php-src/Zend/zend_alloc.c
2015-01-15 23:26:03 +08:00

2816 lines
78 KiB
C

/*
+----------------------------------------------------------------------+
| Zend Engine |
+----------------------------------------------------------------------+
| Copyright (c) 1998-2015 Zend Technologies Ltd. (http://www.zend.com) |
+----------------------------------------------------------------------+
| This source file is subject to version 2.00 of the Zend license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.zend.com/license/2_00.txt. |
| If you did not receive a copy of the Zend license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@zend.com so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Andi Gutmans <andi@zend.com> |
| Zeev Suraski <zeev@zend.com> |
| Dmitry Stogov <dmitry@zend.com> |
+----------------------------------------------------------------------+
*/
/* $Id$ */
#include "zend.h"
#include "zend_alloc.h"
#include "zend_globals.h"
#include "zend_operators.h"
#ifdef HAVE_SIGNAL_H
# include <signal.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef ZEND_WIN32
# include <wincrypt.h>
# include <process.h>
#endif
#ifndef ZEND_MM_HEAP_PROTECTION
# define ZEND_MM_HEAP_PROTECTION ZEND_DEBUG
#endif
#ifndef ZEND_MM_SAFE_UNLINKING
# define ZEND_MM_SAFE_UNLINKING 1
#endif
#ifndef ZEND_MM_COOKIES
# define ZEND_MM_COOKIES ZEND_DEBUG
#endif
#ifdef _WIN64
# define PTR_FMT "0x%0.16I64x"
/*
#elif sizeof(long) == 8
# define PTR_FMT "0x%0.16lx"
*/
#else
# define PTR_FMT "0x%0.8lx"
#endif
#if ZEND_DEBUG
void zend_debug_alloc_output(char *format, ...)
{
char output_buf[256];
va_list args;
va_start(args, format);
vsprintf(output_buf, format, args);
va_end(args);
#ifdef ZEND_WIN32
OutputDebugString(output_buf);
#else
fprintf(stderr, "%s", output_buf);
#endif
}
#endif
#if (defined (__GNUC__) && __GNUC__ > 2 ) && !defined(__INTEL_COMPILER) && !defined(DARWIN) && !defined(__hpux) && !defined(_AIX)
static void zend_mm_panic(const char *message) __attribute__ ((noreturn));
#endif
static void zend_mm_panic(const char *message)
{
fprintf(stderr, "%s\n", message);
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
#if ZEND_DEBUG && defined(HAVE_KILL) && defined(HAVE_GETPID)
kill(getpid(), SIGSEGV);
#endif
exit(1);
}
/*******************/
/* Storage Manager */
/*******************/
#ifdef ZEND_WIN32
# define HAVE_MEM_WIN32 /* use VirtualAlloc() to allocate memory */
#endif
#define HAVE_MEM_MALLOC /* use malloc() to allocate segments */
#include <sys/types.h>
#include <sys/stat.h>
#if HAVE_LIMITS_H
#include <limits.h>
#endif
#include <fcntl.h>
#include <errno.h>
#if defined(HAVE_MEM_MMAP_ANON) || defined(HAVE_MEM_MMAP_ZERO)
# ifdef HAVE_MREMAP
# ifndef _GNU_SOURCE
# define _GNU_SOURCE
# endif
# ifndef __USE_GNU
# define __USE_GNU
# endif
# endif
# include <sys/mman.h>
# ifndef MAP_ANON
# ifdef MAP_ANONYMOUS
# define MAP_ANON MAP_ANONYMOUS
# endif
# endif
# ifndef MREMAP_MAYMOVE
# define MREMAP_MAYMOVE 0
# endif
# ifndef MAP_FAILED
# define MAP_FAILED ((void*)-1)
# endif
#endif
static zend_mm_storage* zend_mm_mem_dummy_init(void *params)
{
return malloc(sizeof(zend_mm_storage));
}
static void zend_mm_mem_dummy_dtor(zend_mm_storage *storage)
{
free(storage);
}
static void zend_mm_mem_dummy_compact(zend_mm_storage *storage)
{
}
#if defined(HAVE_MEM_MMAP_ANON) || defined(HAVE_MEM_MMAP_ZERO)
static zend_mm_segment* zend_mm_mem_mmap_realloc(zend_mm_storage *storage, zend_mm_segment* segment, size_t size)
{
zend_mm_segment *ret;
#ifdef HAVE_MREMAP
#if defined(__NetBSD__)
/* NetBSD 5 supports mremap but takes an extra newp argument */
ret = (zend_mm_segment*)mremap(segment, segment->size, segment, size, MREMAP_MAYMOVE);
#else
ret = (zend_mm_segment*)mremap(segment, segment->size, size, MREMAP_MAYMOVE);
#endif
if (ret == MAP_FAILED) {
#endif
ret = storage->handlers->_alloc(storage, size);
if (ret) {
memcpy(ret, segment, size > segment->size ? segment->size : size);
storage->handlers->_free(storage, segment);
}
#ifdef HAVE_MREMAP
}
#endif
return ret;
}
static void zend_mm_mem_mmap_free(zend_mm_storage *storage, zend_mm_segment* segment)
{
munmap((void*)segment, segment->size);
}
#endif
#ifdef HAVE_MEM_MMAP_ANON
static zend_mm_segment* zend_mm_mem_mmap_anon_alloc(zend_mm_storage *storage, size_t size)
{
zend_mm_segment *ret = (zend_mm_segment*)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
if (ret == MAP_FAILED) {
ret = NULL;
}
return ret;
}
# define ZEND_MM_MEM_MMAP_ANON_DSC {"mmap_anon", zend_mm_mem_dummy_init, zend_mm_mem_dummy_dtor, zend_mm_mem_dummy_compact, zend_mm_mem_mmap_anon_alloc, zend_mm_mem_mmap_realloc, zend_mm_mem_mmap_free}
#endif
#ifdef HAVE_MEM_MMAP_ZERO
static int zend_mm_dev_zero_fd = -1;
static zend_mm_storage* zend_mm_mem_mmap_zero_init(void *params)
{
if (zend_mm_dev_zero_fd == -1) {
zend_mm_dev_zero_fd = open("/dev/zero", O_RDWR, S_IRUSR | S_IWUSR);
}
if (zend_mm_dev_zero_fd >= 0) {
return malloc(sizeof(zend_mm_storage));
} else {
return NULL;
}
}
static void zend_mm_mem_mmap_zero_dtor(zend_mm_storage *storage)
{
close(zend_mm_dev_zero_fd);
free(storage);
}
static zend_mm_segment* zend_mm_mem_mmap_zero_alloc(zend_mm_storage *storage, size_t size)
{
zend_mm_segment *ret = (zend_mm_segment*)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, zend_mm_dev_zero_fd, 0);
if (ret == MAP_FAILED) {
ret = NULL;
}
return ret;
}
# define ZEND_MM_MEM_MMAP_ZERO_DSC {"mmap_zero", zend_mm_mem_mmap_zero_init, zend_mm_mem_mmap_zero_dtor, zend_mm_mem_dummy_compact, zend_mm_mem_mmap_zero_alloc, zend_mm_mem_mmap_realloc, zend_mm_mem_mmap_free}
#endif
