c = src->tpixels[y][x];
|
|
c = c | (( (int) (gd_fxtof(gd_mulfx(coverage, f_127)) + 50.5f)) << 24);
|
|
return _color_blend(bgColor, c);
|
|
}
|
|
|
|
static inline int getPixelOverflowTC(gdImagePtr im, const int x, const int y, const int bgColor)
|
|
{
|
|
if (gdImageBoundsSafe(im, x, y)) {
|
|
const int c = im->tpixels[y][x];
|
|
if (c == im->transparent) {
|
|
return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
|
|
}
|
|
return c;
|
|
} else {
|
|
register int border = 0;
|
|
|
|
if (y < im->cy1) {
|
|
border = im->tpixels[0][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (y < im->cy1) {
|
|
border = im->tpixels[0][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (y > im->cy2) {
|
|
if (x >= im->cx1 && x <= im->cx1) {
|
|
border = im->tpixels[im->cy2][x];
|
|
goto processborder;
|
|
} else {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
}
|
|
}
|
|
|
|
/* y is bound safe at this point */
|
|
if (x < im->cx1) {
|
|
border = im->tpixels[y][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (x > im->cx2) {
|
|
border = im->tpixels[y][im->cx2];
|
|
}
|
|
|
|
processborder:
|
|
if (border == im->transparent) {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
} else{
|
|
return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define colorIndex2RGBA(c) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(c)])
|
|
#define colorIndex2RGBcustomA(c, a) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(a)])
|
|
static inline int getPixelOverflowPalette(gdImagePtr im, const int x, const int y, const int bgColor)
|
|
{
|
|
if (gdImageBoundsSafe(im, x, y)) {
|
|
const int c = im->pixels[y][x];
|
|
if (c == im->transparent) {
|
|
return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
|
|
}
|
|
return colorIndex2RGBA(c);
|
|
} else {
|
|
register int border = 0;
|
|
if (y < im->cy1) {
|
|
border = gdImageGetPixel(im, im->cx1, 0);
|
|
goto processborder;
|
|
}
|
|
|
|
if (y < im->cy1) {
|
|
border = gdImageGetPixel(im, im->cx1, 0);
|
|
goto processborder;
|
|
}
|
|
|
|
if (y > im->cy2) {
|
|
if (x >= im->cx1 && x <= im->cx1) {
|
|
border = gdImageGetPixel(im, x, im->cy2);
|
|
goto processborder;
|
|
} else {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
}
|
|
}
|
|
|
|
/* y is bound safe at this point */
|
|
if (x < im->cx1) {
|
|
border = gdImageGetPixel(im, im->cx1, y);
|
|
goto processborder;
|
|
}
|
|
|
|
if (x > im->cx2) {
|
|
border = gdImageGetPixel(im, im->cx2, y);
|
|
}
|
|
|
|
processborder:
|
|
if (border == im->transparent) {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
} else{
|
|
return colorIndex2RGBcustomA(border, 127);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int getPixelInterpolateWeight(gdImagePtr im, const double x, const double y, const int bgColor)
|
|
{
|
|
/* Closest pixel <= (xf,yf) */
|
|
int sx = (int)(x);
|
|
int sy = (int)(y);
|
|
const double xf = x - (double)sx;
|
|
const double yf = y - (double)sy;
|
|
const double nxf = (double) 1.0 - xf;
|
|
const double nyf = (double) 1.0 - yf;
|
|
const double m1 = xf * yf;
|
|
const double m2 = nxf * yf;
|
|
const double m3 = xf * nyf;
|
|
const double m4 = nxf * nyf;
|
|
|
|
/* get color values of neighbouring pixels */
|
|
const int c1 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy, bgColor) : getPixelOverflowPalette(im, sx, sy, bgColor);
|
|
const int c2 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy, bgColor) : getPixelOverflowPalette(im, sx - 1, sy, bgColor);
|
|
const int c3 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy - 1, bgColor) : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
|
|
const int c4 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy - 1, bgColor) : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
|
|
int r, g, b, a;
|
|
|
|
if (x < 0) sx--;
|
|
if (y < 0) sy--;
|
|
|
|
/* component-wise summing-up of color values */
|
|
if (im->trueColor) {
|
|
r = (int)(m1*gdTrueColorGetRed(c1) + m2*gdTrueColorGetRed(c2) + m3*gdTrueColorGetRed(c3) + m4*gdTrueColorGetRed(c4));
|
|
g = (int)(m1*gdTrueColorGetGreen(c1) + m2*gdTrueColorGetGreen(c2) + m3*gdTrueColorGetGreen(c3) + m4*gdTrueColorGetGreen(c4));
|
|
b = (int)(m1*gdTrueColorGetBlue(c1) + m2*gdTrueColorGetBlue(c2) + m3*gdTrueColorGetBlue(c3) + m4*gdTrueColorGetBlue(c4));
|
|
a = (int)(m1*gdTrueColorGetAlpha(c1) + m2*gdTrueColorGetAlpha(c2) + m3*gdTrueColorGetAlpha(c3) + m4*gdTrueColorGetAlpha(c4));
|
|
} else {
|
|
r = (int)(m1*im->red[(c1)] + m2*im->red[(c2)] + m3*im->red[(c3)] + m4*im->red[(c4)]);
|
|
g = (int)(m1*im->green[(c1)] + m2*im->green[(c2)] + m3*im->green[(c3)] + m4*im->green[(c4)]);
|
|
b = (int)(m1*im->blue[(c1)] + m2*im->blue[(c2)] + m3*im->blue[(c3)] + m4*im->blue[(c4)]);
|
|
a = (int)(m1*im->alpha[(c1)] + m2*im->alpha[(c2)] + m3*im->alpha[(c3)] + m4*im->alpha[(c4)]);
|
|
}
|
|
|
|
r = CLAMP(r, 0, 255);
|
|
g = CLAMP(g, 0, 255);
|
|
b = CLAMP(b, 0, 255);
|
|
a = CLAMP(a, 0, gdAlphaMax);
|
|
return gdTrueColorAlpha(r, g, b, a);
|
|
}
|
|
|
|
/**
|
|
* Function: getPixelInterpolated
|
|
* Returns the interpolated color value using the default interpolation
|
|
* method. The returned color is always in the ARGB format (truecolor).
|
|
*
|
|
* Parameters:
|
|
* im - Image to set the default interpolation method
|
|
* y - X value of the ideal position
|
|
* y - Y value of the ideal position
|
|
* method - Interpolation method <gdInterpolationMethod>
|
|
*
|
|
* Returns:
|
|
* GD_TRUE if the affine is rectilinear or GD_FALSE
|
|
*
|
|
* See also:
|
|
* <gdSetInterpolationMethod>
|
|
*/
|
|
int getPixelInterpolated(gdImagePtr im, const double x, const double y, const int bgColor)
|
|
{
|
|
const int xi=(int)((x) < 0 ? x - 1: x);
|
|
const int yi=(int)((y) < 0 ? y - 1: y);
|
|
int yii;
|
|
int i;
|
|
double kernel, kernel_cache_y;
|
|
double kernel_x[12], kernel_y[4];
|
|
double new_r = 0.0f, new_g = 0.0f, new_b = 0.0f, new_a = 0.0f;
|
|
|
|
/* These methods use special implementations */
|
|
if (im->interpolation_id == GD_BILINEAR_FIXED || im->interpolation_id == GD_BICUBIC_FIXED || im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
|
|
return -1;
|
|
}
|
|
|
|
if (im->interpolation_id == GD_WEIGHTED4) {
|
|
return getPixelInterpolateWeight(im, x, y, bgColor);
|
|
}
|
|
|
|
if (im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
|
|
if (im->trueColor == 1) {
|
|
return getPixelOverflowTC(im, xi, yi, bgColor);
|
|
} else {
|
|
return getPixelOverflowPalette(im, xi, yi, bgColor);
|
|
}
|
|
}
|
|
if (im->interpolation) {
|
|
for (i=0; i<4; i++) {
|
|
kernel_x[i] = (double) im->interpolation((double)(xi+i-1-x));
|
|
kernel_y[i] = (double) im->interpolation((double)(yi+i-1-y));
|
|
}
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* TODO: use the known fast rgba multiplication implementation once
|
|
* the new formats are in place
|
|
*/
|
|
for (yii = yi-1; yii < yi+3; yii++) {
|
|
int xii;
|
|
kernel_cache_y = kernel_y[yii-(yi-1)];
|
|
if (im->trueColor) {
|
|
for (xii=xi-1; xii<xi+3; xii++) {
|
|
const int rgbs = getPixelOverflowTC(im, xii, yii, bgColor);
|
|
|
|
kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
|
|
new_r += kernel * gdTrueColorGetRed(rgbs);
|
|
new_g += kernel * gdTrueColorGetGreen(rgbs);
|
|
new_b += kernel * gdTrueColorGetBlue(rgbs);
|
|
new_a += kernel * gdTrueColorGetAlpha(rgbs);
|
|
}
|
|
} else {
|
|
for (xii=xi-1; xii<xi+3; xii++) {
|
|
const int rgbs = getPixelOverflowPalette(im, xii, yii, bgColor);
|
|
|
|
kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
|
|
new_r += kernel * gdTrueColorGetRed(rgbs);
|
|
new_g += kernel * gdTrueColorGetGreen(rgbs);
|
|
new_b += kernel * gdTrueColorGetBlue(rgbs);
|
|
new_a += kernel * gdTrueColorGetAlpha(rgbs);
|
|
}
|
|
}
|
|
}
|
|
|
|
new_r = CLAMP(new_r, 0, 255);
|
|
new_g = CLAMP(new_g, 0, 255);
|
|
new_b = CLAMP(new_b, 0, 255);
|
|
new_a = CLAMP(new_a, 0, gdAlphaMax);
|
|
|
|
return gdTrueColorAlpha(((int)new_r), ((int)new_g), ((int)new_b), ((int)new_a));
|
|
}
|
|
|
|
static inline LineContribType * _gdContributionsAlloc(unsigned int line_length, unsigned int windows_size)
|
|
{
|
|
unsigned int u = 0;
|
|
LineContribType *res;
|
|
size_t weights_size;
|
|
|
|
if (overflow2(windows_size, sizeof(double))) {
|
|
return NULL;
|
|
} else {
|
|
weights_size = windows_size * sizeof(double);
|
|
}
|
|
res = (LineContribType *) gdMalloc(sizeof(LineContribType));
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
