php-src/Zend/zend_strtod.c
Antony Dovgal 29254a477d fix #37062 (compile failure on ARM architecture)
if ARM is big endian - don't define IEEE_LITTLE_ENDIAN
2006-04-15 12:54:14 +00:00

1798 lines
33 KiB
C

/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991 by AT&T.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* Please send bug reports to
David M. Gay
AT&T Bell Laboratories, Room 2C-463
600 Mountain Avenue
Murray Hill, NJ 07974-2070
U.S.A.
dmg@research.att.com or research!dmg
*/
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
*
* This strtod returns a nearest machine number to the input decimal
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
* broken by the IEEE round-even rule. Otherwise ties are broken by
* biased rounding (add half and chop).
*
* Inspired loosely by William D. Clinger's paper "How to Read Floating
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
*
* Modifications:
*
* 1. We only require IEEE, IBM, or VAX double-precision
* arithmetic (not IEEE double-extended).
* 2. We get by with floating-point arithmetic in a case that
* Clinger missed -- when we're computing d * 10^n
* for a small integer d and the integer n is not too
* much larger than 22 (the maximum integer k for which
* we can represent 10^k exactly), we may be able to
* compute (d*10^k) * 10^(e-k) with just one roundoff.
* 3. Rather than a bit-at-a-time adjustment of the binary
* result in the hard case, we use floating-point
* arithmetic to determine the adjustment to within
* one bit; only in really hard cases do we need to
* compute a second residual.
* 4. Because of 3., we don't need a large table of powers of 10
* for ten-to-e (just some small tables, e.g. of 10^k
* for 0 <= k <= 22).
*/
/*
* #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
* significant byte has the lowest address.
* #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
* significant byte has the lowest address.
* #define Long int on machines with 32-bit ints and 64-bit longs.
* #define Sudden_Underflow for IEEE-format machines without gradual
* underflow (i.e., that flush to zero on underflow).
* #define IBM for IBM mainframe-style floating-point arithmetic.
* #define VAX for VAX-style floating-point arithmetic.
* #define Unsigned_Shifts if >> does treats its left operand as unsigned.
* #define No_leftright to omit left-right logic in fast floating-point
* computation of dtoa.
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
* that use extended-precision instructions to compute rounded
* products and quotients) with IBM.
* #define ROUND_BIASED for IEEE-format with biased rounding.
* #define Inaccurate_Divide for IEEE-format with correctly rounded
* products but inaccurate quotients, e.g., for Intel i860.
* #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
* integer arithmetic. Whether this speeds things up or slows things
* down depends on the machine and the number being converted.
* #define KR_headers for old-style C function headers.
* #define Bad_float_h if your system lacks a float.h or if it does not
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
* if memory is available and otherwise does something you deem
* appropriate. If MALLOC is undefined, malloc will be invoked
* directly -- and assumed always to succeed.
*/
#include <zend_strtod.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if defined(HAVE_INTTYPES_H)
#include <inttypes.h>
#elif defined(HAVE_STDINT_H)
#include <stdint.h>
#endif
#ifndef HAVE_INT32_T
# if SIZEOF_INT == 4
typedef int int32_t;
# elif SIZEOF_LONG == 4
typedef long int int32_t;
# endif
#endif
#ifndef HAVE_UINT32_T
# if SIZEOF_INT == 4
typedef unsigned int uint32_t;
# elif SIZEOF_LONG == 4
typedef unsigned long int uint32_t;
# endif
#endif
#ifdef WORDS_BIGENDIAN
#define IEEE_BIG_ENDIAN
#else
#define IEEE_LITTLE_ENDIAN
#endif
#if defined(__arm__) && !defined(__VFP_FP__)
/*
* Although the CPU is little endian the FP has different
* byte and word endianness. The byte order is still little endian
* but the word order is big endian.