#ifdef HAVE_MEM_WIN32
static zend_mm_storage* zend_mm_mem_win32_init(void *params)
{
HANDLE heap = HeapCreate(HEAP_NO_SERIALIZE, 0, 0);
zend_mm_storage* storage;
if (heap == NULL) {
return NULL;
}
storage = (zend_mm_storage*)malloc(sizeof(zend_mm_storage));
if (storage == NULL) {
HeapDestroy(heap);
return NULL;
}
storage->data = (void*) heap;
return storage;
}
static void zend_mm_mem_win32_dtor(zend_mm_storage *storage)
{
HeapDestroy((HANDLE)storage->data);
free(storage);
}
static void zend_mm_mem_win32_compact(zend_mm_storage *storage)
{
HeapDestroy((HANDLE)storage->data);
storage->data = (void*)HeapCreate(HEAP_NO_SERIALIZE, 0, 0);
}
static zend_mm_segment* zend_mm_mem_win32_alloc(zend_mm_storage *storage, size_t size)
{
return (zend_mm_segment*) HeapAlloc((HANDLE)storage->data, HEAP_NO_SERIALIZE, size);
}
static void zend_mm_mem_win32_free(zend_mm_storage *storage, zend_mm_segment* segment)
{
HeapFree((HANDLE)storage->data, HEAP_NO_SERIALIZE, segment);
}
static zend_mm_segment* zend_mm_mem_win32_realloc(zend_mm_storage *storage, zend_mm_segment* segment, size_t size)
{
return (zend_mm_segment*) HeapReAlloc((HANDLE)storage->data, HEAP_NO_SERIALIZE, segment, size);
}
# define ZEND_MM_MEM_WIN32_DSC {"win32", zend_mm_mem_win32_init, zend_mm_mem_win32_dtor, zend_mm_mem_win32_compact, zend_mm_mem_win32_alloc, zend_mm_mem_win32_realloc, zend_mm_mem_win32_free}
#endif
#ifdef HAVE_MEM_MALLOC
static zend_mm_segment* zend_mm_mem_malloc_alloc(zend_mm_storage *storage, size_t size)
{
return (zend_mm_segment*)malloc(size);
}
static zend_mm_segment* zend_mm_mem_malloc_realloc(zend_mm_storage *storage, zend_mm_segment *ptr, size_t size)
{
return (zend_mm_segment*)realloc(ptr, size);
}
static void zend_mm_mem_malloc_free(zend_mm_storage *storage, zend_mm_segment *ptr)
{
free(ptr);
}
# define ZEND_MM_MEM_MALLOC_DSC {"malloc", zend_mm_mem_dummy_init, zend_mm_mem_dummy_dtor, zend_mm_mem_dummy_compact, zend_mm_mem_malloc_alloc, zend_mm_mem_malloc_realloc, zend_mm_mem_malloc_free}
#endif
static const zend_mm_mem_handlers mem_handlers[] = {
#ifdef HAVE_MEM_WIN32
ZEND_MM_MEM_WIN32_DSC,
#endif
#ifdef HAVE_MEM_MALLOC
ZEND_MM_MEM_MALLOC_DSC,
#endif
#ifdef HAVE_MEM_MMAP_ANON
ZEND_MM_MEM_MMAP_ANON_DSC,
#endif
#ifdef HAVE_MEM_MMAP_ZERO
ZEND_MM_MEM_MMAP_ZERO_DSC,
#endif
{NULL, NULL, NULL, NULL, NULL, NULL}
};
# define ZEND_MM_STORAGE_DTOR() heap->storage->handlers->dtor(heap->storage)
# define ZEND_MM_STORAGE_ALLOC(size) heap->storage->handlers->_alloc(heap->storage, size)
# define ZEND_MM_STORAGE_REALLOC(ptr, size) heap->storage->handlers->_realloc(heap->storage, ptr, size)
# define ZEND_MM_STORAGE_FREE(ptr) heap->storage->handlers->_free(heap->storage, ptr)
/****************/
/* Heap Manager */
/****************/
#define MEM_BLOCK_VALID 0x7312F8DC
#define MEM_BLOCK_FREED 0x99954317
#define MEM_BLOCK_CACHED 0xFB8277DC
#define MEM_BLOCK_GUARD 0x2A8FCC84
#define MEM_BLOCK_LEAK 0x6C5E8F2D
/* mm block type */
typedef struct _zend_mm_block_info {
#if ZEND_MM_COOKIES
size_t _cookie;
#endif
size_t _size;
size_t _prev;
} zend_mm_block_info;
#if ZEND_DEBUG
typedef struct _zend_mm_debug_info {
const char *filename;
uint lineno;
const char *orig_filename;
uint orig_lineno;
size_t size;
#if ZEND_MM_HEAP_PROTECTION
unsigned int start_magic;
#endif
} zend_mm_debug_info;
#elif ZEND_MM_HEAP_PROTECTION
typedef struct _zend_mm_debug_info {
size_t size;
unsigned int start_magic;
} zend_mm_debug_info;
#endif
typedef struct _zend_mm_block {
zend_mm_block_info info;
#if ZEND_DEBUG
unsigned int magic;
# ifdef ZTS
THREAD_T thread_id;
# endif
zend_mm_debug_info debug;
#elif ZEND_MM_HEAP_PROTECTION
zend_mm_debug_info debug;
#endif
} zend_mm_block;
typedef struct _zend_mm_small_free_block {
zend_mm_block_info info;
#if ZEND_DEBUG
unsigned int magic;
# ifdef ZTS
THREAD_T thread_id;
# endif
#endif
struct _zend_mm_free_block *prev_free_block;
struct _zend_mm_free_block *next_free_block;
} zend_mm_small_free_block;
typedef struct _zend_mm_free_block {
zend_mm_block_info info;
#if ZEND_DEBUG
unsigned int magic;
# ifdef ZTS
THREAD_T thread_id;
# endif
#endif
struct _zend_mm_free_block *prev_free_block;
struct _zend_mm_free_block *next_free_block;
struct _zend_mm_free_block **parent;
struct _zend_mm_free_block *child[2];
} zend_mm_free_block;
#define ZEND_MM_NUM_BUCKETS (sizeof(size_t) << 3)
#define ZEND_MM_CACHE 1
#define ZEND_MM_CACHE_SIZE (ZEND_MM_NUM_BUCKETS * 4 * 1024)
#ifndef ZEND_MM_CACHE_STAT
# define ZEND_MM_CACHE_STAT 0
#endif
struct _zend_mm_heap {
int use_zend_alloc;
void *(*_malloc)(size_t);
void (*_free)(void*);
void *(*_realloc)(void*, size_t);
size_t free_bitmap;
size_t large_free_bitmap;
size_t block_size;
size_t compact_size;
zend_mm_segment *segments_list;
zend_mm_storage *storage;
size_t real_size;
size_t real_peak;
size_t limit;
size_t size;
size_t peak;
size_t reserve_size;
void *reserve;
int overflow;
int internal;
#if ZEND_MM_CACHE
unsigned int cached;
zend_mm_free_block *cache[ZEND_MM_NUM_BUCKETS];
#endif
zend_mm_free_block *free_buckets[ZEND_MM_NUM_BUCKETS*2];
zend_mm_free_block *large_free_buckets[ZEND_MM_NUM_BUCKETS];
zend_mm_free_block *rest_buckets[2];
int rest_count;
#if ZEND_MM_CACHE_STAT
struct {
int count;
int max_count;
int hit;
int miss;
} cache_stat[ZEND_MM_NUM_BUCKETS+1];
#endif
};
#define ZEND_MM_SMALL_FREE_BUCKET(heap, index) \
(zend_mm_free_block*) ((char*)&heap->free_buckets[index * 2] + \
sizeof(zend_mm_free_block*) * 2 - \