res->WindowSize = windows_size;
|
|
res->LineLength = line_length;
|
|
if (overflow2(line_length, sizeof(ContributionType))) {
|
|
gdFree(res);
|
|
return NULL;
|
|
}
|
|
res->ContribRow = (ContributionType *) gdMalloc(line_length * sizeof(ContributionType));
|
|
if (res->ContribRow == NULL) {
|
|
gdFree(res);
|
|
return NULL;
|
|
}
|
|
for (u = 0 ; u < line_length ; u++) {
|
|
res->ContribRow[u].Weights = (double *) gdMalloc(weights_size);
|
|
if (res->ContribRow[u].Weights == NULL) {
|
|
unsigned int i;
|
|
for (i=0;i<u;i++) {
|
|
gdFree(res->ContribRow[i].Weights);
|
|
}
|
|
gdFree(res->ContribRow);
|
|
gdFree(res);
|
|
return NULL;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline void _gdContributionsFree(LineContribType * p)
|
|
{
|
|
unsigned int u;
|
|
for (u = 0; u < p->LineLength; u++) {
|
|
gdFree(p->ContribRow[u].Weights);
|
|
}
|
|
gdFree(p->ContribRow);
|
|
gdFree(p);
|
|
}
|
|
|
|
static inline LineContribType *_gdContributionsCalc(unsigned int line_size, unsigned int src_size, double scale_d, const interpolation_method pFilter)
|
|
{
|
|
double width_d;
|
|
double scale_f_d = 1.0;
|
|
const double filter_width_d = DEFAULT_BOX_RADIUS;
|
|
int windows_size;
|
|
unsigned int u;
|
|
LineContribType *res;
|
|
int overflow_error = 0;
|
|
|
|
if (scale_d < 1.0) {
|
|
width_d = filter_width_d / scale_d;
|
|
scale_f_d = scale_d;
|
|
} else {
|
|
width_d= filter_width_d;
|
|
}
|
|
|
|
windows_size = 2 * (int)ceil(width_d) + 1;
|
|
res = _gdContributionsAlloc(line_size, windows_size);
|
|
if (res == NULL) {
|
|
return NULL;
|
|
}
|
|
for (u = 0; u < line_size; u++) {
|
|
const double dCenter = (double)u / scale_d;
|
|
/* get the significant edge points affecting the pixel */
|
|
register int iLeft = MAX(0, (int)floor (dCenter - width_d));
|
|
int iRight = MIN((int)ceil(dCenter + width_d), (int)src_size - 1);
|
|
double dTotalWeight = 0.0;
|
|
int iSrc;
|
|
|
|
/* Cut edge points to fit in filter window in case of spill-off */
|
|
if (iRight - iLeft + 1 > windows_size) {
|
|
if (iLeft < ((int)src_size - 1 / 2)) {
|
|
iLeft++;
|
|
} else {
|
|
iRight--;
|
|
}
|
|
}
|
|
|
|
res->ContribRow[u].Left = iLeft;
|
|
res->ContribRow[u].Right = iRight;
|
|
|
|
for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
|
|
dTotalWeight += (res->ContribRow[u].Weights[iSrc-iLeft] = scale_f_d * (*pFilter)(scale_f_d * (dCenter - (double)iSrc)));
|
|
}
|
|
|
|
if (dTotalWeight < 0.0) {
|
|
_gdContributionsFree(res);
|
|
return NULL;
|
|
}
|
|
|
|
if (dTotalWeight > 0.0) {
|
|
for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
|
|
res->ContribRow[u].Weights[iSrc-iLeft] /= dTotalWeight;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline void _gdScaleRow(gdImagePtr pSrc, unsigned int src_width, gdImagePtr dst, unsigned int dst_width, unsigned int row, LineContribType *contrib)
|
|
{
|
|
int *p_src_row = pSrc->tpixels[row];
|
|
int *p_dst_row = dst->tpixels[row];
|
|
unsigned int x;
|
|
|
|
for (x = 0; x < dst_width - 1; x++) {
|
|
register unsigned char r = 0, g = 0, b = 0, a = 0;
|
|
const int left = contrib->ContribRow[x].Left;
|
|
const int right = contrib->ContribRow[x].Right;
|
|
int i;
|
|
|
|
/* Accumulate each channel */
|
|
for (i = left; i <= right; i++) {
|
|
const int left_channel = i - left;
|
|
r += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetRed(p_src_row[i])));
|
|
g += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetGreen(p_src_row[i])));
|
|
b += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetBlue(p_src_row[i])));
|
|
a += (unsigned char)(contrib->ContribRow[x].Weights[left_channel] * (double)(gdTrueColorGetAlpha(p_src_row[i])));
|
|
}
|
|
p_dst_row[x] = gdTrueColorAlpha(r, g, b, a);
|
|
}
|
|
}
|
|
|
|
static inline void _gdScaleHoriz(gdImagePtr pSrc, unsigned int src_width, unsigned int src_height, gdImagePtr pDst, unsigned int dst_width, unsigned int dst_height)
|
|
{
|
|
unsigned int u;
|
|
LineContribType * contrib;
|
|
|
|
/* same width, just copy it */
|
|
if (dst_width == src_width) {
|
|
unsigned int y;
|
|
for (y = 0; y < src_height - 1; ++y) {
|
|
memcpy(pDst->tpixels[y], pSrc->tpixels[y], src_width);
|
|
}
|
|
}
|
|
|
|
contrib = _gdContributionsCalc(dst_width, src_width, (double)dst_width / (double)src_width, pSrc->interpolation);
|
|
if (contrib == NULL) {
|
|
return;
|
|
}
|
|
/* Scale each row */
|
|
for (u = 0; u < dst_height - 1; u++) {
|
|
_gdScaleRow(pSrc, src_width, pDst, dst_width, u, contrib);
|
|
}
|
|
_gdContributionsFree (contrib);
|
|
}
|
|
|
|
static inline void _gdScaleCol (gdImagePtr pSrc, unsigned int src_width, gdImagePtr pRes, unsigned int dst_width, unsigned int dst_height, unsigned int uCol, LineContribType *contrib)
|
|
{
|
|
unsigned int y;
|
|
for (y = 0; y < dst_height - 1; y++) {
|
|
register unsigned char r = 0, g = 0, b = 0, a = 0;
|
|
const int iLeft = contrib->ContribRow[y].Left;
|
|
const int iRight = contrib->ContribRow[y].Right;
|
|
int i;
|
|
int *row = pRes->tpixels[y];
|
|
|
|
/* Accumulate each channel */
|
|
for (i = iLeft; i <= iRight; i++) {
|
|
const int pCurSrc = pSrc->tpixels[i][uCol];
|
|
const int i_iLeft = i - iLeft;
|
|
r += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetRed(pCurSrc)));
|
|
g += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetGreen(pCurSrc)));
|
|
b += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetBlue(pCurSrc)));
|
|
a += (unsigned char)(contrib->ContribRow[y].Weights[i_iLeft] * (double)(gdTrueColorGetAlpha(pCurSrc)));
|
|
}
|
|
pRes->tpixels[y][uCol] = gdTrueColorAlpha(r, g, b, a);
|
|
}
|
|
}
|
|
|
|
static inline void _gdScaleVert (const gdImagePtr pSrc, const unsigned int src_width, const unsigned int src_height, const gdImagePtr pDst, const unsigned int dst_width, const unsigned int dst_height)
|
|
{
|
|
unsigned int u;
|
|
LineContribType * contrib;
|
|
|
|
/* same height, copy it */
|
|
if (src_height == dst_height) {
|
|
unsigned int y;
|
|
for (y = 0; y < src_height - 1; ++y) {
|
|
memcpy(pDst->tpixels[y], pSrc->tpixels[y], src_width);
|
|
}
|
|
}
|
|
|
|
contrib = _gdContributionsCalc(dst_height, src_height, (double)(dst_height) / (double)(src_height), pSrc->interpolation);
|
|
if (contrib == NULL) {
|
|
return;
|
|
}
|
|
/* scale each column */
|
|
for (u = 0; u < dst_width - 1; u++) {
|
|
_gdScaleCol(pSrc, src_width, pDst, dst_width, dst_height, u, contrib);
|
|
}
|
|
_gdContributionsFree(contrib);
|
|
}
|
|
|
|
gdImagePtr gdImageScaleTwoPass(const gdImagePtr src, const unsigned int src_width, const unsigned int src_height, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
gdImagePtr tmp_im;
|
|
gdImagePtr dst;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Convert to truecolor if it isn't; this code requires it. */
|
|
if (!src->trueColor) {
|
|
gdImagePaletteToTrueColor(src);
|
|
}
|
|
|
|
tmp_im = gdImageCreateTrueColor(new_width, src_height);
|
|
if (tmp_im == NULL) {
|
|
return NULL;
|
|
}
|
|
gdImageSetInterpolationMethod(tmp_im, src->interpolation_id);
|
|
_gdScaleHoriz(src, src_width, src_height, tmp_im, new_width, src_height);
|
|
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
if (dst == NULL) {
|
|
gdImageDestroy(tmp_im);
|
|
return NULL;
|
|
}
|
|
gdImageSetInterpolationMethod(dst, src->interpolation_id);
|
|
_gdScaleVert(tmp_im, new_width, src_height, dst, new_width, new_height);
|
|
gdImageDestroy(tmp_im);
|
|
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr Scale(const gdImagePtr src, const unsigned int src_width, const unsigned int src_height, const gdImagePtr dst, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
gdImagePtr tmp_im;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
tmp_im = gdImageCreateTrueColor(new_width, src_height);
|
|
if (tmp_im == NULL) {
|
|
return NULL;
|
|
}
|
|
gdImageSetInterpolationMethod(tmp_im, src->interpolation_id);
|
|
|
|
_gdScaleHoriz(src, src_width, src_height, tmp_im, new_width, src_height);
|
|
_gdScaleVert(tmp_im, new_width, src_height, dst, new_width, new_height);
|
|
|
|
gdImageDestroy(tmp_im);
|
|
return dst;
|
|
}
|
|
|
|
/*
|
|
BilinearFixed, BicubicFixed and nearest implementations are rewamped versions of the implementation in CBitmapEx
|
|
http://www.codeproject.com/Articles/29121/CBitmapEx-Free-C-Bitmap-Manipulation-Class
|
|
Integer only implementation, good to have for common usages like pre scale very large
|
|
images before using another interpolation methods for the last step.