*/
#define IEEE_BIG_ENDIAN
#undef IEEE_LITTLE_ENDIAN
#endif
#ifdef __vax__
#define VAX
#endif
#if defined(_MSC_VER)
#define int32_t __int32
#define uint32_t unsigned __int32
#define IEEE_LITTLE_ENDIAN
#endif
#define Long int32_t
#define ULong uint32_t
#ifdef __cplusplus
#include "malloc.h"
#include "memory.h"
#else
#ifndef KR_headers
#include "stdlib.h"
#include "string.h"
#include "locale.h"
#else
#include "malloc.h"
#include "memory.h"
#endif
#endif
#ifdef MALLOC
#ifdef KR_headers
extern char *MALLOC();
#else
extern void *MALLOC(size_t);
#endif
#else
#define MALLOC malloc
#endif
#include "ctype.h"
#include "errno.h"
#ifdef Bad_float_h
#ifdef IEEE_BIG_ENDIAN
#define IEEE_ARITHMETIC
#endif
#ifdef IEEE_LITTLE_ENDIAN
#define IEEE_ARITHMETIC
#endif
#ifdef IEEE_ARITHMETIC
#define DBL_DIG 15
#define DBL_MAX_10_EXP 308
#define DBL_MAX_EXP 1024
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7976931348623157e+308
#endif
#ifdef IBM
#define DBL_DIG 16
#define DBL_MAX_10_EXP 75
#define DBL_MAX_EXP 63
#define FLT_RADIX 16
#define FLT_ROUNDS 0
#define DBL_MAX 7.2370055773322621e+75
#endif
#ifdef VAX
#define DBL_DIG 16
#define DBL_MAX_10_EXP 38
#define DBL_MAX_EXP 127
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7014118346046923e+38
#endif
#ifndef LONG_MAX
#define LONG_MAX 2147483647
#endif
#else
#include "float.h"
#endif
#ifndef __MATH_H__
#include "math.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef CONST
#ifdef KR_headers
#define CONST /* blank */
#else
#define CONST const
#endif
#endif
#ifdef Unsigned_Shifts
#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
#else
#define Sign_Extend(a,b) /*no-op*/
#endif
#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
defined(IBM) != 1
Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
IBM should be defined.
#endif
typedef union {
double d;
ULong ul[2];
} _double;
#define value(x) ((x).d)
#ifdef IEEE_LITTLE_ENDIAN
#define word0(x) ((x).ul[1])
#define word1(x) ((x).ul[0])
#else
#define word0(x) ((x).ul[0])
#define word1(x) ((x).ul[1])
#endif
/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
*/
#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
((unsigned short *)a)[0] = (unsigned short)c, a++)
#else
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
((unsigned short *)a)[1] = (unsigned short)c, a++)
#endif
/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
#define Exp_shift 20
#define Exp_shift1 20
#define Exp_msk1 0x100000
#define Exp_msk11 0x100000
#define Exp_mask 0x7ff00000
#define P 53
#define Bias 1023
#define IEEE_Arith
#define Emin (-1022)
#define Exp_1 0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask 0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask 0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
#else
#undef Sudden_Underflow
#define Sudden_Underflow
#ifdef IBM
#define Exp_shift 24
#define Exp_shift1 24
#define Exp_msk1 0x1000000
#define Exp_msk11 0x1000000
#define Exp_mask 0x7f000000
#define P 14
#define Bias 65
#define Exp_1 0x41000000
#define Exp_11 0x41000000
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
#define Frac_mask 0xffffff
#define Frac_mask1 0xffffff
#define Bletch 4
#define Ten_pmax 22
#define Bndry_mask 0xefffff
#define Bndry_mask1 0xffffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 4
#define Tiny0 0x100000
#define Tiny1 0
#define Quick_max 14
#define Int_max 15
#else /* VAX */
#define Exp_shift 23
#define Exp_shift1 7
#define Exp_msk1 0x80
#define Exp_msk11 0x800000
#define Exp_mask 0x7f80
#define P 56
#define Bias 129
#define Exp_1 0x40800000
#define Exp_11 0x4080
#define Ebits 8
#define Frac_mask 0x7fffff
#define Frac_mask1 0xffff007f
#define Ten_pmax 24
#define Bletch 2
#define Bndry_mask 0xffff007f
#define Bndry_mask1 0xffff007f
#define LSB 0x10000
#define Sign_bit 0x8000
#define Log2P 1
#define Tiny0 0x80
#define Tiny1 0
#define Quick_max 15
#define Int_max 15
#endif
#endif
#ifndef IEEE_Arith
#define ROUND_BIASED
#endif
#ifdef RND_PRODQUOT
#define rounded_product(a,b) a = rnd_prod(a, b)
#define rounded_quotient(a,b) a = rnd_quot(a, b)
#ifdef KR_headers
extern double rnd_prod(), rnd_quot();
#else
extern double rnd_prod(double, double), rnd_quot(double, double);
#endif
#else
#define rounded_product(a,b) a *= b
#define rounded_quotient(a,b) a /= b
#endif
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff
#ifndef Just_16
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
* This makes some inner loops simpler and sometimes saves work
* during multiplications, but it often seems to make things slightly
* slower. Hence the default is now to store 32 bits per Long.
