php-src/TSRM/TSRM.c
2017-12-21 17:54:31 +01:00

809 lines
21 KiB
C

/*
+----------------------------------------------------------------------+
| Thread Safe Resource Manager |
+----------------------------------------------------------------------+
| Copyright (c) 1999-2011, Andi Gutmans, Sascha Schumann, Zeev Suraski |
| This source file is subject to the TSRM license, that is bundled |
| with this package in the file LICENSE |
+----------------------------------------------------------------------+
| Authors: Zeev Suraski <zeev@zend.com> |
+----------------------------------------------------------------------+
*/
#include "TSRM.h"
#ifdef ZTS
#include <stdio.h>
#if HAVE_STDARG_H
#include <stdarg.h>
#endif
typedef struct _tsrm_tls_entry tsrm_tls_entry;
#if defined(TSRM_WIN32)
/* TSRMLS_CACHE_DEFINE; is already done in Zend, this is being always compiled statically. */
#endif
struct _tsrm_tls_entry {
void **storage;
int count;
THREAD_T thread_id;
tsrm_tls_entry *next;
};
typedef struct {
size_t size;
ts_allocate_ctor ctor;
ts_allocate_dtor dtor;
int done;
} tsrm_resource_type;
/* The memory manager table */
static tsrm_tls_entry **tsrm_tls_table=NULL;
static int tsrm_tls_table_size;
static ts_rsrc_id id_count;
/* The resource sizes table */
static tsrm_resource_type *resource_types_table=NULL;
static int resource_types_table_size;
static MUTEX_T tsmm_mutex; /* thread-safe memory manager mutex */
/* New thread handlers */
static tsrm_thread_begin_func_t tsrm_new_thread_begin_handler = NULL;
static tsrm_thread_end_func_t tsrm_new_thread_end_handler = NULL;
static tsrm_shutdown_func_t tsrm_shutdown_handler = NULL;
/* Debug support */
int tsrm_error(int level, const char *format, ...);
/* Read a resource from a thread's resource storage */
static int tsrm_error_level;
static FILE *tsrm_error_file;
#if TSRM_DEBUG
#define TSRM_ERROR(args) tsrm_error args
#define TSRM_SAFE_RETURN_RSRC(array, offset, range) \
{ \
int unshuffled_offset = TSRM_UNSHUFFLE_RSRC_ID(offset); \
\
if (offset==0) { \
return &array; \
} else if ((unshuffled_offset)>=0 && (unshuffled_offset)<(range)) { \
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Successfully fetched resource id %d for thread id %ld - 0x%0.8X", \
unshuffled_offset, (long) thread_resources->thread_id, array[unshuffled_offset])); \
return array[unshuffled_offset]; \
} else { \
TSRM_ERROR((TSRM_ERROR_LEVEL_ERROR, "Resource id %d is out of range (%d..%d)", \
unshuffled_offset, TSRM_SHUFFLE_RSRC_ID(0), TSRM_SHUFFLE_RSRC_ID(thread_resources->count-1))); \
return NULL; \
} \
}
#else
#define TSRM_ERROR(args)
#define TSRM_SAFE_RETURN_RSRC(array, offset, range) \
if (offset==0) { \
return &array; \
} else { \
return array[TSRM_UNSHUFFLE_RSRC_ID(offset)]; \
}
#endif
#if defined(GNUPTH)
static pth_key_t tls_key;
# define tsrm_tls_set(what) pth_key_setdata(tls_key, (void*)(what))
# define tsrm_tls_get() pth_key_getdata(tls_key)
#elif defined(PTHREADS)
/* Thread local storage */
static pthread_key_t tls_key;
# define tsrm_tls_set(what) pthread_setspecific(tls_key, (void*)(what))
# define tsrm_tls_get() pthread_getspecific(tls_key)
#elif defined(TSRM_ST)
static int tls_key;
# define tsrm_tls_set(what) st_thread_setspecific(tls_key, (void*)(what))
# define tsrm_tls_get() st_thread_getspecific(tls_key)
#elif defined(TSRM_WIN32)