|
|
*/
|
|
gdImagePtr gdImageScaleNearestNeighbour(gdImagePtr im, const unsigned int width, const unsigned int height)
|
|
{
|
|
const unsigned long new_width = MAX(1, width);
|
|
const unsigned long new_height = MAX(1, height);
|
|
const float dx = (float)im->sx / (float)new_width;
|
|
const float dy = (float)im->sy / (float)new_height;
|
|
const gdFixed f_dx = gd_ftofx(dx);
|
|
const gdFixed f_dy = gd_ftofx(dy);
|
|
|
|
gdImagePtr dst_img;
|
|
unsigned long dst_offset_x;
|
|
unsigned long dst_offset_y = 0;
|
|
unsigned int i;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
dst_img = gdImageCreateTrueColor(new_width, new_height);
|
|
|
|
if (dst_img == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0; i<new_height; i++) {
|
|
unsigned int j;
|
|
dst_offset_x = 0;
|
|
if (im->trueColor) {
|
|
for (j=0; j<new_width; j++) {
|
|
const gdFixed f_i = gd_itofx(i);
|
|
const gdFixed f_j = gd_itofx(j);
|
|
const gdFixed f_a = gd_mulfx(f_i, f_dy);
|
|
const gdFixed f_b = gd_mulfx(f_j, f_dx);
|
|
const long m = gd_fxtoi(f_a);
|
|
const long n = gd_fxtoi(f_b);
|
|
|
|
dst_img->tpixels[dst_offset_y][dst_offset_x++] = im->tpixels[m][n];
|
|
}
|
|
} else {
|
|
for (j=0; j<new_width; j++) {
|
|
const gdFixed f_i = gd_itofx(i);
|
|
const gdFixed f_j = gd_itofx(j);
|
|
const gdFixed f_a = gd_mulfx(f_i, f_dy);
|
|
const gdFixed f_b = gd_mulfx(f_j, f_dx);
|
|
const long m = gd_fxtoi(f_a);
|
|
const long n = gd_fxtoi(f_b);
|
|
|
|
dst_img->tpixels[dst_offset_y][dst_offset_x++] = colorIndex2RGBA(im->pixels[m][n]);
|
|
}
|
|
}
|
|
dst_offset_y++;
|
|
}
|
|
return dst_img;
|
|
}
|
|
|
|
static inline int getPixelOverflowColorTC(gdImagePtr im, const int x, const int y, const int color)
|
|
{
|
|
if (gdImageBoundsSafe(im, x, y)) {
|
|
const int c = im->tpixels[y][x];
|
|
if (c == im->transparent) {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
}
|
|
return c;
|
|
} else {
|
|
register int border = 0;
|
|
if (y < im->cy1) {
|
|
border = im->tpixels[0][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (y < im->cy1) {
|
|
border = im->tpixels[0][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (y > im->cy2) {
|
|
if (x >= im->cx1 && x <= im->cx1) {
|
|
border = im->tpixels[im->cy2][x];
|
|
goto processborder;
|
|
} else {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
}
|
|
}
|
|
|
|
/* y is bound safe at this point */
|
|
if (x < im->cx1) {
|
|
border = im->tpixels[y][im->cx1];
|
|
goto processborder;
|
|
}
|
|
|
|
if (x > im->cx2) {
|
|
border = im->tpixels[y][im->cx2];
|
|
}
|
|
|
|
processborder:
|
|
if (border == im->transparent) {
|
|
return gdTrueColorAlpha(0, 0, 0, 127);
|
|
} else{
|
|
return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
|
|
}
|
|
}
|
|
}
|
|
|
|
static gdImagePtr gdImageScaleBilinearPalette(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
long _width = MAX(1, new_width);
|
|
long _height = MAX(1, new_height);
|
|
float dx = (float)gdImageSX(im) / (float)_width;
|
|
float dy = (float)gdImageSY(im) / (float)_height;
|
|
gdFixed f_dx = gd_ftofx(dx);
|
|
gdFixed f_dy = gd_ftofx(dy);
|
|
gdFixed f_1 = gd_itofx(1);
|
|
|
|
int dst_offset_h;
|
|
int dst_offset_v = 0;
|
|
long i;
|
|
gdImagePtr new_img;
|
|
const int transparent = im->transparent;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
new_img = gdImageCreateTrueColor(new_width, new_height);
|
|
if (new_img == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (transparent < 0) {
|
|
/* uninitialized */
|
|
new_img->transparent = -1;
|
|
} else {
|
|
new_img->transparent = gdTrueColorAlpha(im->red[transparent], im->green[transparent], im->blue[transparent], im->alpha[transparent]);
|
|
}
|
|
|
|
for (i=0; i < _height; i++) {
|
|
long j;
|
|
const gdFixed f_i = gd_itofx(i);
|
|
const gdFixed f_a = gd_mulfx(f_i, f_dy);
|
|
register long m = gd_fxtoi(f_a);
|
|
|
|
dst_offset_h = 0;
|
|
|
|
for (j=0; j < _width; j++) {
|
|
/* Update bitmap */
|
|
gdFixed f_j = gd_itofx(j);
|
|
gdFixed f_b = gd_mulfx(f_j, f_dx);
|
|
|
|
const long n = gd_fxtoi(f_b);
|
|
gdFixed f_f = f_a - gd_itofx(m);
|
|
gdFixed f_g = f_b - gd_itofx(n);
|
|
|
|
const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
|
|
const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
|
|
const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
|
|
const gdFixed f_w4 = gd_mulfx(f_f, f_g);
|
|
unsigned int pixel1;
|
|
unsigned int pixel2;
|
|
unsigned int pixel3;
|
|
unsigned int pixel4;
|
|
register gdFixed f_r1, f_r2, f_r3, f_r4,
|
|
f_g1, f_g2, f_g3, f_g4,
|
|
f_b1, f_b2, f_b3, f_b4,
|
|
f_a1, f_a2, f_a3, f_a4;
|
|
|
|
/* zero for the background color, nothig gets outside anyway */
|
|
pixel1 = getPixelOverflowPalette(im, n, m, 0);
|
|
pixel2 = getPixelOverflowPalette(im, n + 1, m, 0);
|
|
pixel3 = getPixelOverflowPalette(im, n, m + 1, 0);
|
|
pixel4 = getPixelOverflowPalette(im, n + 1, m + 1, 0);
|
|
|
|
f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
|
|
f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
|
|
f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
|
|
f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
|
|
f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
|
|
f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
|
|
f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
|
|
f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
|
|
f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
|
|
f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
|
|
f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
|
|
f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
|
|
f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
|
|
f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
|
|
f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
|
|
f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
|
|
|
|
{
|
|
const unsigned char red = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
|
|
const unsigned char green = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
|
|
const unsigned char blue = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
|
|
const unsigned char alpha = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
|
|
|
|
new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
|
|
}
|
|
|
|
dst_offset_h++;
|
|
}
|
|
|
|
dst_offset_v++;
|
|
}
|
|
return new_img;
|
|
}
|
|
|
|
static gdImagePtr gdImageScaleBilinearTC(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
long dst_w = MAX(1, new_width);
|
|
long dst_h = MAX(1, new_height);
|
|
float dx = (float)gdImageSX(im) / (float)dst_w;
|
|
float dy = (float)gdImageSY(im) / (float)dst_h;
|
|
gdFixed f_dx = gd_ftofx(dx);
|
|
gdFixed f_dy = gd_ftofx(dy);
|
|
gdFixed f_1 = gd_itofx(1);
|
|
|
|
int dst_offset_h;
|
|
int dst_offset_v = 0;
|
|
int dwSrcTotalOffset;
|
|
long i;
|
|
gdImagePtr new_img;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
new_img = gdImageCreateTrueColor(new_width, new_height);
|
|
if (!new_img){
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0; i < dst_h; i++) {
|
|
long j;
|
|
dst_offset_h = 0;
|
|
for (j=0; j < dst_w; j++) {
|
|
/* Update bitmap */
|
|
gdFixed f_i = gd_itofx(i);
|
|
gdFixed f_j = gd_itofx(j);
|
|
gdFixed f_a = gd_mulfx(f_i, f_dy);
|
|
gdFixed f_b = gd_mulfx(f_j, f_dx);
|
|
const gdFixed m = gd_fxtoi(f_a);
|
|
const gdFixed n = gd_fxtoi(f_b);
|
|
gdFixed f_f = f_a - gd_itofx(m);
|
|
gdFixed f_g = f_b - gd_itofx(n);
|
|
|
|
const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
|
|
const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
|
|
const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