sizeof(zend_mm_small_free_block))
#define ZEND_MM_REST_BUCKET(heap) \
(zend_mm_free_block*)((char*)&heap->rest_buckets[0] + \
sizeof(zend_mm_free_block*) * 2 - \
sizeof(zend_mm_small_free_block))
#define ZEND_MM_REST_BLOCK ((zend_mm_free_block**)(zend_uintptr_t)(1))
#define ZEND_MM_MAX_REST_BLOCKS 16
#if ZEND_MM_COOKIES
static unsigned int _zend_mm_cookie = 0;
# define ZEND_MM_COOKIE(block) \
(((size_t)(block)) ^ _zend_mm_cookie)
# define ZEND_MM_SET_COOKIE(block) \
(block)->info._cookie = ZEND_MM_COOKIE(block)
# define ZEND_MM_CHECK_COOKIE(block) \
if (UNEXPECTED((block)->info._cookie != ZEND_MM_COOKIE(block))) { \
zend_mm_panic("zend_mm_heap corrupted"); \
}
#else
# define ZEND_MM_SET_COOKIE(block)
# define ZEND_MM_CHECK_COOKIE(block)
#endif
/* Default memory segment size */
#define ZEND_MM_SEG_SIZE (256 * 1024)
/* Reserved space for error reporting in case of memory overflow */
#define ZEND_MM_RESERVE_SIZE (8*1024)
#ifdef _WIN64
# define ZEND_MM_LONG_CONST(x) (x##i64)
#else
# define ZEND_MM_LONG_CONST(x) (x##L)
#endif
#define ZEND_MM_TYPE_MASK ZEND_MM_LONG_CONST(0x3)
#define ZEND_MM_FREE_BLOCK ZEND_MM_LONG_CONST(0x0)
#define ZEND_MM_USED_BLOCK ZEND_MM_LONG_CONST(0x1)
#define ZEND_MM_GUARD_BLOCK ZEND_MM_LONG_CONST(0x3)
#define ZEND_MM_BLOCK(b, type, size) do { \
size_t _size = (size); \
(b)->info._size = (type) | _size; \
ZEND_MM_BLOCK_AT(b, _size)->info._prev = (type) | _size; \
ZEND_MM_SET_COOKIE(b); \
} while (0);
#define ZEND_MM_LAST_BLOCK(b) do { \
(b)->info._size = ZEND_MM_GUARD_BLOCK | ZEND_MM_ALIGNED_HEADER_SIZE; \
ZEND_MM_SET_MAGIC(b, MEM_BLOCK_GUARD); \
} while (0);
#define ZEND_MM_BLOCK_SIZE(b) ((b)->info._size & ~ZEND_MM_TYPE_MASK)
#define ZEND_MM_IS_FREE_BLOCK(b) (!((b)->info._size & ZEND_MM_USED_BLOCK))
#define ZEND_MM_IS_USED_BLOCK(b) ((b)->info._size & ZEND_MM_USED_BLOCK)
#define ZEND_MM_IS_GUARD_BLOCK(b) (((b)->info._size & ZEND_MM_TYPE_MASK) == ZEND_MM_GUARD_BLOCK)
#define ZEND_MM_NEXT_BLOCK(b) ZEND_MM_BLOCK_AT(b, ZEND_MM_BLOCK_SIZE(b))
#define ZEND_MM_PREV_BLOCK(b) ZEND_MM_BLOCK_AT(b, -(ssize_t)((b)->info._prev & ~ZEND_MM_TYPE_MASK))
#define ZEND_MM_PREV_BLOCK_IS_FREE(b) (!((b)->info._prev & ZEND_MM_USED_BLOCK))
#define ZEND_MM_MARK_FIRST_BLOCK(b) ((b)->info._prev = ZEND_MM_GUARD_BLOCK)
#define ZEND_MM_IS_FIRST_BLOCK(b) ((b)->info._prev == ZEND_MM_GUARD_BLOCK)
/* optimized access */
#define ZEND_MM_FREE_BLOCK_SIZE(b) (b)->info._size
/* Aligned header size */
#define ZEND_MM_ALIGNED_HEADER_SIZE ZEND_MM_ALIGNED_SIZE(sizeof(zend_mm_block))
#define ZEND_MM_ALIGNED_FREE_HEADER_SIZE ZEND_MM_ALIGNED_SIZE(sizeof(zend_mm_small_free_block))
#define ZEND_MM_MIN_ALLOC_BLOCK_SIZE ZEND_MM_ALIGNED_SIZE(ZEND_MM_ALIGNED_HEADER_SIZE + END_MAGIC_SIZE)
#define ZEND_MM_ALIGNED_MIN_HEADER_SIZE (ZEND_MM_MIN_ALLOC_BLOCK_SIZE>ZEND_MM_ALIGNED_FREE_HEADER_SIZE?ZEND_MM_MIN_ALLOC_BLOCK_SIZE:ZEND_MM_ALIGNED_FREE_HEADER_SIZE)
#define ZEND_MM_ALIGNED_SEGMENT_SIZE ZEND_MM_ALIGNED_SIZE(sizeof(zend_mm_segment))
#define ZEND_MM_MIN_SIZE ((ZEND_MM_ALIGNED_MIN_HEADER_SIZE>(ZEND_MM_ALIGNED_HEADER_SIZE+END_MAGIC_SIZE))?(ZEND_MM_ALIGNED_MIN_HEADER_SIZE-(ZEND_MM_ALIGNED_HEADER_SIZE+END_MAGIC_SIZE)):0)
#define ZEND_MM_MAX_SMALL_SIZE ((ZEND_MM_NUM_BUCKETS<<ZEND_MM_ALIGNMENT_LOG2)+ZEND_MM_ALIGNED_MIN_HEADER_SIZE)
#define ZEND_MM_TRUE_SIZE(size) ((size<ZEND_MM_MIN_SIZE)?(ZEND_MM_ALIGNED_MIN_HEADER_SIZE):(ZEND_MM_ALIGNED_SIZE(size+ZEND_MM_ALIGNED_HEADER_SIZE+END_MAGIC_SIZE)))
#define ZEND_MM_BUCKET_INDEX(true_size) ((true_size>>ZEND_MM_ALIGNMENT_LOG2)-(ZEND_MM_ALIGNED_MIN_HEADER_SIZE>>ZEND_MM_ALIGNMENT_LOG2))
#define ZEND_MM_SMALL_SIZE(true_size) (true_size < ZEND_MM_MAX_SMALL_SIZE)
/* Memory calculations */
#define ZEND_MM_BLOCK_AT(blk, offset) ((zend_mm_block *) (((char *) (blk))+(offset)))
#define ZEND_MM_DATA_OF(p) ((void *) (((char *) (p))+ZEND_MM_ALIGNED_HEADER_SIZE))
#define ZEND_MM_HEADER_OF(blk) ZEND_MM_BLOCK_AT(blk, -(int)ZEND_MM_ALIGNED_HEADER_SIZE)
/* Debug output */
#if ZEND_DEBUG
# ifdef ZTS
# define ZEND_MM_SET_THREAD_ID(block) \
((zend_mm_block*)(block))->thread_id = tsrm_thread_id()
# define ZEND_MM_BAD_THREAD_ID(block) ((block)->thread_id != tsrm_thread_id())
# else
# define ZEND_MM_SET_THREAD_ID(block)
# define ZEND_MM_BAD_THREAD_ID(block) 0
# endif
# define ZEND_MM_VALID_PTR(block) \
zend_mm_check_ptr(heap, block, 1 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC)
# define ZEND_MM_SET_MAGIC(block, val) do { \
(block)->magic = (val); \
} while (0)
# define ZEND_MM_CHECK_MAGIC(block, val) do { \
if ((block)->magic != (val)) { \
zend_mm_panic("zend_mm_heap corrupted"); \
} \
} while (0)
# define ZEND_MM_SET_DEBUG_INFO(block, __size, set_valid, set_thread) do { \
((zend_mm_block*)(block))->debug.filename = __zend_filename; \
((zend_mm_block*)(block))->debug.lineno = __zend_lineno; \
((zend_mm_block*)(block))->debug.orig_filename = __zend_orig_filename; \
((zend_mm_block*)(block))->debug.orig_lineno = __zend_orig_lineno; \
ZEND_MM_SET_BLOCK_SIZE(block, __size); \
if (set_valid) { \
ZEND_MM_SET_MAGIC(block, MEM_BLOCK_VALID); \
} \
if (set_thread) { \
ZEND_MM_SET_THREAD_ID(block); \
} \
} while (0)
#else
# define ZEND_MM_VALID_PTR(ptr) EXPECTED(ptr != NULL)
# define ZEND_MM_SET_MAGIC(block, val)
# define ZEND_MM_CHECK_MAGIC(block, val)
# define ZEND_MM_SET_DEBUG_INFO(block, __size, set_valid, set_thread) ZEND_MM_SET_BLOCK_SIZE(block, __size)
#endif
#if ZEND_MM_HEAP_PROTECTION
# define ZEND_MM_CHECK_PROTECTION(block) \
do { \
if ((block)->debug.start_magic != _mem_block_start_magic || \