static DWORD tls_key;
# define tsrm_tls_set(what) TlsSetValue(tls_key, (void*)(what))
# define tsrm_tls_get() TlsGetValue(tls_key)
#else
# define tsrm_tls_set(what)
# define tsrm_tls_get() NULL
# warning tsrm_set_interpreter_context is probably broken on this platform
#endif
TSRM_TLS uint8_t in_main_thread = 0;
/* Startup TSRM (call once for the entire process) */
TSRM_API int tsrm_startup(int expected_threads, int expected_resources, int debug_level, char *debug_filename)
{/*{{{*/
#if defined(GNUPTH)
pth_init();
pth_key_create(&tls_key, 0);
#elif defined(PTHREADS)
pthread_key_create( &tls_key, 0 );
#elif defined(TSRM_ST)
st_init();
st_key_create(&tls_key, 0);
#elif defined(TSRM_WIN32)
tls_key = TlsAlloc();
#endif
/* ensure singleton */
in_main_thread = 1;
tsrm_error_file = stderr;
tsrm_error_set(debug_level, debug_filename);
tsrm_tls_table_size = expected_threads;
tsrm_tls_table = (tsrm_tls_entry **) calloc(tsrm_tls_table_size, sizeof(tsrm_tls_entry *));
if (!tsrm_tls_table) {
TSRM_ERROR((TSRM_ERROR_LEVEL_ERROR, "Unable to allocate TLS table"));
return 0;
}
id_count=0;
resource_types_table_size = expected_resources;
resource_types_table = (tsrm_resource_type *) calloc(resource_types_table_size, sizeof(tsrm_resource_type));
if (!resource_types_table) {
TSRM_ERROR((TSRM_ERROR_LEVEL_ERROR, "Unable to allocate resource types table"));
free(tsrm_tls_table);
tsrm_tls_table = NULL;
return 0;
}
tsmm_mutex = tsrm_mutex_alloc();
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Started up TSRM, %d expected threads, %d expected resources", expected_threads, expected_resources));
return 1;
}/*}}}*/
/* Shutdown TSRM (call once for the entire process) */
TSRM_API void tsrm_shutdown(void)
{/*{{{*/
int i;
if (!in_main_thread) {
/* ensure singleton */
return;
}
if (tsrm_tls_table) {
for (i=0; i<tsrm_tls_table_size; i++) {
tsrm_tls_entry *p = tsrm_tls_table[i], *next_p;
while (p) {
int j;
next_p = p->next;
for (j=0; j<p->count; j++) {
if (p->storage[j]) {
if (resource_types_table && !resource_types_table[j].done && resource_types_table[j].dtor) {
resource_types_table[j].dtor(p->storage[j]);
}
free(p->storage[j]);
}
}
free(p->storage);
free(p);
p = next_p;
}
}
free(tsrm_tls_table);
tsrm_tls_table = NULL;
}
if (resource_types_table) {
free(resource_types_table);
resource_types_table=NULL;
}
tsrm_mutex_free(tsmm_mutex);
tsmm_mutex = NULL;
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Shutdown TSRM"));
if (tsrm_error_file!=stderr) {
fclose(tsrm_error_file);
}
#if defined(GNUPTH)
pth_kill();
#elif defined(PTHREADS)
pthread_setspecific(tls_key, 0);
pthread_key_delete(tls_key);
#elif defined(TSRM_WIN32)
TlsFree(tls_key);
#endif
if (tsrm_shutdown_handler) {
tsrm_shutdown_handler();
}
tsrm_new_thread_begin_handler = NULL;
tsrm_new_thread_end_handler = NULL;
tsrm_shutdown_handler = NULL;
}/*}}}*/
/* allocates a new thread-safe-resource id */
TSRM_API ts_rsrc_id ts_allocate_id(ts_rsrc_id *rsrc_id, size_t size, ts_allocate_ctor ctor, ts_allocate_dtor dtor)
{/*{{{*/
int i;
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Obtaining a new resource id, %d bytes", size));
tsrm_mutex_lock(tsmm_mutex);
/* obtain a resource id */
*rsrc_id = TSRM_SHUFFLE_RSRC_ID(id_count++);
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Obtained resource id %d", *rsrc_id));