|
|
const gdFixed f_w4 = gd_mulfx(f_f, f_g);
|
|
unsigned int pixel1;
|
|
unsigned int pixel2;
|
|
unsigned int pixel3;
|
|
unsigned int pixel4;
|
|
register gdFixed f_r1, f_r2, f_r3, f_r4,
|
|
f_g1, f_g2, f_g3, f_g4,
|
|
f_b1, f_b2, f_b3, f_b4,
|
|
f_a1, f_a2, f_a3, f_a4;
|
|
dwSrcTotalOffset = m + n;
|
|
/* 0 for bgColor, nothing gets outside anyway */
|
|
pixel1 = getPixelOverflowTC(im, n, m, 0);
|
|
pixel2 = getPixelOverflowTC(im, n + 1, m, 0);
|
|
pixel3 = getPixelOverflowTC(im, n, m + 1, 0);
|
|
pixel4 = getPixelOverflowTC(im, n + 1, m + 1, 0);
|
|
|
|
f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
|
|
f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
|
|
f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
|
|
f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
|
|
f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
|
|
f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
|
|
f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
|
|
f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
|
|
f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
|
|
f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
|
|
f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
|
|
f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
|
|
f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
|
|
f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
|
|
f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
|
|
f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
|
|
{
|
|
const unsigned char red = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
|
|
const unsigned char green = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
|
|
const unsigned char blue = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
|
|
const unsigned char alpha = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
|
|
|
|
new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
|
|
}
|
|
|
|
dst_offset_h++;
|
|
}
|
|
|
|
dst_offset_v++;
|
|
}
|
|
return new_img;
|
|
}
|
|
|
|
gdImagePtr gdImageScaleBilinear(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
if (im->trueColor) {
|
|
return gdImageScaleBilinearTC(im, new_width, new_height);
|
|
} else {
|
|
return gdImageScaleBilinearPalette(im, new_width, new_height);
|
|
}
|
|
}
|
|
|
|
gdImagePtr gdImageScaleBicubicFixed(gdImagePtr src, const unsigned int width, const unsigned int height)
|
|
{
|
|
const long new_width = MAX(1, width);
|
|
const long new_height = MAX(1, height);
|
|
const int src_w = gdImageSX(src);
|
|
const int src_h = gdImageSY(src);
|
|
const gdFixed f_dx = gd_ftofx((float)src_w / (float)new_width);
|
|
const gdFixed f_dy = gd_ftofx((float)src_h / (float)new_height);
|
|
const gdFixed f_1 = gd_itofx(1);
|
|
const gdFixed f_2 = gd_itofx(2);
|
|
const gdFixed f_4 = gd_itofx(4);
|
|
const gdFixed f_6 = gd_itofx(6);
|
|
const gdFixed f_gamma = gd_ftofx(1.04f);
|
|
gdImagePtr dst;
|
|
|
|
unsigned int dst_offset_x;
|
|
unsigned int dst_offset_y = 0;
|
|
long i;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* impact perf a bit, but not that much. Implementation for palette
|
|
images can be done at a later point.
|
|
*/
|
|
if (src->trueColor == 0) {
|
|
gdImagePaletteToTrueColor(src);
|
|
}
|
|
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
if (!dst) {
|
|
return NULL;
|
|
}
|
|
|
|
dst->saveAlphaFlag = 1;
|
|
|
|
for (i=0; i < new_height; i++) {
|
|
long j;
|
|
dst_offset_x = 0;
|
|
|
|
for (j=0; j < new_width; j++) {
|
|
const gdFixed f_a = gd_mulfx(gd_itofx(i), f_dy);
|
|
const gdFixed f_b = gd_mulfx(gd_itofx(j), f_dx);
|
|
const long m = gd_fxtoi(f_a);
|
|
const long n = gd_fxtoi(f_b);
|
|
const gdFixed f_f = f_a - gd_itofx(m);
|
|
const gdFixed f_g = f_b - gd_itofx(n);
|
|
unsigned int src_offset_x[16], src_offset_y[16];
|
|
long k;
|
|
register gdFixed f_red = 0, f_green = 0, f_blue = 0, f_alpha = 0;
|
|
unsigned char red, green, blue, alpha = 0;
|
|
int *dst_row = dst->tpixels[dst_offset_y];
|
|
|
|
if ((m < 1) || (n < 1)) {
|
|
src_offset_x[0] = n;
|
|
src_offset_y[0] = m;
|
|
} else {
|
|
src_offset_x[0] = n - 1;
|
|
src_offset_y[0] = m;
|
|
}
|
|
|
|
src_offset_x[1] = n;
|
|
src_offset_y[1] = m;
|
|
|
|
if ((m < 1) || (n >= src_w - 1)) {
|
|
src_offset_x[2] = n;
|
|
src_offset_y[2] = m;
|
|
} else {
|
|
src_offset_x[2] = n + 1;
|
|
src_offset_y[2] = m;
|
|
}
|
|
|
|
if ((m < 1) || (n >= src_w - 2)) {
|
|
src_offset_x[3] = n;
|
|
src_offset_y[3] = m;
|
|
} else {
|
|
src_offset_x[3] = n + 1 + 1;
|
|
src_offset_y[3] = m;
|
|
}
|
|
|
|
if (n < 1) {
|
|
src_offset_x[4] = n;
|
|
src_offset_y[4] = m;
|
|
} else {
|
|
src_offset_x[4] = n - 1;
|
|
src_offset_y[4] = m;
|
|
}
|
|
|
|
src_offset_x[5] = n;
|
|
src_offset_y[5] = m;
|
|
if (n >= src_w-1) {
|
|
src_offset_x[6] = n;
|
|
src_offset_y[6] = m;
|
|
} else {
|
|
src_offset_x[6] = n + 1;
|
|
src_offset_y[6] = m;
|
|
}
|
|
|
|
if (n >= src_w - 2) {
|
|
src_offset_x[7] = n;
|
|
src_offset_y[7] = m;
|
|
} else {
|
|
src_offset_x[7] = n + 1 + 1;
|
|
src_offset_y[7] = m;
|
|
}
|
|
|
|
if ((m >= src_h - 1) || (n < 1)) {
|
|
src_offset_x[8] = n;
|
|
src_offset_y[8] = m;
|
|
} else {
|
|
src_offset_x[8] = n - 1;
|
|
src_offset_y[8] = m;
|
|
}
|
|
|
|
src_offset_x[9] = n;
|
|
src_offset_y[9] = m;
|
|
|
|
if ((m >= src_h-1) || (n >= src_w-1)) {
|
|
src_offset_x[10] = n;
|
|
src_offset_y[10] = m;
|
|
} else {
|
|
src_offset_x[10] = n + 1;
|
|
src_offset_y[10] = m;
|
|
}
|
|
|
|
if ((m >= src_h - 1) || (n >= src_w - 2)) {
|
|
src_offset_x[11] = n;
|
|
src_offset_y[11] = m;
|
|
} else {
|
|
src_offset_x[11] = n + 1 + 1;
|
|
src_offset_y[11] = m;
|
|
}
|
|
|
|
if ((m >= src_h - 2) || (n < 1)) {
|
|
src_offset_x[12] = n;
|
|
src_offset_y[12] = m;
|
|
} else {
|
|
src_offset_x[12] = n - 1;
|
|
src_offset_y[12] = m;
|
|
}
|
|
|
|
src_offset_x[13] = n;
|
|
src_offset_y[13] = m;
|
|
|
|
if ((m >= src_h - 2) || (n >= src_w - 1)) {
|
|
src_offset_x[14] = n;
|
|
src_offset_y[14] = m;
|
|
} else {
|
|
src_offset_x[14] = n + 1;
|
|
src_offset_y[14] = m;
|
|
}
|
|
|
|
if ((m >= src_h - 2) || (n >= src_w - 2)) {
|
|
src_offset_x[15] = n;
|
|
src_offset_y[15] = m;
|
|
} else {
|
|
src_offset_x[15] = n + 1 + 1;
|
|
src_offset_y[15] = m;
|
|
}
|
|
|
|
for (k = -1; k < 3; k++) {
|
|
const gdFixed f = gd_itofx(k)-f_f;
|
|
const gdFixed f_fm1 = f - f_1;
|
|
const gdFixed f_fp1 = f + f_1;
|
|
const gdFixed f_fp2 = f + f_2;
|
|
register gdFixed f_a = 0, f_b = 0, f_d = 0, f_c = 0;
|
|
register gdFixed f_RY;
|
|
int l;
|
|
|
|
if (f_fp2 > 0) f_a = gd_mulfx(f_fp2, gd_mulfx(f_fp2,f_fp2));
|
|
if (f_fp1 > 0) f_b = gd_mulfx(f_fp1, gd_mulfx(f_fp1,f_fp1));
|
|
if (f > 0) f_c = gd_mulfx(f, gd_mulfx(f,f));
|
|
if (f_fm1 > 0) f_d = gd_mulfx(f_fm1, gd_mulfx(f_fm1,f_fm1));
|
|
|
|
f_RY = gd_divfx((f_a - gd_mulfx(f_4,f_b) + gd_mulfx(f_6,f_c) - gd_mulfx(f_4,f_d)),f_6);
|
|
|
|
for (l = -1; l < 3; l++) {
|
|
const gdFixed f = gd_itofx(l) - f_g;
|
|
const gdFixed f_fm1 = f - f_1;
|
|
const gdFixed f_fp1 = f + f_1;
|
|
const gdFixed f_fp2 = f + f_2;
|
|
register gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
|
|
register gdFixed f_RX, f_R, f_rs, f_gs, f_bs, f_ba;
|
|
register int c;
|
|
const int _k = ((k+1)*4) + (l+1);
|
|
|
|
if (f_fp2 > 0) f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
|
|
|
|
if (f_fp1 > 0) f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
|
|
|
|
if (f > 0) f_c = gd_mulfx(f,gd_mulfx(f,f));
|
|
|
|
if (f_fm1 > 0) f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
|
|
|
|
f_RX = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
|
|