memcmp(ZEND_MM_END_MAGIC_PTR(block), &_mem_block_end_magic, END_MAGIC_SIZE) != 0) { \
zend_mm_panic("zend_mm_heap corrupted"); \
} \
} while (0)
# define ZEND_MM_END_MAGIC_PTR(block) \
(((char*)(ZEND_MM_DATA_OF(block))) + ((zend_mm_block*)(block))->debug.size)
# define END_MAGIC_SIZE sizeof(unsigned int)
# define ZEND_MM_SET_BLOCK_SIZE(block, __size) do { \
char *p; \
((zend_mm_block*)(block))->debug.size = (__size); \
p = ZEND_MM_END_MAGIC_PTR(block); \
((zend_mm_block*)(block))->debug.start_magic = _mem_block_start_magic; \
memcpy(p, &_mem_block_end_magic, END_MAGIC_SIZE); \
} while (0)
static unsigned int _mem_block_start_magic = 0;
static unsigned int _mem_block_end_magic = 0;
#else
# if ZEND_DEBUG
# define ZEND_MM_SET_BLOCK_SIZE(block, _size) \
((zend_mm_block*)(block))->debug.size = (_size)
# else
# define ZEND_MM_SET_BLOCK_SIZE(block, _size)
# endif
# define ZEND_MM_CHECK_PROTECTION(block)
# define END_MAGIC_SIZE 0
#endif
#if ZEND_MM_SAFE_UNLINKING
# define ZEND_MM_CHECK_BLOCK_LINKAGE(block) \
if (UNEXPECTED((block)->info._size != ZEND_MM_BLOCK_AT(block, ZEND_MM_FREE_BLOCK_SIZE(block))->info._prev) || \
UNEXPECTED(!UNEXPECTED(ZEND_MM_IS_FIRST_BLOCK(block)) && \
UNEXPECTED(ZEND_MM_PREV_BLOCK(block)->info._size != (block)->info._prev))) { \
zend_mm_panic("zend_mm_heap corrupted"); \
}
#define ZEND_MM_CHECK_TREE(block) \
if (UNEXPECTED(*((block)->parent) != (block))) { \
zend_mm_panic("zend_mm_heap corrupted"); \
}
#else
# define ZEND_MM_CHECK_BLOCK_LINKAGE(block)
# define ZEND_MM_CHECK_TREE(block)
#endif
#define ZEND_MM_LARGE_BUCKET_INDEX(S) zend_mm_high_bit(S)
static void *_zend_mm_alloc_int(zend_mm_heap *heap, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC) ZEND_ATTRIBUTE_MALLOC ZEND_ATTRIBUTE_ALLOC_SIZE(2);
static void _zend_mm_free_int(zend_mm_heap *heap, void *p ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC);
static void *_zend_mm_realloc_int(zend_mm_heap *heap, void *p, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC) ZEND_ATTRIBUTE_ALLOC_SIZE(3);
static inline unsigned int zend_mm_high_bit(size_t _size)
{
#if defined(__GNUC__) && (defined(__native_client__) || defined(i386))
unsigned int n;
__asm__("bsrl %1,%0\n\t" : "=r" (n) : "rm" (_size) : "cc");
return n;
#elif defined(__GNUC__) && defined(__x86_64__)
unsigned long n;
__asm__("bsr %1,%0\n\t" : "=r" (n) : "rm" (_size) : "cc");
return (unsigned int)n;
#elif defined(_MSC_VER) && defined(_M_IX86)
__asm {
bsr eax, _size
}
#elif defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))
return (8 * SIZEOF_SIZE_T - 1) - __builtin_clzl(_size);
#else
unsigned int n = 0;
while (_size != 0) {
_size = _size >> 1;
n++;
}
return n-1;
#endif
}
static inline unsigned int zend_mm_low_bit(size_t _size)
{
#if defined(__GNUC__) && (defined(__native_client__) || defined(i386))
unsigned int n;
__asm__("bsfl %1,%0\n\t" : "=r" (n) : "rm" (_size) : "cc");
return n;
#elif defined(__GNUC__) && defined(__x86_64__)
unsigned long n;
__asm__("bsf %1,%0\n\t" : "=r" (n) : "rm" (_size) : "cc");
return (unsigned int)n;
#elif defined(_MSC_VER) && defined(_M_IX86)
__asm {
bsf eax, _size
}
#elif defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))
return __builtin_ctzl(_size);
#else
static const int offset[16] = {4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0};
unsigned int n;
unsigned int index = 0;
n = offset[_size & 15];
while (n == 4) {
_size >>= 4;
index += n;
n = offset[_size & 15];
}
return index + n;
#endif
}
static inline void zend_mm_add_to_free_list(zend_mm_heap *heap, zend_mm_free_block *mm_block)
{
size_t size;
size_t index;
ZEND_MM_SET_MAGIC(mm_block, MEM_BLOCK_FREED);
size = ZEND_MM_FREE_BLOCK_SIZE(mm_block);
if (EXPECTED(!ZEND_MM_SMALL_SIZE(size))) {
zend_mm_free_block **p;
index = ZEND_MM_LARGE_BUCKET_INDEX(size);
p = &heap->large_free_buckets[index];
mm_block->child[0] = mm_block->child[1] = NULL;
if (!*p) {
*p = mm_block;
mm_block->parent = p;
mm_block->prev_free_block = mm_block->next_free_block = mm_block;
heap->large_free_bitmap |= (ZEND_MM_LONG_CONST(1) << index);
} else {
size_t m;
for (m = size << (ZEND_MM_NUM_BUCKETS - index); ; m <<= 1) {
zend_mm_free_block *prev = *p;
if (ZEND_MM_FREE_BLOCK_SIZE(prev) != size) {
p = &prev->child[(m >> (ZEND_MM_NUM_BUCKETS-1)) & 1];
if (!*p) {
*p = mm_block;
mm_block->parent = p;
mm_block->prev_free_block = mm_block->next_free_block = mm_block;
break;
}
} else {
zend_mm_free_block *next = prev->next_free_block;
prev->next_free_block = next->prev_free_block = mm_block;
mm_block->next_free_block = next;
mm_block->prev_free_block = prev;
mm_block->parent = NULL;
break;
}
}
}
} else {
zend_mm_free_block *prev, *next;
index = ZEND_MM_BUCKET_INDEX(size);
prev = ZEND_MM_SMALL_FREE_BUCKET(heap, index);
if (prev->prev_free_block == prev) {
heap->free_bitmap |= (ZEND_MM_LONG_CONST(1) << index);
}
next = prev->next_free_block;
mm_block->prev_free_block = prev;
mm_block->next_free_block = next;
prev->next_free_block = next->prev_free_block = mm_block;
}
}
static inline void zend_mm_remove_from_free_list(zend_mm_heap *heap, zend_mm_free_block *mm_block)
{
zend_mm_free_block *prev = mm_block->prev_free_block;
zend_mm_free_block *next = mm_block->next_free_block;
ZEND_MM_CHECK_MAGIC(mm_block, MEM_BLOCK_FREED);
if (EXPECTED(prev == mm_block)) {
zend_mm_free_block **rp, **cp;
#if ZEND_MM_SAFE_UNLINKING
if (UNEXPECTED(next != mm_block)) {
zend_mm_panic("zend_mm_heap corrupted");
}
#endif
rp = &mm_block->child[mm_block->child[1] != NULL];