/* store the new resource type in the resource sizes table */
if (resource_types_table_size < id_count) {
tsrm_resource_type *_tmp;
_tmp = (tsrm_resource_type *) realloc(resource_types_table, sizeof(tsrm_resource_type)*id_count);
if (!_tmp) {
tsrm_mutex_unlock(tsmm_mutex);
TSRM_ERROR((TSRM_ERROR_LEVEL_ERROR, "Unable to allocate storage for resource"));
*rsrc_id = 0;
return 0;
}
resource_types_table = _tmp;
resource_types_table_size = id_count;
}
resource_types_table[TSRM_UNSHUFFLE_RSRC_ID(*rsrc_id)].size = size;
resource_types_table[TSRM_UNSHUFFLE_RSRC_ID(*rsrc_id)].ctor = ctor;
resource_types_table[TSRM_UNSHUFFLE_RSRC_ID(*rsrc_id)].dtor = dtor;
resource_types_table[TSRM_UNSHUFFLE_RSRC_ID(*rsrc_id)].done = 0;
/* enlarge the arrays for the already active threads */
for (i=0; i<tsrm_tls_table_size; i++) {
tsrm_tls_entry *p = tsrm_tls_table[i];
while (p) {
if (p->count < id_count) {
int j;
p->storage = (void *) realloc(p->storage, sizeof(void *)*id_count);
for (j=p->count; j<id_count; j++) {
p->storage[j] = (void *) malloc(resource_types_table[j].size);
if (resource_types_table[j].ctor) {
resource_types_table[j].ctor(p->storage[j]);
}
}
p->count = id_count;
}
p = p->next;
}
}
tsrm_mutex_unlock(tsmm_mutex);
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Successfully allocated new resource id %d", *rsrc_id));
return *rsrc_id;
}/*}}}*/
static void allocate_new_resource(tsrm_tls_entry **thread_resources_ptr, THREAD_T thread_id)
{/*{{{*/
int i;
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Creating data structures for thread %x", thread_id));
(*thread_resources_ptr) = (tsrm_tls_entry *) malloc(sizeof(tsrm_tls_entry));
(*thread_resources_ptr)->storage = NULL;
if (id_count > 0) {
(*thread_resources_ptr)->storage = (void **) malloc(sizeof(void *)*id_count);
}
(*thread_resources_ptr)->count = id_count;
(*thread_resources_ptr)->thread_id = thread_id;
(*thread_resources_ptr)->next = NULL;
/* Set thread local storage to this new thread resources structure */
tsrm_tls_set(*thread_resources_ptr);
if (tsrm_new_thread_begin_handler) {
tsrm_new_thread_begin_handler(thread_id);
}
for (i=0; i<id_count; i++) {
if (resource_types_table[i].done) {
(*thread_resources_ptr)->storage[i] = NULL;
} else
{
(*thread_resources_ptr)->storage[i] = (void *) malloc(resource_types_table[i].size);
if (resource_types_table[i].ctor) {
resource_types_table[i].ctor((*thread_resources_ptr)->storage[i]);
}
}
}
if (tsrm_new_thread_end_handler) {
tsrm_new_thread_end_handler(thread_id);
}
tsrm_mutex_unlock(tsmm_mutex);
}/*}}}*/
/* fetches the requested resource for the current thread */
TSRM_API void *ts_resource_ex(ts_rsrc_id id, THREAD_T *th_id)
{/*{{{*/
THREAD_T thread_id;
int hash_value;
tsrm_tls_entry *thread_resources;
if (!th_id) {
/* Fast path for looking up the resources for the current
* thread. Its used by just about every call to
* ts_resource_ex(). This avoids the need for a mutex lock
* and our hashtable lookup.
*/
thread_resources = tsrm_tls_get();
if (thread_resources) {
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Fetching resource id %d for current thread %d", id, (long) thread_resources->thread_id));
/* Read a specific resource from the thread's resources.
* This is called outside of a mutex, so have to be aware about external
* changes to the structure as we read it.