f_R = gd_mulfx(f_RY,f_RX);
|
|
|
|
c = src->tpixels[*(src_offset_y + _k)][*(src_offset_x + _k)];
|
|
f_rs = gd_itofx(gdTrueColorGetRed(c));
|
|
f_gs = gd_itofx(gdTrueColorGetGreen(c));
|
|
f_bs = gd_itofx(gdTrueColorGetBlue(c));
|
|
f_ba = gd_itofx(gdTrueColorGetAlpha(c));
|
|
|
|
f_red += gd_mulfx(f_rs,f_R);
|
|
f_green += gd_mulfx(f_gs,f_R);
|
|
f_blue += gd_mulfx(f_bs,f_R);
|
|
f_alpha += gd_mulfx(f_ba,f_R);
|
|
}
|
|
}
|
|
|
|
red = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red, f_gamma)), 0, 255);
|
|
green = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gamma)), 0, 255);
|
|
blue = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue, f_gamma)), 0, 255);
|
|
alpha = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha, f_gamma)), 0, 127);
|
|
|
|
*(dst_row + dst_offset_x) = gdTrueColorAlpha(red, green, blue, alpha);
|
|
|
|
dst_offset_x++;
|
|
}
|
|
dst_offset_y++;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr gdImageScale(const gdImagePtr src, const unsigned int new_width, const unsigned int new_height)
|
|
{
|
|
gdImagePtr im_scaled = NULL;
|
|
|
|
if (src == NULL || src->interpolation_id < 0 || src->interpolation_id > GD_METHOD_COUNT) {
|
|
return NULL;
|
|
}
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
switch (src->interpolation_id) {
|
|
/*Special cases, optimized implementations */
|
|
case GD_NEAREST_NEIGHBOUR:
|
|
im_scaled = gdImageScaleNearestNeighbour(src, new_width, new_height);
|
|
break;
|
|
|
|
case GD_BILINEAR_FIXED:
|
|
im_scaled = gdImageScaleBilinear(src, new_width, new_height);
|
|
break;
|
|
|
|
case GD_BICUBIC_FIXED:
|
|
im_scaled = gdImageScaleBicubicFixed(src, new_width, new_height);
|
|
break;
|
|
|
|
/* generic */
|
|
default:
|
|
if (src->interpolation == NULL) {
|
|
return NULL;
|
|
}
|
|
im_scaled = gdImageScaleTwoPass(src, src->sx, src->sy, new_width, new_height);
|
|
break;
|
|
}
|
|
return im_scaled;
|
|
}
|
|
|
|
static int gdRotatedImageSize(gdImagePtr src, const float angle, gdRectPtr bbox)
|
|
{
|
|
gdRect src_area;
|
|
double m[6];
|
|
|
|
gdAffineRotate(m, angle);
|
|
src_area.x = 0;
|
|
src_area.y = 0;
|
|
src_area.width = gdImageSX(src);
|
|
src_area.height = gdImageSY(src);
|
|
if (gdTransformAffineBoundingBox(&src_area, m, bbox) != GD_TRUE) {
|
|
return GD_FALSE;
|
|
}
|
|
|
|
return GD_TRUE;
|
|
}
|
|
|
|
gdImagePtr gdImageRotateNearestNeighbour(gdImagePtr src, const float degrees, const int bgColor)
|
|
{
|
|
float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
|
|
const int src_w = gdImageSX(src);
|
|
const int src_h = gdImageSY(src);
|
|
const gdFixed f_0_5 = gd_ftofx(0.5f);
|
|
const gdFixed f_H = gd_itofx(src_h/2);
|
|
const gdFixed f_W = gd_itofx(src_w/2);
|
|
const gdFixed f_cos = gd_ftofx(cos(-_angle));
|
|
const gdFixed f_sin = gd_ftofx(sin(-_angle));
|
|
|
|
unsigned int dst_offset_x;
|
|
unsigned int dst_offset_y = 0;
|
|
unsigned int i;
|
|
gdImagePtr dst;
|
|
gdRect bbox;
|
|
int new_height, new_width;
|
|
|
|
gdRotatedImageSize(src, degrees, &bbox);
|
|
new_width = bbox.width;
|
|
new_height = bbox.height;
|
|
|
|
if (new_width == 0 || new_height == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
if (!dst) {
|
|
return NULL;
|
|
}
|
|
dst->saveAlphaFlag = 1;
|
|
for (i = 0; i < new_height; i++) {
|
|
unsigned int j;
|
|
dst_offset_x = 0;
|
|
for (j = 0; j < new_width; j++) {
|
|
gdFixed f_i = gd_itofx((int)i - (int)new_height/2);
|
|
gdFixed f_j = gd_itofx((int)j - (int)new_width/2);
|
|
gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
|
|
gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
|
|
long m = gd_fxtoi(f_m);
|
|
long n = gd_fxtoi(f_n);
|
|
|
|
if ((m > 0) && (m < src_h-1) && (n > 0) && (n < src_w-1)) {
|
|
if (dst_offset_y < new_height) {
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = src->tpixels[m][n];
|
|
}
|
|
} else {
|
|
if (dst_offset_y < new_height) {
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
|
|
}
|
|
}
|
|
}
|
|
dst_offset_y++;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr gdImageRotateGeneric(gdImagePtr src, const float degrees, const int bgColor)
|
|
{
|
|
float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
|
|
const int angle_rounded = (int)floor(degrees * 100);
|
|
const int src_w = gdImageSX(src);
|
|
const int src_h = gdImageSY(src);
|
|
const gdFixed f_0_5 = gd_ftofx(0.5f);
|
|
const gdFixed f_H = gd_itofx(src_h/2);
|
|
const gdFixed f_W = gd_itofx(src_w/2);
|
|
const gdFixed f_cos = gd_ftofx(cos(-_angle));
|
|
const gdFixed f_sin = gd_ftofx(sin(-_angle));
|
|
|
|
unsigned int dst_offset_x;
|
|
unsigned int dst_offset_y = 0;
|
|
unsigned int i;
|
|
gdImagePtr dst;
|
|
int new_width, new_height;
|
|
gdRect bbox;
|
|
|
|
const gdFixed f_slop_y = f_sin;
|
|
const gdFixed f_slop_x = f_cos;
|
|
const gdFixed f_slop = f_slop_x > 0 && f_slop_y > 0 ?
|
|
(f_slop_x > f_slop_y ? gd_divfx(f_slop_y, f_slop_x) : gd_divfx(f_slop_x, f_slop_y))
|
|
: 0;
|
|
|
|
|
|
if (bgColor < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
gdRotatedImageSize(src, degrees, &bbox);
|
|
new_width = bbox.width;
|
|
new_height = bbox.height;
|
|
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
if (!dst) {
|
|
return NULL;
|
|
}
|
|
dst->saveAlphaFlag = 1;
|
|
|
|
for (i = 0; i < new_height; i++) {
|
|
unsigned int j;
|
|
dst_offset_x = 0;
|
|
for (j = 0; j < new_width; j++) {
|
|
gdFixed f_i = gd_itofx((int)i - (int)new_height/ 2);
|
|
gdFixed f_j = gd_itofx((int)j - (int)new_width / 2);
|
|
gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
|
|
gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
|
|
long m = gd_fxtoi(f_m);
|
|
long n = gd_fxtoi(f_n);
|
|
|
|
if ((n <= 0) || (m <= 0) || (m >= src_h) || (n >= src_w)) {
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
|
|
} else if ((n <= 1) || (m <= 1) || (m >= src_h - 1) || (n >= src_w - 1)) {
|
|
gdFixed f_127 = gd_itofx(127);
|
|
register int c = getPixelInterpolated(src, n, m, bgColor);
|
|
c = c | (( gdTrueColorGetAlpha(c) + ((int)(127* gd_fxtof(f_slop)))) << 24);
|
|
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = _color_blend(bgColor, c);
|
|
} else {
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = getPixelInterpolated(src, n, m, bgColor);
|
|
}
|
|
}
|
|
dst_offset_y++;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr gdImageRotateBilinear(gdImagePtr src, const float degrees, const int bgColor)
|
|
{
|
|
float _angle = (float)((- degrees / 180.0f) * M_PI);
|
|
const unsigned int src_w = gdImageSX(src);
|
|
const unsigned int src_h = gdImageSY(src);
|
|
unsigned int new_width, new_height;
|
|
const gdFixed f_0_5 = gd_ftofx(0.5f);
|
|
const gdFixed f_H = gd_itofx(src_h/2);
|
|
const gdFixed f_W = gd_itofx(src_w/2);
|
|
const gdFixed f_cos = gd_ftofx(cos(-_angle));
|
|
const gdFixed f_sin = gd_ftofx(sin(-_angle));
|
|
const gdFixed f_1 = gd_itofx(1);
|
|
unsigned int i;
|
|
unsigned int dst_offset_x;
|
|
unsigned int dst_offset_y = 0;
|
|
unsigned int src_offset_x, src_offset_y;
|
|
gdImagePtr dst;
|
|
gdRect bbox;
|
|
|
|
gdRotatedImageSize(src, degrees, &bbox);
|
|
|
|
new_width = bbox.width;
|
|
new_height = bbox.height;
|
|
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
if (dst == NULL) {
|
|
return NULL;
|
|
}
|
|
dst->saveAlphaFlag = 1;
|
|
|
|
for (i = 0; i < new_height; i++) {
|
|
unsigned int j;
|
|
dst_offset_x = 0;
|
|
|
|
for (j=0; j < new_width; j++) {
|
|
const gdFixed f_i = gd_itofx((int)i - (int)new_height/2);
|
|
const gdFixed f_j = gd_itofx((int)j - (int)new_width/2);
|
|
const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
|