*/
#ifndef Pack_32
#define Pack_32
#endif
#endif
#define Kmax 15
struct
Bigint {
struct Bigint *next;
int k, maxwds, sign, wds;
ULong x[1];
};
typedef struct Bigint Bigint;
static Bigint *freelist[Kmax+1];
static Bigint *
Balloc
#ifdef KR_headers
(k) int k;
#else
(int k)
#endif
{
int x;
Bigint *rv;
if ((rv = freelist[k])) {
freelist[k] = rv->next;
}
else {
x = 1 << k;
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
rv->k = k;
rv->maxwds = x;
}
rv->sign = rv->wds = 0;
return rv;
}
static void
Bfree
#ifdef KR_headers
(v) Bigint *v;
#else
(Bigint *v)
#endif
{
if (v) {
v->next = freelist[v->k];
freelist[v->k] = v;
}
}
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
y->wds*sizeof(Long) + 2*sizeof(int))
static Bigint *
multadd
#ifdef KR_headers
(b, m, a) Bigint *b; int m, a;
#else
(Bigint *b, int m, int a) /* multiply by m and add a */
#endif
{
int i, wds;
ULong *x, y;
#ifdef Pack_32
ULong xi, z;
#endif
Bigint *b1;
wds = b->wds;
x = b->x;
i = 0;
do {
#ifdef Pack_32
xi = *x;
y = (xi & 0xffff) * m + a;
z = (xi >> 16) * m + (y >> 16);
a = (int)(z >> 16);
*x++ = (z << 16) + (y & 0xffff);
#else
y = *x * m + a;
a = (int)(y >> 16);
*x++ = y & 0xffff;
#endif
}
while(++i < wds);
if (a) {
if (wds >= b->maxwds) {
b1 = Balloc(b->k+1);
Bcopy(b1, b);
Bfree(b);
b = b1;
}
b->x[wds++] = a;
b->wds = wds;
}
return b;
}
static Bigint *
s2b
#ifdef KR_headers
(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
#else
(CONST char *s, int nd0, int nd, ULong y9)
#endif
{
Bigint *b;
int i, k;
Long x, y;
x = (nd + 8) / 9;
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
b = Balloc(k);
b->x[0] = y9;
b->wds = 1;
#else
b = Balloc(k+1);
b->x[0] = y9 & 0xffff;
b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif
i = 9;
if (9 < nd0) {
s += 9;
do b = multadd(b, 10, *s++ - '0');
while(++i < nd0);
s++;
}
else
s += 10;
for(; i < nd; i++)
b = multadd(b, 10, *s++ - '0');
return b;
}
static int
hi0bits
#ifdef KR_headers
(x) register ULong x;
#else
(register ULong x)
#endif
{
register int k = 0;
if (!(x & 0xffff0000)) {
k = 16;
x <<= 16;
}
if (!(x & 0xff000000)) {
k += 8;
x <<= 8;
}
if (!(x & 0xf0000000)) {
k += 4;
x <<= 4;
}
if (!(x & 0xc0000000)) {
k += 2;
x <<= 2;
}
if (!(x & 0x80000000)) {
k++;
if (!(x & 0x40000000))
return 32;
}
return k;
}
static int
lo0bits
#ifdef KR_headers
(y) ULong *y;
#else
(ULong *y)
#endif
{
register int k;
register ULong x = *y;
if (x & 7) {
if (x & 1)
return 0;
if (x & 2) {
*y = x >> 1;
return 1;
}
*y = x >> 2;
return 2;
}
k = 0;
if (!(x & 0xffff)) {
k = 16;
x >>= 16;
}
if (!(x & 0xff)) {
k += 8;
x >>= 8;
}
if (!(x & 0xf)) {
k += 4;
x >>= 4;
}
if (!(x & 0x3)) {
k += 2;
x >>= 2;
}
if (!(x & 1)) {
k++;
x >>= 1;
if (!x & 1)
return 32;
}
*y = x;
return k;
}
static Bigint *
i2b
#ifdef KR_headers
(i) int i;
#else
(int i)
#endif
{
Bigint *b;
b = Balloc(1);
b->x[0] = i;
b->wds = 1;
return b;
}
static Bigint *
mult
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
Bigint *c;
int k, wa, wb, wc;
ULong carry, y, z;
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
#ifdef Pack_32