*/
TSRM_SAFE_RETURN_RSRC(thread_resources->storage, id, thread_resources->count);
}
thread_id = tsrm_thread_id();
} else {
thread_id = *th_id;
}
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Fetching resource id %d for thread %ld", id, (long) thread_id));
tsrm_mutex_lock(tsmm_mutex);
hash_value = THREAD_HASH_OF(thread_id, tsrm_tls_table_size);
thread_resources = tsrm_tls_table[hash_value];
if (!thread_resources) {
allocate_new_resource(&tsrm_tls_table[hash_value], thread_id);
return ts_resource_ex(id, &thread_id);
} else {
do {
if (thread_resources->thread_id == thread_id) {
break;
}
if (thread_resources->next) {
thread_resources = thread_resources->next;
} else {
allocate_new_resource(&thread_resources->next, thread_id);
return ts_resource_ex(id, &thread_id);
/*
* thread_resources = thread_resources->next;
* break;
*/
}
} while (thread_resources);
}
tsrm_mutex_unlock(tsmm_mutex);
/* Read a specific resource from the thread's resources.
* This is called outside of a mutex, so have to be aware about external
* changes to the structure as we read it.
*/
TSRM_SAFE_RETURN_RSRC(thread_resources->storage, id, thread_resources->count);
}/*}}}*/
/* frees an interpreter context. You are responsible for making sure that
* it is not linked into the TSRM hash, and not marked as the current interpreter */
void tsrm_free_interpreter_context(void *context)
{/*{{{*/
tsrm_tls_entry *next, *thread_resources = (tsrm_tls_entry*)context;
int i;
while (thread_resources) {
next = thread_resources->next;
for (i=0; i<thread_resources->count; i++) {
if (resource_types_table[i].dtor) {
resource_types_table[i].dtor(thread_resources->storage[i]);
}
}
for (i=0; i<thread_resources->count; i++) {
free(thread_resources->storage[i]);
}
free(thread_resources->storage);
free(thread_resources);
thread_resources = next;
}
}/*}}}*/
void *tsrm_set_interpreter_context(void *new_ctx)
{/*{{{*/
tsrm_tls_entry *current;
current = tsrm_tls_get();
/* TODO: unlink current from the global linked list, and replace it
* it with the new context, protected by mutex where/if appropriate */
/* Set thread local storage to this new thread resources structure */
tsrm_tls_set(new_ctx);
/* return old context, so caller can restore it when they're done */
return current;
}/*}}}*/
/* allocates a new interpreter context */
void *tsrm_new_interpreter_context(void)
{/*{{{*/
tsrm_tls_entry *new_ctx, *current;
THREAD_T thread_id;
thread_id = tsrm_thread_id();
tsrm_mutex_lock(tsmm_mutex);
current = tsrm_tls_get();
allocate_new_resource(&new_ctx, thread_id);
/* switch back to the context that was in use prior to our creation
* of the new one */
return tsrm_set_interpreter_context(current);
}/*}}}*/
/* frees all resources allocated for the current thread */
void ts_free_thread(void)
{/*{{{*/
tsrm_tls_entry *thread_resources;
int i;
THREAD_T thread_id = tsrm_thread_id();
int hash_value;
tsrm_tls_entry *last=NULL;
tsrm_mutex_lock(tsmm_mutex);
hash_value = THREAD_HASH_OF(thread_id, tsrm_tls_table_size);
thread_resources = tsrm_tls_table[hash_value];
while (thread_resources) {
if (thread_resources->thread_id == thread_id) {
for (i=0; i<thread_resources->count; i++) {
if (resource_types_table[i].dtor) {
resource_types_table[i].dtor(thread_resources->storage[i]);
}
}
for (i=0; i<thread_resources->count; i++) {
free(thread_resources->storage[i]);
}
free(thread_resources->storage);
if (last) {
last->next = thread_resources->next;
} else {
tsrm_tls_table[hash_value] = thread_resources->next;
}
tsrm_tls_set(0);
free(thread_resources);
break;
}
if (thread_resources->next) {
last = thread_resources;
}