prev = *rp;
if (EXPECTED(prev == NULL)) {
size_t index = ZEND_MM_LARGE_BUCKET_INDEX(ZEND_MM_FREE_BLOCK_SIZE(mm_block));
ZEND_MM_CHECK_TREE(mm_block);
*mm_block->parent = NULL;
if (mm_block->parent == &heap->large_free_buckets[index]) {
heap->large_free_bitmap &= ~(ZEND_MM_LONG_CONST(1) << index);
}
} else {
while (*(cp = &(prev->child[prev->child[1] != NULL])) != NULL) {
prev = *cp;
rp = cp;
}
*rp = NULL;
subst_block:
ZEND_MM_CHECK_TREE(mm_block);
*mm_block->parent = prev;
prev->parent = mm_block->parent;
if ((prev->child[0] = mm_block->child[0])) {
ZEND_MM_CHECK_TREE(prev->child[0]);
prev->child[0]->parent = &prev->child[0];
}
if ((prev->child[1] = mm_block->child[1])) {
ZEND_MM_CHECK_TREE(prev->child[1]);
prev->child[1]->parent = &prev->child[1];
}
}
} else {
#if ZEND_MM_SAFE_UNLINKING
if (UNEXPECTED(prev->next_free_block != mm_block) || UNEXPECTED(next->prev_free_block != mm_block)) {
zend_mm_panic("zend_mm_heap corrupted");
}
#endif
prev->next_free_block = next;
next->prev_free_block = prev;
if (EXPECTED(ZEND_MM_SMALL_SIZE(ZEND_MM_FREE_BLOCK_SIZE(mm_block)))) {
if (EXPECTED(prev == next)) {
size_t index = ZEND_MM_BUCKET_INDEX(ZEND_MM_FREE_BLOCK_SIZE(mm_block));
if (EXPECTED(heap->free_buckets[index*2] == heap->free_buckets[index*2+1])) {
heap->free_bitmap &= ~(ZEND_MM_LONG_CONST(1) << index);
}
}
} else if (UNEXPECTED(mm_block->parent == ZEND_MM_REST_BLOCK)) {
heap->rest_count--;
} else if (UNEXPECTED(mm_block->parent != NULL)) {
goto subst_block;
}
}
}
static inline void zend_mm_add_to_rest_list(zend_mm_heap *heap, zend_mm_free_block *mm_block)
{
zend_mm_free_block *prev, *next;
while (heap->rest_count >= ZEND_MM_MAX_REST_BLOCKS) {
zend_mm_free_block *p = heap->rest_buckets[1];
if (!ZEND_MM_SMALL_SIZE(ZEND_MM_FREE_BLOCK_SIZE(p))) {
heap->rest_count--;
}
prev = p->prev_free_block;
next = p->next_free_block;
prev->next_free_block = next;
next->prev_free_block = prev;
zend_mm_add_to_free_list(heap, p);
}
if (!ZEND_MM_SMALL_SIZE(ZEND_MM_FREE_BLOCK_SIZE(mm_block))) {
mm_block->parent = ZEND_MM_REST_BLOCK;
heap->rest_count++;
}
ZEND_MM_SET_MAGIC(mm_block, MEM_BLOCK_FREED);
prev = heap->rest_buckets[0];
next = prev->next_free_block;
mm_block->prev_free_block = prev;
mm_block->next_free_block = next;
prev->next_free_block = next->prev_free_block = mm_block;
}
static inline void zend_mm_init(zend_mm_heap *heap)
{
zend_mm_free_block* p;
int i;
heap->free_bitmap = 0;
heap->large_free_bitmap = 0;
#if ZEND_MM_CACHE
heap->cached = 0;
memset(heap->cache, 0, sizeof(heap->cache));
#endif
#if ZEND_MM_CACHE_STAT
for (i = 0; i < ZEND_MM_NUM_BUCKETS; i++) {
heap->cache_stat[i].count = 0;
}
#endif
p = ZEND_MM_SMALL_FREE_BUCKET(heap, 0);
for (i = 0; i < ZEND_MM_NUM_BUCKETS; i++) {
p->next_free_block = p;
p->prev_free_block = p;
p = (zend_mm_free_block*)((char*)p + sizeof(zend_mm_free_block*) * 2);
heap->large_free_buckets[i] = NULL;
}
heap->rest_buckets[0] = heap->rest_buckets[1] = ZEND_MM_REST_BUCKET(heap);
heap->rest_count = 0;
}
static void zend_mm_del_segment(zend_mm_heap *heap, zend_mm_segment *segment)
{
zend_mm_segment **p = &heap->segments_list;
while (*p != segment) {
p = &(*p)->next_segment;
}
*p = segment->next_segment;
heap->real_size -= segment->size;
ZEND_MM_STORAGE_FREE(segment);
}
#if ZEND_MM_CACHE
static void zend_mm_free_cache(zend_mm_heap *heap)
{
int i;
for (i = 0; i < ZEND_MM_NUM_BUCKETS; i++) {
if (heap->cache[i]) {
zend_mm_free_block *mm_block = heap->cache[i];
while (mm_block) {
size_t size = ZEND_MM_BLOCK_SIZE(mm_block);
zend_mm_free_block *q = mm_block->prev_free_block;
zend_mm_block *next_block = ZEND_MM_NEXT_BLOCK(mm_block);
heap->cached -= size;
if (ZEND_MM_PREV_BLOCK_IS_FREE(mm_block)) {
mm_block = (zend_mm_free_block*)ZEND_MM_PREV_BLOCK(mm_block);
size += ZEND_MM_FREE_BLOCK_SIZE(mm_block);
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) mm_block);
}
if (ZEND_MM_IS_FREE_BLOCK(next_block)) {
size += ZEND_MM_FREE_BLOCK_SIZE(next_block);
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) next_block);
}
ZEND_MM_BLOCK(mm_block, ZEND_MM_FREE_BLOCK, size);
if (ZEND_MM_IS_FIRST_BLOCK(mm_block) &&
ZEND_MM_IS_GUARD_BLOCK(ZEND_MM_NEXT_BLOCK(mm_block))) {
zend_mm_del_segment(heap, (zend_mm_segment *) ((char *)mm_block - ZEND_MM_ALIGNED_SEGMENT_SIZE));
} else {
zend_mm_add_to_free_list(heap, (zend_mm_free_block *) mm_block);
}
mm_block = q;
}
heap->cache[i] = NULL;
#if ZEND_MM_CACHE_STAT
heap->cache_stat[i].count = 0;
#endif
}
}
}
#endif
#if ZEND_MM_HEAP_PROTECTION || ZEND_MM_COOKIES
static void zend_mm_random(unsigned char *buf, size_t size) /* {{{ */
{
size_t i = 0;
unsigned char t;
#ifdef ZEND_WIN32
HCRYPTPROV hCryptProv;
int has_context = 0;
if (!CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, 0)) {
/* Could mean that the key container does not exist, let try
again by asking for a new one */
if (GetLastError() == NTE_BAD_KEYSET) {
if (CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET)) {
has_context = 1;
}
}
} else {
has_context = 1;
}
if (has_context) {
do {
BOOL ret = CryptGenRandom(hCryptProv, size, buf);
CryptReleaseContext(hCryptProv, 0);
if (ret) {
while (i < size && buf[i] != 0) {
i++;
}
if (i == size) {
return;
}
}
} while (0);
}
#elif defined(HAVE_DEV_URANDOM)
int fd = open("/dev/urandom", 0);
if (fd >= 0) {
if (read(fd, buf, size) == size) {
while (i < size && buf[i] != 0) {
i++;
}
if (i == size) {
close(fd);
return;
}
}
close(fd);
}
#endif
t = (unsigned char)getpid();
while (i < size) {
do {
buf[i] = ((unsigned char)rand()) ^ t;