ULong z2;
#endif
if (a->wds < b->wds) {
c = a;
a = b;
b = c;
}
k = a->k;
wa = a->wds;
wb = b->wds;
wc = wa + wb;
if (wc > a->maxwds)
k++;
c = Balloc(k);
for(x = c->x, xa = x + wc; x < xa; x++)
*x = 0;
xa = a->x;
xae = xa + wa;
xb = b->x;
xbe = xb + wb;
xc0 = c->x;
#ifdef Pack_32
for(; xb < xbe; xb++, xc0++) {
if ((y = *xb & 0xffff)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
carry = z >> 16;
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
carry = z2 >> 16;
Storeinc(xc, z2, z);
}
while(x < xae);
*xc = carry;
}
if ((y = *xb >> 16)) {
x = xa;
xc = xc0;
carry = 0;
z2 = *xc;
do {
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
carry = z >> 16;
Storeinc(xc, z, z2);
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
carry = z2 >> 16;
}
while(x < xae);
*xc = z2;
}
}
#else
for(; xb < xbe; xc0++) {
if (y = *xb++) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * y + *xc + carry;
carry = z >> 16;
*xc++ = z & 0xffff;
}
while(x < xae);
*xc = carry;
}
}
#endif
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
c->wds = wc;
return c;
}
static Bigint *p5s;
static Bigint *
pow5mult
#ifdef KR_headers
(b, k) Bigint *b; int k;
#else
(Bigint *b, int k)
#endif
{
Bigint *b1, *p5, *p51;
int i;
static int p05[3] = { 5, 25, 125 };
if ((i = k & 3))
b = multadd(b, p05[i-1], 0);
if (!(k >>= 2))
return b;
if (!(p5 = p5s)) {
/* first time */
p5 = p5s = i2b(625);
p5->next = 0;
}
for(;;) {
if (k & 1) {
b1 = mult(b, p5);
Bfree(b);
b = b1;
}
if (!(k >>= 1))
break;
if (!(p51 = p5->next)) {
p51 = p5->next = mult(p5,p5);
p51->next = 0;
}
p5 = p51;
}
return b;
}
static Bigint *
lshift
#ifdef KR_headers
(b, k) Bigint *b; int k;
#else
(Bigint *b, int k)
#endif
{
int i, k1, n, n1;
Bigint *b1;
ULong *x, *x1, *xe, z;
#ifdef Pack_32
n = k >> 5;
#else
n = k >> 4;
#endif
k1 = b->k;
n1 = n + b->wds + 1;
for(i = b->maxwds; n1 > i; i <<= 1)
k1++;
b1 = Balloc(k1);
x1 = b1->x;
for(i = 0; i < n; i++)
*x1++ = 0;
x = b->x;
xe = x + b->wds;
#ifdef Pack_32
if (k &= 0x1f) {
k1 = 32 - k;
z = 0;
do {
*x1++ = *x << k | z;
z = *x++ >> k1;
}
while(x < xe);
if ((*x1 = z))
++n1;
}
#else
if (k &= 0xf) {
k1 = 16 - k;
z = 0;
do {
*x1++ = *x << k & 0xffff | z;
z = *x++ >> k1;
}
while(x < xe);
if (*x1 = z)
++n1;
}
#endif
else do
*x1++ = *x++;
while(x < xe);
b1->wds = n1 - 1;
Bfree(b);
return b1;
}
static int
cmp
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
ULong *xa, *xa0, *xb, *xb0;
int i, j;
i = a->wds;
j = b->wds;
#ifdef DEBUG
if (i > 1 && !a->x[i-1])
Bug("cmp called with a->x[a->wds-1] == 0");
if (j > 1 && !b->x[j-1])
Bug("cmp called with b->x[b->wds-1] == 0");
#endif
if (i -= j)
return i;
xa0 = a->x;
xa = xa0 + j;
xb0 = b->x;
xb = xb0 + j;
for(;;) {
if (*--xa != *--xb)
return *xa < *xb ? -1 : 1;
if (xa <= xa0)
break;
}
return 0;
}
static Bigint *
diff
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
Bigint *c;
int i, wa, wb;
Long borrow, y; /* We need signed shifts here. */
ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef Pack_32
Long z;
#endif
i = cmp(a,b);
if (!i) {
c = Balloc(0);
c->wds = 1;