thread_resources = thread_resources->next;
}
tsrm_mutex_unlock(tsmm_mutex);
}/*}}}*/
/* frees all resources allocated for all threads except current */
void ts_free_worker_threads(void)
{/*{{{*/
tsrm_tls_entry *thread_resources;
int i;
THREAD_T thread_id = tsrm_thread_id();
int hash_value;
tsrm_tls_entry *last=NULL;
tsrm_mutex_lock(tsmm_mutex);
hash_value = THREAD_HASH_OF(thread_id, tsrm_tls_table_size);
thread_resources = tsrm_tls_table[hash_value];
while (thread_resources) {
if (thread_resources->thread_id != thread_id) {
for (i=0; i<thread_resources->count; i++) {
if (resource_types_table[i].dtor) {
resource_types_table[i].dtor(thread_resources->storage[i]);
}
}
for (i=0; i<thread_resources->count; i++) {
free(thread_resources->storage[i]);
}
free(thread_resources->storage);
if (last) {
last->next = thread_resources->next;
} else {
tsrm_tls_table[hash_value] = thread_resources->next;
}
free(thread_resources);
if (last) {
thread_resources = last->next;
} else {
thread_resources = tsrm_tls_table[hash_value];
}
} else {
if (thread_resources->next) {
last = thread_resources;
}
thread_resources = thread_resources->next;
}
}
tsrm_mutex_unlock(tsmm_mutex);
}/*}}}*/
/* deallocates all occurrences of a given id */
void ts_free_id(ts_rsrc_id id)
{/*{{{*/
int i;
int j = TSRM_UNSHUFFLE_RSRC_ID(id);
tsrm_mutex_lock(tsmm_mutex);
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Freeing resource id %d", id));
if (tsrm_tls_table) {
for (i=0; i<tsrm_tls_table_size; i++) {
tsrm_tls_entry *p = tsrm_tls_table[i];
while (p) {
if (p->count > j && p->storage[j]) {
if (resource_types_table && resource_types_table[j].dtor) {
resource_types_table[j].dtor(p->storage[j]);
}
free(p->storage[j]);
p->storage[j] = NULL;
}
p = p->next;
}
}
}
resource_types_table[j].done = 1;
tsrm_mutex_unlock(tsmm_mutex);
TSRM_ERROR((TSRM_ERROR_LEVEL_CORE, "Successfully freed resource id %d", id));
}/*}}}*/
/*
* Utility Functions
*/
/* Obtain the current thread id */
TSRM_API THREAD_T tsrm_thread_id(void)
{/*{{{*/
#ifdef TSRM_WIN32
return GetCurrentThreadId();
#elif defined(GNUPTH)
return pth_self();
#elif defined(PTHREADS)
return pthread_self();
#elif defined(TSRM_ST)
return st_thread_self();
#endif
}/*}}}*/
/* Allocate a mutex */
TSRM_API MUTEX_T tsrm_mutex_alloc(void)
{/*{{{*/
MUTEX_T mutexp;
#ifdef TSRM_WIN32
mutexp = malloc(sizeof(CRITICAL_SECTION));
InitializeCriticalSection(mutexp);
#elif defined(GNUPTH)
mutexp = (MUTEX_T) malloc(sizeof(*mutexp));
pth_mutex_init(mutexp);
#elif defined(PTHREADS)
mutexp = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(mutexp,NULL);
#elif defined(TSRM_ST)
mutexp = st_mutex_new();
#endif
#ifdef THR_DEBUG
printf("Mutex created thread: %d\n",mythreadid());
#endif
return( mutexp );
}/*}}}*/
/* Free a mutex */
TSRM_API void tsrm_mutex_free(MUTEX_T mutexp)
{/*{{{*/
if (mutexp) {
#ifdef TSRM_WIN32
DeleteCriticalSection(mutexp);
free(mutexp);
#elif defined(GNUPTH)
free(mutexp);
#elif defined(PTHREADS)
pthread_mutex_destroy(mutexp);
free(mutexp);
#elif defined(TSRM_ST)
st_mutex_destroy(mutexp);
#endif
}
#ifdef THR_DEBUG
printf("Mutex freed thread: %d\n",mythreadid());
#endif
}/*}}}*/
/*
Lock a mutex.
A return value of 0 indicates success
*/
TSRM_API int tsrm_mutex_lock(MUTEX_T mutexp)
{/*{{{*/
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Mutex locked thread: %ld", tsrm_thread_id()));
#ifdef TSRM_WIN32
EnterCriticalSection(mutexp);
return 0;
#elif defined(GNUPTH)
if (pth_mutex_acquire(mutexp, 0, NULL)) {
return 0;
}
return -1;
#elif defined(PTHREADS)
return pthread_mutex_lock(mutexp);
#elif defined(TSRM_ST)
return st_mutex_lock(mutexp);
#endif
}/*}}}*/
/*
Unlock a mutex.