} while (buf[i] == 0);
t = buf[i++] << 1;
}
}
/* }}} */
#endif
/* Notes:
* - This function may alter the block_sizes values to match platform alignment
* - This function does *not* perform sanity checks on the arguments
*/
ZEND_API zend_mm_heap *zend_mm_startup_ex(const zend_mm_mem_handlers *handlers, size_t block_size, size_t reserve_size, int internal, void *params)
{
zend_mm_storage *storage;
zend_mm_heap *heap;
#if 0
int i;
printf("ZEND_MM_ALIGNMENT=%d\n", ZEND_MM_ALIGNMENT);
printf("ZEND_MM_ALIGNMENT_LOG2=%d\n", ZEND_MM_ALIGNMENT_LOG2);
printf("ZEND_MM_MIN_SIZE=%d\n", ZEND_MM_MIN_SIZE);
printf("ZEND_MM_MAX_SMALL_SIZE=%d\n", ZEND_MM_MAX_SMALL_SIZE);
printf("ZEND_MM_ALIGNED_HEADER_SIZE=%d\n", ZEND_MM_ALIGNED_HEADER_SIZE);
printf("ZEND_MM_ALIGNED_FREE_HEADER_SIZE=%d\n", ZEND_MM_ALIGNED_FREE_HEADER_SIZE);
printf("ZEND_MM_MIN_ALLOC_BLOCK_SIZE=%d\n", ZEND_MM_MIN_ALLOC_BLOCK_SIZE);
printf("ZEND_MM_ALIGNED_MIN_HEADER_SIZE=%d\n", ZEND_MM_ALIGNED_MIN_HEADER_SIZE);
printf("ZEND_MM_ALIGNED_SEGMENT_SIZE=%d\n", ZEND_MM_ALIGNED_SEGMENT_SIZE);
for (i = 0; i < ZEND_MM_MAX_SMALL_SIZE; i++) {
printf("%3d%c: %3ld %d %2ld\n", i, (i == ZEND_MM_MIN_SIZE?'*':' '), (long)ZEND_MM_TRUE_SIZE(i), ZEND_MM_SMALL_SIZE(ZEND_MM_TRUE_SIZE(i)), (long)ZEND_MM_BUCKET_INDEX(ZEND_MM_TRUE_SIZE(i)));
}
exit(0);
#endif
#if ZEND_MM_HEAP_PROTECTION
if (_mem_block_start_magic == 0) {
zend_mm_random((unsigned char*)&_mem_block_start_magic, sizeof(_mem_block_start_magic));
}
if (_mem_block_end_magic == 0) {
zend_mm_random((unsigned char*)&_mem_block_end_magic, sizeof(_mem_block_end_magic));
}
#endif
#if ZEND_MM_COOKIES
if (_zend_mm_cookie == 0) {
zend_mm_random((unsigned char*)&_zend_mm_cookie, sizeof(_zend_mm_cookie));
}
#endif
if (zend_mm_low_bit(block_size) != zend_mm_high_bit(block_size)) {
fprintf(stderr, "'block_size' must be a power of two\n");
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
}
storage = handlers->init(params);
if (!storage) {
fprintf(stderr, "Cannot initialize zend_mm storage [%s]\n", handlers->name);
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
}
storage->handlers = handlers;
heap = malloc(sizeof(struct _zend_mm_heap));
if (heap == NULL) {
fprintf(stderr, "Cannot allocate heap for zend_mm storage [%s]\n", handlers->name);
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
}
heap->storage = storage;
heap->block_size = block_size;
heap->compact_size = 0;
heap->segments_list = NULL;
zend_mm_init(heap);
# if ZEND_MM_CACHE_STAT
memset(heap->cache_stat, 0, sizeof(heap->cache_stat));
# endif
heap->use_zend_alloc = 1;
heap->real_size = 0;
heap->overflow = 0;
heap->real_peak = 0;
heap->limit = ZEND_MM_LONG_CONST(1)<<(ZEND_MM_NUM_BUCKETS-2);
heap->size = 0;
heap->peak = 0;
heap->internal = internal;
heap->reserve = NULL;
heap->reserve_size = reserve_size;
if (reserve_size > 0) {
heap->reserve = _zend_mm_alloc_int(heap, reserve_size ZEND_FILE_LINE_CC ZEND_FILE_LINE_EMPTY_CC);
}
if (internal) {
int i;
zend_mm_free_block *p, *q, *orig;
zend_mm_heap *mm_heap = _zend_mm_alloc_int(heap, sizeof(zend_mm_heap) ZEND_FILE_LINE_CC ZEND_FILE_LINE_EMPTY_CC);
*mm_heap = *heap;
p = ZEND_MM_SMALL_FREE_BUCKET(mm_heap, 0);
orig = ZEND_MM_SMALL_FREE_BUCKET(heap, 0);
for (i = 0; i < ZEND_MM_NUM_BUCKETS; i++) {
q = p;
while (q->prev_free_block != orig) {
q = q->prev_free_block;
}
q->prev_free_block = p;
q = p;
while (q->next_free_block != orig) {
q = q->next_free_block;
}
q->next_free_block = p;
p = (zend_mm_free_block*)((char*)p + sizeof(zend_mm_free_block*) * 2);
orig = (zend_mm_free_block*)((char*)orig + sizeof(zend_mm_free_block*) * 2);
if (mm_heap->large_free_buckets[i]) {
mm_heap->large_free_buckets[i]->parent = &mm_heap->large_free_buckets[i];
}
}
mm_heap->rest_buckets[0] = mm_heap->rest_buckets[1] = ZEND_MM_REST_BUCKET(mm_heap);
mm_heap->rest_count = 0;
free(heap);
heap = mm_heap;
}
return heap;
}
ZEND_API zend_mm_heap *zend_mm_startup(void)
{
int i;
size_t seg_size;
char *mem_type = getenv("ZEND_MM_MEM_TYPE");
char *tmp;
const zend_mm_mem_handlers *handlers;
zend_mm_heap *heap;
if (mem_type == NULL) {
i = 0;
} else {
for (i = 0; mem_handlers[i].name; i++) {
if (strcmp(mem_handlers[i].name, mem_type) == 0) {
break;
}
}
if (!mem_handlers[i].name) {
fprintf(stderr, "Wrong or unsupported zend_mm storage type '%s'\n", mem_type);
fprintf(stderr, " supported types:\n");
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
for (i = 0; mem_handlers[i].name; i++) {
fprintf(stderr, " '%s'\n", mem_handlers[i].name);
}
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
}
}
handlers = &mem_handlers[i];
tmp = getenv("ZEND_MM_SEG_SIZE");
if (tmp) {
seg_size = zend_atoi(tmp, 0);
if (zend_mm_low_bit(seg_size) != zend_mm_high_bit(seg_size)) {
fprintf(stderr, "ZEND_MM_SEG_SIZE must be a power of two\n");
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
} else if (seg_size < ZEND_MM_ALIGNED_SEGMENT_SIZE + ZEND_MM_ALIGNED_HEADER_SIZE) {
fprintf(stderr, "ZEND_MM_SEG_SIZE is too small\n");
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
exit(255);
}
} else {
seg_size = ZEND_MM_SEG_SIZE;
}
heap = zend_mm_startup_ex(handlers, seg_size, ZEND_MM_RESERVE_SIZE, 0, NULL);
if (heap) {
tmp = getenv("ZEND_MM_COMPACT");
if (tmp) {
heap->compact_size = zend_atoi(tmp, 0);
} else {
heap->compact_size = 2 * 1024 * 1024;
}
}
return heap;
}
#if ZEND_DEBUG
static long zend_mm_find_leaks(zend_mm_segment *segment, zend_mm_block *b)
{
long leaks = 0;
zend_mm_block *p, *q;
p = ZEND_MM_NEXT_BLOCK(b);
while (1) {