c->x[0] = 0;
return c;
}
if (i < 0) {
c = a;
a = b;
b = c;
i = 1;
}
else
i = 0;
c = Balloc(a->k);
c->sign = i;
wa = a->wds;
xa = a->x;
xae = xa + wa;
wb = b->wds;
xb = b->x;
xbe = xb + wb;
xc = c->x;
borrow = 0;
#ifdef Pack_32
do {
y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(xc, z, y);
}
while(xb < xbe);
while(xa < xae) {
y = (*xa & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*xa++ >> 16) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(xc, z, y);
}
#else
do {
y = *xa++ - *xb++ + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*xc++ = y & 0xffff;
}
while(xb < xbe);
while(xa < xae) {
y = *xa++ + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*xc++ = y & 0xffff;
}
#endif
while(!*--xc)
wa--;
c->wds = wa;
return c;
}
static double
ulp
#ifdef KR_headers
(_x) double _x;
#else
(double _x)
#endif
{
_double x;
register Long L;
_double a;
value(x) = _x;
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
if (L > 0) {
#endif
#ifdef IBM
L |= Exp_msk1 >> 4;
#endif
word0(a) = L;
word1(a) = 0;
#ifndef Sudden_Underflow
}
else {
L = -L >> Exp_shift;
if (L < Exp_shift) {
word0(a) = 0x80000 >> L;
word1(a) = 0;
}
else {
word0(a) = 0;
L -= Exp_shift;
word1(a) = L >= 31 ? 1 : 1 << (31 - L);
}
}
#endif
return value(a);
}
static double
b2d
#ifdef KR_headers
(a, e) Bigint *a; int *e;
#else
(Bigint *a, int *e)
#endif
{
ULong *xa, *xa0, w, y, z;
int k;
_double d;
#ifdef VAX
ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif
xa0 = a->x;
xa = xa0 + a->wds;
y = *--xa;
#ifdef DEBUG
if (!y) Bug("zero y in b2d");
#endif
k = hi0bits(y);
*e = 32 - k;
#ifdef Pack_32
if (k < Ebits) {
d0 = Exp_1 | y >> (Ebits - k);
w = xa > xa0 ? *--xa : 0;
d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
if (k -= Ebits) {
d0 = Exp_1 | y << k | z >> (32 - k);
y = xa > xa0 ? *--xa : 0;
d1 = z << k | y >> (32 - k);
}
else {
d0 = Exp_1 | y;
d1 = z;
}
#else
if (k < Ebits + 16) {
z = xa > xa0 ? *--xa : 0;
d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
w = xa > xa0 ? *--xa : 0;
y = xa > xa0 ? *--xa : 0;
d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
w = xa > xa0 ? *--xa : 0;
k -= Ebits + 16;
d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
y = xa > xa0 ? *--xa : 0;
d1 = w << k + 16 | y << k;
#endif
ret_d:
#ifdef VAX
word0(d) = d0 >> 16 | d0 << 16;
word1(d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
return value(d);
}
static Bigint *
d2b
#ifdef KR_headers
(_d, e, bits) double d; int *e, *bits;
#else
(double _d, int *e, int *bits)
#endif
{
Bigint *b;
int de, i, k;
ULong *x, y, z;
_double d;
#ifdef VAX
ULong d0, d1;
#endif
value(d) = _d;
#ifdef VAX
d0 = word0(d) >> 16 | word0(d) << 16;
d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif
#ifdef Pack_32
b = Balloc(1);
#else
b = Balloc(2);
#endif
x = b->x;
z = d0 & Frac_mask;
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
de = (int)(d0 >> Exp_shift);
#ifndef IBM
z |= Exp_msk11;
#endif
#else
if ((de = (int)(d0 >> Exp_shift)))
z |= Exp_msk1;
#endif
#ifdef Pack_32
if ((y = d1)) {
if ((k = lo0bits(&y))) {
x[0] = y | z << (32 - k);