|
const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
|
|
const unsigned int m = gd_fxtoi(f_m);
|
|
const unsigned int n = gd_fxtoi(f_n);
|
|
|
|
if ((m >= 0) && (m < src_h - 1) && (n >= 0) && (n < src_w - 1)) {
|
|
const gdFixed f_f = f_m - gd_itofx(m);
|
|
const gdFixed f_g = f_n - gd_itofx(n);
|
|
const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
|
|
const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
|
|
const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
|
|
const gdFixed f_w4 = gd_mulfx(f_f, f_g);
|
|
|
|
if (m < src_h-1) {
|
|
src_offset_x = n;
|
|
src_offset_y = m + 1;
|
|
}
|
|
|
|
if (!((n >= src_w-1) || (m >= src_h-1))) {
|
|
src_offset_x = n + 1;
|
|
src_offset_y = m + 1;
|
|
}
|
|
{
|
|
const int pixel1 = src->tpixels[src_offset_y][src_offset_x];
|
|
register int pixel2, pixel3, pixel4;
|
|
|
|
if (src_offset_y + 1 >= src_h) {
|
|
pixel2 = pixel1;
|
|
pixel3 = pixel1;
|
|
pixel4 = pixel1;
|
|
} else if (src_offset_x + 1 >= src_w) {
|
|
pixel2 = pixel1;
|
|
pixel3 = pixel1;
|
|
pixel4 = pixel1;
|
|
} else {
|
|
pixel2 = src->tpixels[src_offset_y][src_offset_x + 1];
|
|
pixel3 = src->tpixels[src_offset_y + 1][src_offset_x];
|
|
pixel4 = src->tpixels[src_offset_y + 1][src_offset_x + 1];
|
|
}
|
|
{
|
|
const gdFixed f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
|
|
const gdFixed f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
|
|
const gdFixed f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
|
|
const gdFixed f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
|
|
const gdFixed f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
|
|
const gdFixed f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
|
|
const gdFixed f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
|
|
const gdFixed f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
|
|
const gdFixed f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
|
|
const gdFixed f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
|
|
const gdFixed f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
|
|
const gdFixed f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
|
|
const gdFixed f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
|
|
const gdFixed f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
|
|
const gdFixed f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
|
|
const gdFixed f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
|
|
const gdFixed f_red = gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4);
|
|
const gdFixed f_green = gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4);
|
|
const gdFixed f_blue = gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4);
|
|
const gdFixed f_alpha = gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4);
|
|
|
|
const unsigned char red = (unsigned char) CLAMP(gd_fxtoi(f_red), 0, 255);
|
|
const unsigned char green = (unsigned char) CLAMP(gd_fxtoi(f_green), 0, 255);
|
|
const unsigned char blue = (unsigned char) CLAMP(gd_fxtoi(f_blue), 0, 255);
|
|
const unsigned char alpha = (unsigned char) CLAMP(gd_fxtoi(f_alpha), 0, 127);
|
|
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = gdTrueColorAlpha(red, green, blue, alpha);
|
|
}
|
|
}
|
|
} else {
|
|
dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
|
|
}
|
|
}
|
|
dst_offset_y++;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr gdImageRotateBicubicFixed(gdImagePtr src, const float degrees, const int bgColor)
|
|
{
|
|
const float _angle = (float)((- degrees / 180.0f) * M_PI);
|
|
const int src_w = gdImageSX(src);
|
|
const int src_h = gdImageSY(src);
|
|
unsigned int new_width, new_height;
|
|
const gdFixed f_0_5 = gd_ftofx(0.5f);
|
|
const gdFixed f_H = gd_itofx(src_h/2);
|
|
const gdFixed f_W = gd_itofx(src_w/2);
|
|
const gdFixed f_cos = gd_ftofx(cos(-_angle));
|
|
const gdFixed f_sin = gd_ftofx(sin(-_angle));
|
|
const gdFixed f_1 = gd_itofx(1);
|
|
const gdFixed f_2 = gd_itofx(2);
|
|
const gdFixed f_4 = gd_itofx(4);
|
|
const gdFixed f_6 = gd_itofx(6);
|
|
const gdFixed f_gama = gd_ftofx(1.04f);
|
|
|
|
unsigned int dst_offset_x;
|
|
unsigned int dst_offset_y = 0;
|
|
unsigned int i;
|
|
gdImagePtr dst;
|
|
gdRect bbox;
|
|
|
|
gdRotatedImageSize(src, degrees, &bbox);
|
|
new_width = bbox.width;
|
|
new_height = bbox.height;
|
|
dst = gdImageCreateTrueColor(new_width, new_height);
|
|
|
|
if (dst == NULL) {
|
|
return NULL;
|
|
}
|
|
dst->saveAlphaFlag = 1;
|
|
|
|
for (i=0; i < new_height; i++) {
|
|
unsigned int j;
|
|
dst_offset_x = 0;
|
|
|
|
for (j=0; j < new_width; j++) {
|
|
const gdFixed f_i = gd_itofx((int)i - (int)new_height/2);
|
|
const gdFixed f_j = gd_itofx((int)j - (int)new_width/2);
|
|
const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
|
|
const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
|
|
const int m = gd_fxtoi(f_m);
|
|
const int n = gd_fxtoi(f_n);
|
|
|
|
if ((m > 0) && (m < src_h - 1) && (n > 0) && (n < src_w-1)) {
|
|
const gdFixed f_f = f_m - gd_itofx(m);
|
|
const gdFixed f_g = f_n - gd_itofx(n);
|
|
unsigned int src_offset_x[16], src_offset_y[16];
|
|
unsigned char red, green, blue, alpha;
|
|
gdFixed f_red=0, f_green=0, f_blue=0, f_alpha=0;
|
|
int k;
|
|
|
|
if ((m < 1) || (n < 1)) {
|
|
src_offset_x[0] = n;
|
|
src_offset_y[0] = m;
|
|
} else {
|
|
src_offset_x[0] = n - 1;
|
|
src_offset_y[0] = m;
|
|
}
|
|
|
|
src_offset_x[1] = n;
|
|
src_offset_y[1] = m;
|
|
|
|
if ((m < 1) || (n >= src_w-1)) {
|
|
src_offset_x[2] = - 1;
|
|
src_offset_y[2] = - 1;
|
|
} else {
|
|
src_offset_x[2] = n + 1;
|
|
src_offset_y[2] = m ;
|
|
}
|
|
|
|
if ((m < 1) || (n >= src_w-2)) {
|
|
src_offset_x[3] = - 1;
|
|
src_offset_y[3] = - 1;
|
|
} else {
|
|
src_offset_x[3] = n + 1 + 1;
|
|
src_offset_y[3] = m ;
|
|
}
|
|
|
|
if (n < 1) {
|
|
src_offset_x[4] = - 1;
|
|
src_offset_y[4] = - 1;
|
|
} else {
|
|
src_offset_x[4] = n - 1;
|
|
src_offset_y[4] = m;
|
|
}
|
|
|
|
src_offset_x[5] = n;
|
|
src_offset_y[5] = m;
|
|
if (n >= src_w-1) {
|
|
src_offset_x[6] = - 1;
|
|
src_offset_y[6] = - 1;
|
|
} else {
|
|
src_offset_x[6] = n + 1;
|
|
src_offset_y[6] = m;
|
|
}
|
|
|
|
if (n >= src_w-2) {
|
|
src_offset_x[7] = - 1;
|
|
src_offset_y[7] = - 1;
|
|
} else {
|
|
src_offset_x[7] = n + 1 + 1;
|
|
src_offset_y[7] = m;
|
|
}
|
|
|
|
if ((m >= src_h-1) || (n < 1)) {
|
|
src_offset_x[8] = - 1;
|
|
src_offset_y[8] = - 1;
|
|
} else {
|
|
src_offset_x[8] = n - 1;
|
|
src_offset_y[8] = m;
|
|
}
|
|
|
|
if (m >= src_h-1) {
|
|
src_offset_x[9] = - 1;
|
|
src_offset_y[9] = - 1;
|
|
} else {
|
|
src_offset_x[9] = n;
|
|
src_offset_y[9] = m;
|
|
}
|
|
|
|
if ((m >= src_h-1) || (n >= src_w-1)) {
|
|
src_offset_x[10] = - 1;
|
|
src_offset_y[10] = - 1;
|
|
} else {
|
|
src_offset_x[10] = n + 1;
|
|
src_offset_y[10] = m;
|
|
}
|
|
|
|
if ((m >= src_h-1) || (n >= src_w-2)) {
|
|
src_offset_x[11] = - 1;
|
|
src_offset_y[11] = - 1;
|
|
} else {
|
|
src_offset_x[11] = n + 1 + 1;
|
|
src_offset_y[11] = m;
|
|
}
|
|
|
|
if ((m >= src_h-2) || (n < 1)) {
|
|
src_offset_x[12] = - 1;
|
|
src_offset_y[12] = - 1;
|
|
} else {
|
|
src_offset_x[12] = n - 1;
|
|
src_offset_y[12] = m;
|
|
}
|
|
|
|
if (m >= src_h-2) {
|
|
src_offset_x[13] = - 1;
|
|
src_offset_y[13] = - 1;
|
|
} else {
|
|
src_offset_x[13] = n;
|
|
src_offset_y[13] = m;
|
|
}
|
|
|
|
if ((m >= src_h-2) || (n >= src_w - 1)) {
|
|
src_offset_x[14] = - 1;
|
|
src_offset_y[14] = - 1;
|
|
} else {
|
|
src_offset_x[14] = n + 1;
|
|
src_offset_y[14] = m;
|
|
}
|
|
|
|
if ((m >= src_h-2) || (n >= src_w-2)) {
|
|
src_offset_x[15] = - 1;
|
|
src_offset_y[15] = - 1;
|
|