A return value of 0 indicates success
*/
TSRM_API int tsrm_mutex_unlock(MUTEX_T mutexp)
{/*{{{*/
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Mutex unlocked thread: %ld", tsrm_thread_id()));
#ifdef TSRM_WIN32
LeaveCriticalSection(mutexp);
return 0;
#elif defined(GNUPTH)
if (pth_mutex_release(mutexp)) {
return 0;
}
return -1;
#elif defined(PTHREADS)
return pthread_mutex_unlock(mutexp);
#elif defined(TSRM_ST)
return st_mutex_unlock(mutexp);
#endif
}/*}}}*/
/*
Changes the signal mask of the calling thread
*/
#ifdef HAVE_SIGPROCMASK
TSRM_API int tsrm_sigmask(int how, const sigset_t *set, sigset_t *oldset)
{/*{{{*/
TSRM_ERROR((TSRM_ERROR_LEVEL_INFO, "Changed sigmask in thread: %ld", tsrm_thread_id()));
/* TODO: add support for other APIs */
#ifdef PTHREADS
return pthread_sigmask(how, set, oldset);
#else
return sigprocmask(how, set, oldset);
#endif
}/*}}}*/
#endif
TSRM_API void *tsrm_set_new_thread_begin_handler(tsrm_thread_begin_func_t new_thread_begin_handler)
{/*{{{*/
void *retval = (void *) tsrm_new_thread_begin_handler;
tsrm_new_thread_begin_handler = new_thread_begin_handler;
return retval;
}/*}}}*/
TSRM_API void *tsrm_set_new_thread_end_handler(tsrm_thread_end_func_t new_thread_end_handler)
{/*{{{*/
void *retval = (void *) tsrm_new_thread_end_handler;
tsrm_new_thread_end_handler = new_thread_end_handler;
return retval;
}/*}}}*/
TSRM_API void *tsrm_set_shutdown_handler(tsrm_shutdown_func_t shutdown_handler)
{/*{{{*/
void *retval = (void *) tsrm_shutdown_handler;
tsrm_shutdown_handler = shutdown_handler;
return retval;
}/*}}}*/
/*
* Debug support
*/
#if TSRM_DEBUG
int tsrm_error(int level, const char *format, ...)
{/*{{{*/
if (level<=tsrm_error_level) {
va_list args;
int size;
fprintf(tsrm_error_file, "TSRM: ");
va_start(args, format);
size = vfprintf(tsrm_error_file, format, args);
va_end(args);
fprintf(tsrm_error_file, "\n");
fflush(tsrm_error_file);
return size;
} else {
return 0;
}
}/*}}}*/
#endif
void tsrm_error_set(int level, char *debug_filename)
{/*{{{*/
tsrm_error_level = level;
#if TSRM_DEBUG
if (tsrm_error_file!=stderr) { /* close files opened earlier */
fclose(tsrm_error_file);
}
if (debug_filename) {
tsrm_error_file = fopen(debug_filename, "w");
if (!tsrm_error_file) {
tsrm_error_file = stderr;
}
} else {
tsrm_error_file = stderr;
}
#endif
}/*}}}*/
TSRM_API void *tsrm_get_ls_cache(void)
{/*{{{*/
return tsrm_tls_get();
}/*}}}*/
TSRM_API uint8_t tsrm_is_main_thread(void)
{/*{{{*/
return in_main_thread;
}/*}}}*/
TSRM_API const char *tsrm_api_name(void)
{/*{{{*/
#if defined(GNUPTH)
return "GNU Pth";
#elif defined(PTHREADS)
return "POSIX Threads";
#elif defined(TSRM_ST)
return "State Threads";
#elif defined(TSRM_WIN32)
return "Windows Threads";
#else
return "Unknown";
#endif
}/*}}}*/
#endif /* ZTS */
/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* End:
* vim600: sw=4 ts=4 fdm=marker
* vim<600: sw=4 ts=4
*/