z >>= k;
}
else
x[0] = y;
i = b->wds = (x[1] = z) ? 2 : 1;
}
else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
x[0] = z;
i = b->wds = 1;
k += 32;
}
#else
if (y = d1) {
if (k = lo0bits(&y))
if (k >= 16) {
x[0] = y | z << 32 - k & 0xffff;
x[1] = z >> k - 16 & 0xffff;
x[2] = z >> k;
i = 2;
}
else {
x[0] = y & 0xffff;
x[1] = y >> 16 | z << 16 - k & 0xffff;
x[2] = z >> k & 0xffff;
x[3] = z >> k+16;
i = 3;
}
else {
x[0] = y & 0xffff;
x[1] = y >> 16;
x[2] = z & 0xffff;
x[3] = z >> 16;
i = 3;
}
}
else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
if (k >= 16) {
x[0] = z;
i = 0;
}
else {
x[0] = z & 0xffff;
x[1] = z >> 16;
i = 1;
}
k += 32;
}
while(!x[i])
--i;
b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
if (de) {
#endif
#ifdef IBM
*e = (de - Bias - (P-1) << 2) + k;
*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
*e = de - Bias - (P-1) + k;
*bits = P - k;
#endif
#ifndef Sudden_Underflow
}
else {
*e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
*bits = 32*i - hi0bits(x[i-1]);
#else
*bits = (i+2)*16 - hi0bits(x[i]);
#endif
}
#endif
return b;
}
#undef d0
#undef d1
static double
ratio
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
_double da, db;
int k, ka, kb;
value(da) = b2d(a, &ka);
value(db) = b2d(b, &kb);
#ifdef Pack_32
k = ka - kb + 32*(a->wds - b->wds);
#else
k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
if (k > 0) {
word0(da) += (k >> 2)*Exp_msk1;
if (k &= 3)
da *= 1 << k;
}
else {
k = -k;
word0(db) += (k >> 2)*Exp_msk1;
if (k &= 3)
db *= 1 << k;
}
#else
if (k > 0)
word0(da) += k*Exp_msk1;
else {
k = -k;
word0(db) += k*Exp_msk1;
}
#endif
return value(da) / value(db);
}
static CONST double
tens[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
#ifdef VAX
, 1e23, 1e24
#endif
};
#ifdef IEEE_Arith
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
#define n_bigtens 5
#else
#ifdef IBM
static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
#define n_bigtens 3
#else
static CONST double bigtens[] = { 1e16, 1e32 };
static CONST double tinytens[] = { 1e-16, 1e-32 };
#define n_bigtens 2
#endif
#endif
ZEND_API double
zend_strtod
#ifdef KR_headers
(s00, se) CONST char *s00; char **se;
#else
(CONST char *s00, char **se)
#endif
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
CONST char *s, *s0, *s1;
double aadj, aadj1, adj;
_double rv, rv0;
Long L;
ULong y, z;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta, *tmp;
double result;
CONST char decimal_point = '.';
sign = nz0 = nz = 0;
value(rv) = 0.;
for(s = s00; isspace((unsigned char) *s); s++)
;
if (*s == '-') {
sign = 1;
s++;
} else if (*s == '+') {
s++;
}
if (*s == '\0') {
s = s00;
goto ret;
}
if (*s == '0') {
nz0 = 1;
while(*++s == '0') ;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
if (nd < 9)
y = 10*y + c - '0';
else if (nd < 16)
z = 10*z + c - '0';
nd0 = nd;
if (c == decimal_point) {
c = *++s;
if (!nd) {
for(; c == '0'; c = *++s)
nz++;
if (c > '0' && c <= '9') {
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
nz++;
if (c -= '0') {
nf += nz;