} else {
|
|
src_offset_x[15] = n + 1 + 1;
|
|
src_offset_y[15] = m;
|
|
}
|
|
|
|
for (k=-1; k<3; k++) {
|
|
const gdFixed f = gd_itofx(k)-f_f;
|
|
const gdFixed f_fm1 = f - f_1;
|
|
const gdFixed f_fp1 = f + f_1;
|
|
const gdFixed f_fp2 = f + f_2;
|
|
gdFixed f_a = 0, f_b = 0,f_c = 0, f_d = 0;
|
|
gdFixed f_RY;
|
|
int l;
|
|
|
|
if (f_fp2 > 0) {
|
|
f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
|
|
}
|
|
|
|
if (f_fp1 > 0) {
|
|
f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
|
|
}
|
|
|
|
if (f > 0) {
|
|
f_c = gd_mulfx(f,gd_mulfx(f,f));
|
|
}
|
|
|
|
if (f_fm1 > 0) {
|
|
f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
|
|
}
|
|
f_RY = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
|
|
|
|
for (l=-1; l< 3; l++) {
|
|
const gdFixed f = gd_itofx(l) - f_g;
|
|
const gdFixed f_fm1 = f - f_1;
|
|
const gdFixed f_fp1 = f + f_1;
|
|
const gdFixed f_fp2 = f + f_2;
|
|
gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
|
|
gdFixed f_RX, f_R;
|
|
const int _k = ((k + 1) * 4) + (l + 1);
|
|
register gdFixed f_rs, f_gs, f_bs, f_as;
|
|
register int c;
|
|
|
|
if (f_fp2 > 0) {
|
|
f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
|
|
}
|
|
|
|
if (f_fp1 > 0) {
|
|
f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
|
|
}
|
|
|
|
if (f > 0) {
|
|
f_c = gd_mulfx(f,gd_mulfx(f,f));
|
|
}
|
|
|
|
if (f_fm1 > 0) {
|
|
f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
|
|
}
|
|
|
|
f_RX = gd_divfx((f_a - gd_mulfx(f_4, f_b) + gd_mulfx(f_6, f_c) - gd_mulfx(f_4, f_d)), f_6);
|
|
f_R = gd_mulfx(f_RY, f_RX);
|
|
|
|
if ((src_offset_x[_k] <= 0) || (src_offset_y[_k] <= 0) || (src_offset_y[_k] >= src_h) || (src_offset_x[_k] >= src_w)) {
|
|
c = bgColor;
|
|
} else if ((src_offset_x[_k] <= 1) || (src_offset_y[_k] <= 1) || (src_offset_y[_k] >= (int)src_h - 1) || (src_offset_x[_k] >= (int)src_w - 1)) {
|
|
gdFixed f_127 = gd_itofx(127);
|
|
c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
|
|
c = c | (( (int) (gd_fxtof(gd_mulfx(f_R, f_127)) + 50.5f)) << 24);
|
|
c = _color_blend(bgColor, c);
|
|
} else {
|
|
c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
|
|
}
|
|
|
|
f_rs = gd_itofx(gdTrueColorGetRed(c));
|
|
f_gs = gd_itofx(gdTrueColorGetGreen(c));
|
|
f_bs = gd_itofx(gdTrueColorGetBlue(c));
|
|
f_as = gd_itofx(gdTrueColorGetAlpha(c));
|
|
|
|
f_red += gd_mulfx(f_rs, f_R);
|
|
f_green += gd_mulfx(f_gs, f_R);
|
|
f_blue += gd_mulfx(f_bs, f_R);
|
|
f_alpha += gd_mulfx(f_as, f_R);
|
|
}
|
|
}
|
|
|
|
red = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red, f_gama)), 0, 255);
|
|
green = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gama)), 0, 255);
|
|
blue = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue, f_gama)), 0, 255);
|
|
alpha = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha, f_gama)), 0, 127);
|
|
|
|
dst->tpixels[dst_offset_y][dst_offset_x] = gdTrueColorAlpha(red, green, blue, alpha);
|
|
} else {
|
|
dst->tpixels[dst_offset_y][dst_offset_x] = bgColor;
|
|
}
|
|
dst_offset_x++;
|
|
}
|
|
|
|
dst_offset_y++;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
gdImagePtr gdImageRotateInterpolated(const gdImagePtr src, const float angle, int bgcolor)
|
|
{
|
|
/* round to two decimals and keep the 100x multiplication to use it in the common square angles
|
|
case later. Keep the two decimal precisions so smaller rotation steps can be done, useful for
|
|
slow animations, f.e. */
|
|
const int angle_rounded = fmod((int) floorf(angle * 100), 360 * 100);
|
|
|
|
if (bgcolor < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* impact perf a bit, but not that much. Implementation for palette
|
|
images can be done at a later point.
|
|
*/
|
|
if (src->trueColor == 0) {
|
|
if (bgcolor < gdMaxColors) {
|
|
bgcolor = gdTrueColorAlpha(src->red[bgcolor], src->green[bgcolor], src->blue[bgcolor], src->alpha[bgcolor]);
|
|
}
|
|
gdImagePaletteToTrueColor(src);
|
|
}
|
|
|
|
/* no interpolation needed here */
|
|
switch (angle_rounded) {
|
|
case 0: {
|
|
gdImagePtr dst = gdImageCreateTrueColor(src->sx, src->sy);
|
|
if (dst == NULL) {
|
|
return NULL;
|
|
}
|
|
dst->transparent = src->transparent;
|
|
dst->saveAlphaFlag = 1;
|
|
dst->alphaBlendingFlag = gdEffectReplace;
|
|
|
|
gdImageCopy(dst, src, 0,0,0,0,src->sx,src->sy);
|
|
return dst;
|
|
}
|
|
case -27000:
|
|
case 9000:
|
|
return gdImageRotate90(src, 0);
|
|
case -18000:
|
|
case 18000:
|
|
return gdImageRotate180(src, 0);
|
|
case -9000:
|
|
case 27000:
|
|
return gdImageRotate270(src, 0);
|
|
}
|
|
|
|
if (src == NULL || src->interpolation_id < 1 || src->interpolation_id > GD_METHOD_COUNT) {
|
|
return NULL;
|
|
}
|
|
|
|
switch (src->interpolation_id) {
|
|
case GD_NEAREST_NEIGHBOUR:
|
|
return gdImageRotateNearestNeighbour(src, angle, bgcolor);
|
|
break;
|
|
|
|
case GD_BILINEAR_FIXED:
|
|
return gdImageRotateBilinear(src, angle, bgcolor);
|
|
break;
|
|
|
|
case GD_BICUBIC_FIXED:
|
|
return gdImageRotateBicubicFixed(src, angle, bgcolor);
|
|
break;
|
|
|
|
default:
|
|
return gdImageRotateGeneric(src, angle, bgcolor);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Title: Affine transformation
|
|
**/
|
|
|
|
/**
|
|
* Group: Transform
|
|
**/
|
|
|
|
static void gdImageClipRectangle(gdImagePtr im, gdRectPtr r)
|
|
{
|
|
int c1x, c1y, c2x, c2y;
|
|
int x1,y1;
|
|
|
|
gdImageGetClip(im, &c1x, &c1y, &c2x, &c2y);
|
|
x1 = r->x + r->width - 1;
|
|
y1 = r->y + r->height - 1;
|
|
r->x = CLAMP(r->x, c1x, c2x);
|
|
r->y = CLAMP(r->y, c1y, c2y);
|
|
r->width = CLAMP(x1, c1x, c2x) - r->x + 1;
|
|
r->height = CLAMP(y1, c1y, c2y) - r->y + 1;
|
|
}
|
|
|
|
void gdDumpRect(const char *msg, gdRectPtr r)
|
|
{
|
|
printf("%s (%i, %i) (%i, %i)\n", msg, r->x, r->y, r->width, r->height);
|
|
}
|
|
|
|
/**
|
|
* Function: gdTransformAffineGetImage
|
|
* Applies an affine transformation to a region and return an image
|
|
* containing the complete transformation.
|
|
*
|
|
* Parameters:
|
|
* dst - Pointer to a gdImagePtr to store the created image, NULL when
|
|
* the creation or the transformation failed
|
|
* src - Source image
|
|
* src_area - rectangle defining the source region to transform
|
|
* dstY - Y position in the destination image
|
|
* affine - The desired affine transformation
|
|
*
|
|
* Returns:
|
|
* GD_TRUE if the affine is rectilinear or GD_FALSE
|
|
*/
|
|
int gdTransformAffineGetImage(gdImagePtr *dst,
|
|
const gdImagePtr src,
|
|
gdRectPtr src_area,
|
|
const double affine[6])
|
|
{
|
|
int res;
|
|
double m[6];
|
|
gdRect bbox;
|
|
gdRect area_full;
|
|
|
|
if (src_area == NULL) {
|
|
area_full.x = 0;
|
|
area_full.y = 0;
|
|
area_full.width = gdImageSX(src);
|
|
area_full.height = gdImageSY(src);
|
|
src_area = &area_full;
|
|
}
|
|
|
|
gdTransformAffineBoundingBox(src_area, affine, &bbox);
|
|
|
|
*dst = gdImageCreateTrueColor(bbox.width, bbox.height);
|
|
if (*dst == NULL) {
|
|
return GD_FALSE;
|
|
}
|
|
(*dst)->saveAlphaFlag = 1;
|
|
|
|
if (!src->trueColor) {
|
|
gdImagePaletteToTrueColor(src);
|
|
}
|
|
|
|
/* Translate to dst origin (0,0) */
|
|
gdAffineTranslate(m, -bbox.x, -bbox.y);
|
|
gdAffineConcat(m, affine, m);
|
|
|
|
gdImageAlphaBlending(*dst, 0);
|
|
|
|
res = gdTransformAffineCopy(*dst,
|
|
0,0,
|
|
src,
|
|
src_area,
|
|
m);
|
|
|
|
if (res != GD_TRUE) {
|
|
gdImageDestroy(*dst);
|
|
dst = NULL;
|
|
return GD_FALSE;
|
|
} else {
|
|
return GD_TRUE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Function: gdTransformAffineCopy
|
|
* Applies an affine transformation to a region and copy the result
|
|
* in a destination to the given position.