for(i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10*y + c;
else if (nd <= DBL_DIG + 1)
z = 10*z + c;
nz = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E') {
if (!nd && !nz && !nz0) {
s = s00;
goto ret;
}
s00 = s;
esign = 0;
switch(c = *++s) {
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9') {
while(c == '0')
c = *++s;
if (c > '0' && c <= '9') {
L = c - '0';
s1 = s;
while((c = *++s) >= '0' && c <= '9')
L = 10*L + c - '0';
if (s - s1 > 8 || L > 19999)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 19999; /* safe for 16 bit ints */
else
e = (int)L;
if (esign)
e = -e;
}
else
e = 0;
}
else
s = s00;
}
if (!nd) {
if (!nz && !nz0)
s = s00;
goto ret;
}
e1 = e -= nf;
/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
value(rv) = y;
if (k > 9)
value(rv) = tens[k - 9] * value(rv) + z;
bd0 = 0;
if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
&& FLT_ROUNDS == 1
#endif
) {
if (!e)
goto ret;
if (e > 0) {
if (e <= Ten_pmax) {
#ifdef VAX
goto vax_ovfl_check;
#else
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
goto ret;
#endif
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i) {
/* A fancier test would sometimes let us do
* this for larger i values.
*/
e -= i;
value(rv) *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0(rv) -= P*Exp_msk1;
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
if ((word0(rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
goto ovfl;
word0(rv) += P*Exp_msk1;
#else
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
#endif
goto ret;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax) {
/* value(rv) = */ rounded_quotient(value(rv),
tens[-e]);
goto ret;
}
#endif
}
e1 += nd - k;
/* Get starting approximation = rv * 10**e1 */
if (e1 > 0) {
if ((i = e1 & 15))
value(rv) *= tens[i];
if (e1 &= ~15) {
if (e1 > DBL_MAX_10_EXP) {
ovfl:
errno = ERANGE;
#ifndef Bad_float_h
value(rv) = HUGE_VAL;
#else
/* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
word0(rv) = Exp_mask;
word1(rv) = 0;
#else
word0(rv) = Big0;
word1(rv) = Big1;
#endif
#endif
if (bd0)
goto retfree;
goto ret;
}
if (e1 >>= 4) {
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
value(rv) *= bigtens[j];
/* The last multiplication could overflow. */
word0(rv) -= P*Exp_msk1;
value(rv) *= bigtens[j];
if ((z = word0(rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
goto ovfl;
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0(rv) = Big0;
word1(rv) = Big1;
}
else
word0(rv) += P*Exp_msk1;
}
}
}
else if (e1 < 0) {
e1 = -e1;
if ((i = e1 & 15))
value(rv) /= tens[i];
if (e1 &= ~15) {
e1 >>= 4;
if (e1 >= 1 << n_bigtens)
goto undfl;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
value(rv) *= tinytens[j];
/* The last multiplication could underflow. */
value(rv0) = value(rv);
value(rv) *= tinytens[j];
if (!value(rv)) {
value(rv) = 2.*value(rv0);
value(rv) *= tinytens[j];
if (!value(rv)) {
undfl:
value(rv) = 0.;
errno = ERANGE;
if (bd0)
goto retfree;
goto ret;
}
word0(rv) = Tiny0;
word1(rv) = Tiny1;
/* The refinement below will clean
* this approximation up.
*/
}
}
}
/* Now the hard part -- adjusting rv to the correct value.*/
/* Put digits into bd: true value = bd * 10^e */
bd0 = s2b(s0, nd0, nd, y);
for(;;) {
bd = Balloc(bd0->k);
Bcopy(bd, bd0);
bb = d2b(value(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
bs = i2b(1);
if (e >= 0) {
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else {
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
j = P + 1 - bbbits;
#endif
#else
i = bbe + bbbits - 1; /* logb(rv) */
if (i < Emin) /* denormal */
j = bbe + (P-Emin);
else
j = P + 1 - bbbits;
#endif
bb2 += j;
bd2 += j;
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0) {
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
bb1 = mult(bs, bb);
Bfree(bb);
bb = bb1;
}
if (bb2 > 0)
bb = lshift(bb, bb2);
if (bd5 > 0)
bd = pow5mult(bd, bd5);
if (bd2 > 0)
bd = lshift(bd, bd2);
if (bs2 > 0)
bs = lshift(bs, bs2);
delta = diff(bb, bd);
dsign = delta->sign;
delta->sign = 0;
i = cmp(delta, bs);
if (i < 0) {
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (dsign || word1(rv) || word0(rv) & Bndry_mask)
break;
delta = lshift(delta,Log2P);
if (cmp(delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0) {
/* exactly half-way between */
if (dsign) {
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
&& word1(rv) == 0xffffffff) {
/*boundary case -- increment exponent*/
word0(rv) = (word0(rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
word1(rv) = 0;
break;
}
}
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
L = word0(rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
if (L <= Exp_msk1)
#endif
goto undfl;
L -= Exp_msk1;
#else
L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif
word0(rv) = L | Bndry_mask1;
word1(rv) = 0xffffffff;
#ifdef IBM
goto cont;
#else
break;
#endif
}
#ifndef ROUND_BIASED
if (!(word1(rv) & LSB))
break;
#endif
if (dsign)
value(rv) += ulp(value(rv));
#ifndef ROUND_BIASED
else {
value(rv) -= ulp(value(rv));
#ifndef Sudden_Underflow
if (!value(rv))
goto undfl;
#endif
}
#endif
break;
}
if ((aadj = ratio(delta, bs)) <= 2.) {
if (dsign)
aadj = aadj1 = 1.;
else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
if (word1(rv) == Tiny1 && !word0(rv))
goto undfl;
#endif
aadj = 1.;
aadj1 = -1.;
}
else {
/* special case -- power of FLT_RADIX to be */
/* rounded down... */
if (aadj < 2./FLT_RADIX)
aadj = 1./FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else {
aadj *= 0.5;
aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch(FLT_ROUNDS) {
case 2: /* towards +infinity */
aadj1 -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
}
#else
if (FLT_ROUNDS == 0)
aadj1 += 0.5;
#endif
}
y = word0(rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
value(rv0) = value(rv);
word0(rv) -= P*Exp_msk1;
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
if ((word0(rv) & Exp_mask) >=
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
if (word0(rv0) == Big0 && word1(rv0) == Big1)
goto ovfl;
word0(rv) = Big0;
word1(rv) = Big1;
goto cont;
}
else
word0(rv) += P*Exp_msk1;
}
else {
#ifdef Sudden_Underflow
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
value(rv0) = value(rv);
word0(rv) += P*Exp_msk1;
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
#ifdef IBM
if ((word0(rv) & Exp_mask) < P*Exp_msk1)
#else
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
#endif
{
if (word0(rv0) == Tiny0
&& word1(rv0) == Tiny1)
goto undfl;
word0(rv) = Tiny0;
word1(rv) = Tiny1;
goto cont;
}
else
word0(rv) -= P*Exp_msk1;
}
else {
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
}
#else
/* Compute adj so that the IEEE rounding rules will
* correctly round rv + adj in some half-way cases.
* If rv * ulp(rv) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
aadj1 = (double)(int)(aadj + 0.5);
if (!dsign)
aadj1 = -aadj1;
}
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
#endif
}
z = word0(rv) & Exp_mask;
if (y == z) {
/* Can we stop now? */
L = aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999/FLT_RADIX)
break;
}
cont:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(delta);
}
retfree:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
ret:
if (se)
*se = (char *)s;
result = sign ? -value(rv) : value(rv);
for (i = 0; i <= Kmax; i++) {
Bigint **listp = &freelist[i];
while ((tmp = *listp) != NULL) {
*listp = tmp->next;
free(tmp);
}
freelist[i] = NULL;
}
while (p5s) {
tmp = p5s;
p5s = p5s->next;
free(tmp);
}
return result;
}