|
|
*
|
|
* Parameters:
|
|
* dst - Image to draw the transformed image
|
|
* src - Source image
|
|
* dstX - X position in the destination image
|
|
* dstY - Y position in the destination image
|
|
* src_area - Rectangular region to rotate in the src image
|
|
*
|
|
* Returns:
|
|
* GD_TRUE if the affine is rectilinear or GD_FALSE
|
|
*/
|
|
int gdTransformAffineCopy(gdImagePtr dst,
|
|
int dst_x, int dst_y,
|
|
const gdImagePtr src,
|
|
gdRectPtr src_region,
|
|
const double affine[6])
|
|
{
|
|
int c1x,c1y,c2x,c2y;
|
|
int backclip = 0;
|
|
int backup_clipx1, backup_clipy1, backup_clipx2, backup_clipy2;
|
|
register int x, y, src_offset_x, src_offset_y;
|
|
double inv[6];
|
|
int *dst_p;
|
|
gdPointF pt, src_pt;
|
|
gdRect bbox;
|
|
int end_x, end_y;
|
|
gdInterpolationMethod interpolation_id_bak = GD_DEFAULT;
|
|
interpolation_method interpolation_bak;
|
|
|
|
/* These methods use special implementations */
|
|
if (src->interpolation_id == GD_BILINEAR_FIXED || src->interpolation_id == GD_BICUBIC_FIXED || src->interpolation_id == GD_NEAREST_NEIGHBOUR) {
|
|
interpolation_id_bak = src->interpolation_id;
|
|
interpolation_bak = src->interpolation;
|
|
|
|
gdImageSetInterpolationMethod(src, GD_BICUBIC);
|
|
}
|
|
|
|
|
|
gdImageClipRectangle(src, src_region);
|
|
|
|
if (src_region->x > 0 || src_region->y > 0
|
|
|| src_region->width < gdImageSX(src)
|
|
|| src_region->height < gdImageSY(src)) {
|
|
backclip = 1;
|
|
|
|
gdImageGetClip(src, &backup_clipx1, &backup_clipy1,
|
|
&backup_clipx2, &backup_clipy2);
|
|
|
|
gdImageSetClip(src, src_region->x, src_region->y,
|
|
src_region->x + src_region->width - 1,
|
|
src_region->y + src_region->height - 1);
|
|
}
|
|
|
|
if (!gdTransformAffineBoundingBox(src_region, affine, &bbox)) {
|
|
if (backclip) {
|
|
gdImageSetClip(src, backup_clipx1, backup_clipy1,
|
|
backup_clipx2, backup_clipy2);
|
|
}
|
|
gdImageSetInterpolationMethod(src, interpolation_id_bak);
|
|
return GD_FALSE;
|
|
}
|
|
|
|
gdImageGetClip(dst, &c1x, &c1y, &c2x, &c2y);
|
|
|
|
end_x = bbox.width + (int) fabs(bbox.x);
|
|
end_y = bbox.height + (int) fabs(bbox.y);
|
|
|
|
/* Get inverse affine to let us work with destination -> source */
|
|
gdAffineInvert(inv, affine);
|
|
|
|
src_offset_x = src_region->x;
|
|
src_offset_y = src_region->y;
|
|
|
|
if (dst->alphaBlendingFlag) {
|
|
for (y = bbox.y; y <= end_y; y++) {
|
|
pt.y = y + 0.5;
|
|
for (x = 0; x <= end_x; x++) {
|
|
pt.x = x + 0.5;
|
|
gdAffineApplyToPointF(&src_pt, &pt, inv);
|
|
gdImageSetPixel(dst, dst_x + x, dst_y + y, getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, 0));
|
|
}
|
|
}
|
|
} else {
|
|
for (y = 0; y <= end_y; y++) {
|
|
pt.y = y + 0.5 + bbox.y;
|
|
if ((dst_y + y) < 0 || ((dst_y + y) > gdImageSY(dst) -1)) {
|
|
continue;
|
|
}
|
|
dst_p = dst->tpixels[dst_y + y] + dst_x;
|
|
|
|
for (x = 0; x <= end_x; x++) {
|
|
pt.x = x + 0.5 + bbox.x;
|
|
gdAffineApplyToPointF(&src_pt, &pt, inv);
|
|
|
|
if ((dst_x + x) < 0 || (dst_x + x) > (gdImageSX(dst) - 1)) {
|
|
break;
|
|
}
|
|
*(dst_p++) = getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Restore clip if required */
|
|
if (backclip) {
|
|
gdImageSetClip(src, backup_clipx1, backup_clipy1,
|
|
backup_clipx2, backup_clipy2);
|
|
}
|
|
|
|
gdImageSetInterpolationMethod(src, interpolation_id_bak);
|
|
return GD_TRUE;
|
|
}
|
|
|
|
/**
|
|
* Function: gdTransformAffineBoundingBox
|
|
* Returns the bounding box of an affine transformation applied to a
|
|
* rectangular area <gdRect>
|
|
*
|
|
* Parameters:
|
|
* src - Rectangular source area for the affine transformation
|
|
* affine - the affine transformation
|
|
* bbox - the resulting bounding box
|
|
*
|
|
* Returns:
|
|
* GD_TRUE if the affine is rectilinear or GD_FALSE
|
|
*/
|
|
int gdTransformAffineBoundingBox(gdRectPtr src, const double affine[6], gdRectPtr bbox)
|
|
{
|
|
gdPointF extent[4], min, max, point;
|
|
int i;
|
|
|
|
extent[0].x=0.0;
|
|
extent[0].y=0.0;
|
|
extent[1].x=(double) src->width;
|
|
extent[1].y=0.0;
|
|
extent[2].x=(double) src->width;
|
|
extent[2].y=(double) src->height;
|
|
extent[3].x=0.0;
|
|
extent[3].y=(double) src->height;
|
|
|
|
for (i=0; i < 4; i++) {
|
|
point=extent[i];
|
|
if (gdAffineApplyToPointF(&extent[i], &point, affine) != GD_TRUE) {
|
|
return GD_FALSE;
|
|
}
|
|
}
|
|
min=extent[0];
|
|
max=extent[0];
|
|
|
|
for (i=1; i < 4; i++) {
|
|
if (min.x > extent[i].x)
|
|
min.x=extent[i].x;
|
|
if (min.y > extent[i].y)
|
|
min.y=extent[i].y;
|
|
if (max.x < extent[i].x)
|
|
max.x=extent[i].x;
|
|
if (max.y < extent[i].y)
|
|
max.y=extent[i].y;
|
|
}
|
|
bbox->x = (int) min.x;
|
|
bbox->y = (int) min.y;
|
|
bbox->width = (int) floor(max.x - min.x) - 1;
|
|
bbox->height = (int) floor(max.y - min.y);
|
|
return GD_TRUE;
|
|
}
|
|
|
|
int gdImageSetInterpolationMethod(gdImagePtr im, gdInterpolationMethod id)
|
|
{
|
|
if (im == NULL || id < 0 || id > GD_METHOD_COUNT) {
|
|
return 0;
|
|
}
|
|
|
|
switch (id) {
|
|
case GD_DEFAULT:
|
|
id = GD_BILINEAR_FIXED;
|
|
/* Optimized versions */
|
|
case GD_BILINEAR_FIXED:
|
|
case GD_BICUBIC_FIXED:
|
|
case GD_NEAREST_NEIGHBOUR:
|
|
case GD_WEIGHTED4:
|
|
im->interpolation = NULL;
|
|
break;
|
|
|
|
/* generic versions*/
|
|
case GD_BELL:
|
|
im->interpolation = filter_bell;
|
|
break;
|
|
case GD_BESSEL:
|
|
im->interpolation = filter_bessel;
|
|
break;
|
|
case GD_BICUBIC:
|
|
im->interpolation = filter_bicubic;
|
|
break;
|
|
case GD_BLACKMAN:
|
|
im->interpolation = filter_blackman;
|
|
break;
|
|
case GD_BOX:
|
|
im->interpolation = filter_box;
|
|
break;
|
|
case GD_BSPLINE:
|
|
im->interpolation = filter_bspline;
|
|
break;
|
|
case GD_CATMULLROM:
|
|
im->interpolation = filter_catmullrom;
|
|
break;
|
|
case GD_GAUSSIAN:
|
|
im->interpolation = filter_gaussian;
|
|
break;
|
|
case GD_GENERALIZED_CUBIC:
|
|
im->interpolation = filter_generalized_cubic;
|
|
break;
|
|
case GD_HERMITE:
|
|
im->interpolation = filter_hermite;
|
|
break;
|
|
case GD_HAMMING:
|
|
im->interpolation = filter_hamming;
|
|
break;
|
|
case GD_HANNING:
|
|
im->interpolation = filter_hanning;
|
|
break;
|
|
case GD_MITCHELL:
|
|
im->interpolation = filter_mitchell;
|
|
break;
|
|
case GD_POWER:
|
|
im->interpolation = filter_power;
|
|
break;
|
|
case GD_QUADRATIC:
|
|
im->interpolation = filter_quadratic;
|
|
break;
|
|
case GD_SINC:
|
|
im->interpolation = filter_sinc;
|
|
break;
|
|
case GD_TRIANGLE:
|
|
im->interpolation = filter_triangle;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
break;
|
|
}
|
|
im->interpolation_id = id;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma optimize("", on)
|
|
#endif
|