if (ZEND_MM_IS_GUARD_BLOCK(p)) {
ZEND_MM_CHECK_MAGIC(p, MEM_BLOCK_GUARD);
segment = segment->next_segment;
if (!segment) {
break;
}
p = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
continue;
}
q = ZEND_MM_NEXT_BLOCK(p);
if (q <= p ||
(char*)q > (char*)segment + segment->size ||
p->info._size != q->info._prev) {
zend_mm_panic("zend_mm_heap corrupted");
}
if (!ZEND_MM_IS_FREE_BLOCK(p)) {
if (p->magic == MEM_BLOCK_VALID) {
if (p->debug.filename==b->debug.filename && p->debug.lineno==b->debug.lineno) {
ZEND_MM_SET_MAGIC(p, MEM_BLOCK_LEAK);
leaks++;
}
#if ZEND_MM_CACHE
} else if (p->magic == MEM_BLOCK_CACHED) {
/* skip it */
#endif
} else if (p->magic != MEM_BLOCK_LEAK) {
zend_mm_panic("zend_mm_heap corrupted");
}
}
p = q;
}
return leaks;
}
static void zend_mm_check_leaks(zend_mm_heap *heap TSRMLS_DC)
{
zend_mm_segment *segment = heap->segments_list;
zend_mm_block *p, *q;
zend_uint total = 0;
if (!segment) {
return;
}
p = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
while (1) {
q = ZEND_MM_NEXT_BLOCK(p);
if (q <= p ||
(char*)q > (char*)segment + segment->size ||
p->info._size != q->info._prev) {
zend_mm_panic("zend_mm_heap corrupted");
}
if (!ZEND_MM_IS_FREE_BLOCK(p)) {
if (p->magic == MEM_BLOCK_VALID) {
long repeated;
zend_leak_info leak;
ZEND_MM_SET_MAGIC(p, MEM_BLOCK_LEAK);
leak.addr = ZEND_MM_DATA_OF(p);
leak.size = p->debug.size;
leak.filename = p->debug.filename;
leak.lineno = p->debug.lineno;
leak.orig_filename = p->debug.orig_filename;
leak.orig_lineno = p->debug.orig_lineno;
zend_message_dispatcher(ZMSG_LOG_SCRIPT_NAME, NULL TSRMLS_CC);
zend_message_dispatcher(ZMSG_MEMORY_LEAK_DETECTED, &leak TSRMLS_CC);
repeated = zend_mm_find_leaks(segment, p);
total += 1 + repeated;
if (repeated) {
zend_message_dispatcher(ZMSG_MEMORY_LEAK_REPEATED, (void *)(zend_uintptr_t)repeated TSRMLS_CC);
}
#if ZEND_MM_CACHE
} else if (p->magic == MEM_BLOCK_CACHED) {
/* skip it */
#endif
} else if (p->magic != MEM_BLOCK_LEAK) {
zend_mm_panic("zend_mm_heap corrupted");
}
}
if (ZEND_MM_IS_GUARD_BLOCK(q)) {
segment = segment->next_segment;
if (!segment) {
break;
}
q = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
}
p = q;
}
if (total) {
zend_message_dispatcher(ZMSG_MEMORY_LEAKS_GRAND_TOTAL, &total TSRMLS_CC);
}
}
static int zend_mm_check_ptr(zend_mm_heap *heap, void *ptr, int silent ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_block *p;
int no_cache_notice = 0;
int had_problems = 0;
int valid_beginning = 1;
if (silent==2) {
silent = 1;
no_cache_notice = 1;
} else if (silent==3) {
silent = 0;
no_cache_notice = 1;
}
if (!silent) {
TSRMLS_FETCH();
zend_message_dispatcher(ZMSG_LOG_SCRIPT_NAME, NULL TSRMLS_CC);
zend_debug_alloc_output("---------------------------------------\n");
zend_debug_alloc_output("%s(%d) : Block "PTR_FMT" status:\n" ZEND_FILE_LINE_RELAY_CC, ptr);
if (__zend_orig_filename) {
zend_debug_alloc_output("%s(%d) : Actual location (location was relayed)\n" ZEND_FILE_LINE_ORIG_RELAY_CC);
}
if (!ptr) {
zend_debug_alloc_output("NULL\n");
zend_debug_alloc_output("---------------------------------------\n");
return 0;
}
}
if (!ptr) {
if (silent) {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
}
p = ZEND_MM_HEADER_OF(ptr);
#ifdef ZTS
if (ZEND_MM_BAD_THREAD_ID(p)) {
if (!silent) {
zend_debug_alloc_output("Invalid pointer: ((thread_id=0x%0.8X) != (expected=0x%0.8X))\n", (long)p->thread_id, (long)tsrm_thread_id());
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
}
#endif
if (p->info._size != ZEND_MM_NEXT_BLOCK(p)->info._prev) {
if (!silent) {
zend_debug_alloc_output("Invalid pointer: ((size="PTR_FMT") != (next.prev="PTR_FMT"))\n", p->info._size, ZEND_MM_NEXT_BLOCK(p)->info._prev);
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
}
if (p->info._prev != ZEND_MM_GUARD_BLOCK &&
ZEND_MM_PREV_BLOCK(p)->info._size != p->info._prev) {
if (!silent) {
zend_debug_alloc_output("Invalid pointer: ((prev="PTR_FMT") != (prev.size="PTR_FMT"))\n", p->info._prev, ZEND_MM_PREV_BLOCK(p)->info._size);
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
}
if (had_problems) {
zend_debug_alloc_output("---------------------------------------\n");
return 0;
}
if (!silent) {
zend_debug_alloc_output("%10s\t","Beginning: ");
}
if (!ZEND_MM_IS_USED_BLOCK(p)) {
if (!silent) {
if (p->magic != MEM_BLOCK_FREED) {
zend_debug_alloc_output("Freed (magic=0x%0.8X, expected=0x%0.8X)\n", p->magic, MEM_BLOCK_FREED);
} else {
zend_debug_alloc_output("Freed\n");
}
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
} else if (ZEND_MM_IS_GUARD_BLOCK(p)) {
if (!silent) {
if (p->magic != MEM_BLOCK_FREED) {
zend_debug_alloc_output("Guard (magic=0x%0.8X, expected=0x%0.8X)\n", p->magic, MEM_BLOCK_FREED);
} else {
zend_debug_alloc_output("Guard\n");
}
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
} else {
switch (p->magic) {
case MEM_BLOCK_VALID:
case MEM_BLOCK_LEAK:
if (!silent) {
zend_debug_alloc_output("OK (allocated on %s:%d, %d bytes)\n", p->debug.filename, p->debug.lineno, (int)p->debug.size);
}
break; /* ok */
case MEM_BLOCK_CACHED:
if (!no_cache_notice) {
if (!silent) {
zend_debug_alloc_output("Cached\n");
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
}
case MEM_BLOCK_FREED:
if (!silent) {
zend_debug_alloc_output("Freed (invalid)\n");
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
break;
case MEM_BLOCK_GUARD:
if (!silent) {
zend_debug_alloc_output("Guard (invalid)\n");
had_problems = 1;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
break;
default:
if (!silent) {
zend_debug_alloc_output("Unknown (magic=0x%0.8X, expected=0x%0.8X)\n", p->magic, MEM_BLOCK_VALID);
had_problems = 1;
valid_beginning = 0;
} else {
return zend_mm_check_ptr(heap, ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
break;
}
}
#if ZEND_MM_HEAP_PROTECTION
if (!valid_beginning) {
if (!silent) {
zend_debug_alloc_output("%10s\t", "Start:");
zend_debug_alloc_output("Unknown\n");
zend_debug_alloc_output("%10s\t", "End:");
zend_debug_alloc_output("Unknown\n");
}
} else {
char *end_magic = ZEND_MM_END_MAGIC_PTR(p);
if (p->debug.start_magic == _mem_block_start_magic) {
if (!silent) {
zend_debug_alloc_output("%10s\t", "Start:");
zend_debug_alloc_output("OK\n");
}
} else {
char *overflow_ptr, *magic_ptr=(char *) &_mem_block_start_magic;
int overflows=0;
int i;
if (silent) {
return _mem_block_check(ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
had_problems = 1;
overflow_ptr = (char *) &p->debug.start_magic;
i = END_MAGIC_SIZE;
while (--i >= 0) {
if (overflow_ptr[i]!=magic_ptr[i]) {
overflows++;
}
}
zend_debug_alloc_output("%10s\t", "Start:");
zend_debug_alloc_output("Overflown (magic=0x%0.8X instead of 0x%0.8X)\n", p->debug.start_magic, _mem_block_start_magic);
zend_debug_alloc_output("%10s\t","");
if (overflows >= END_MAGIC_SIZE) {
zend_debug_alloc_output("At least %d bytes overflown\n", END_MAGIC_SIZE);
} else {
zend_debug_alloc_output("%d byte(s) overflown\n", overflows);
}
}
if (memcmp(end_magic, &_mem_block_end_magic, END_MAGIC_SIZE)==0) {
if (!silent) {
zend_debug_alloc_output("%10s\t", "End:");
zend_debug_alloc_output("OK\n");
}
} else {
char *overflow_ptr, *magic_ptr=(char *) &_mem_block_end_magic;
int overflows=0;
int i;
if (silent) {
return _mem_block_check(ptr, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
had_problems = 1;
overflow_ptr = (char *) end_magic;
for (i=0; i < END_MAGIC_SIZE; i++) {
if (overflow_ptr[i]!=magic_ptr[i]) {
overflows++;
}
}
zend_debug_alloc_output("%10s\t", "End:");
zend_debug_alloc_output("Overflown (magic=0x%0.8X instead of 0x%0.8X)\n", *end_magic, _mem_block_end_magic);
zend_debug_alloc_output("%10s\t","");
if (overflows >= END_MAGIC_SIZE) {
zend_debug_alloc_output("At least %d bytes overflown\n", END_MAGIC_SIZE);
} else {
zend_debug_alloc_output("%d byte(s) overflown\n", overflows);
}
}
}
#endif
if (!silent) {
zend_debug_alloc_output("---------------------------------------\n");
}
return ((!had_problems) ? 1 : 0);
}
static int zend_mm_check_heap(zend_mm_heap *heap, int silent ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_segment *segment = heap->segments_list;
zend_mm_block *p, *q;
int errors = 0;
if (!segment) {
return 0;
}
p = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
while (1) {
q = ZEND_MM_NEXT_BLOCK(p);
if (q <= p ||
(char*)q > (char*)segment + segment->size ||
p->info._size != q->info._prev) {
zend_mm_panic("zend_mm_heap corrupted");
}
if (!ZEND_MM_IS_FREE_BLOCK(p)) {
if (p->magic == MEM_BLOCK_VALID || p->magic == MEM_BLOCK_LEAK) {
if (!zend_mm_check_ptr(heap, ZEND_MM_DATA_OF(p), (silent?2:3) ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC)) {
errors++;
}
#if ZEND_MM_CACHE
} else if (p->magic == MEM_BLOCK_CACHED) {
/* skip it */
#endif
} else if (p->magic != MEM_BLOCK_LEAK) {
zend_mm_panic("zend_mm_heap corrupted");
}
}
if (ZEND_MM_IS_GUARD_BLOCK(q)) {
segment = segment->next_segment;
if (!segment) {
return errors;
}
q = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
}
p = q;
}
}
#endif
ZEND_API void zend_mm_shutdown(zend_mm_heap *heap, int full_shutdown, int silent TSRMLS_DC)
{
zend_mm_storage *storage;
zend_mm_segment *segment;
zend_mm_segment *prev;
int internal;
if (!heap->use_zend_alloc) {
if (full_shutdown) {
free(heap);
}
return;
}
if (heap->reserve) {
#if ZEND_DEBUG
if (!silent) {
_zend_mm_free_int(heap, heap->reserve ZEND_FILE_LINE_CC ZEND_FILE_LINE_EMPTY_CC);
}
#endif
heap->reserve = NULL;
}
#if ZEND_MM_CACHE_STAT
if (full_shutdown) {
FILE *f;
f = fopen("zend_mm.log", "w");
if (f) {
int i,j;
size_t size, true_size, min_size, max_size;
int hit = 0, miss = 0;
fprintf(f, "\nidx min_size max_size true_size max_len hits misses\n");
size = 0;
while (1) {
true_size = ZEND_MM_TRUE_SIZE(size);
if (ZEND_MM_SMALL_SIZE(true_size)) {
min_size = size;
i = ZEND_MM_BUCKET_INDEX(true_size);
size++;
while (1) {
true_size = ZEND_MM_TRUE_SIZE(size);
if (ZEND_MM_SMALL_SIZE(true_size)) {
j = ZEND_MM_BUCKET_INDEX(true_size);
if (j > i) {
max_size = size-1;
break;
}
} else {
max_size = size-1;
break;
}
size++;
}
hit += heap->cache_stat[i].hit;
miss += heap->cache_stat[i].miss;
fprintf(f, "%2d %8d %8d %9d %8d %8d %8d\n", i, (int)min_size, (int)max_size, ZEND_MM_TRUE_SIZE(max_size), heap->cache_stat[i].max_count, heap->cache_stat[i].hit, heap->cache_stat[i].miss);
} else {
break;
}
}
fprintf(f, " %8d %8d\n", hit, miss);
fprintf(f, " %8d %8d\n", heap->cache_stat[ZEND_MM_NUM_BUCKETS].hit, heap->cache_stat[ZEND_MM_NUM_BUCKETS].miss);
fclose(f);
}
}
#endif
#if ZEND_DEBUG
if (!silent) {
zend_mm_check_leaks(heap TSRMLS_CC);
}
#endif
internal = heap->internal;
storage = heap->storage;
segment = heap->segments_list;
if (full_shutdown) {
while (segment) {
prev = segment;
segment = segment->next_segment;
ZEND_MM_STORAGE_FREE(prev);
}
heap->segments_list = NULL;
storage->handlers->dtor(storage);
if (!internal) {
free(heap);
}
} else {
if (segment) {
#ifndef ZEND_WIN32
if (heap->reserve_size) {
while (segment->next_segment) {
prev = segment;
segment = segment->next_segment;
ZEND_MM_STORAGE_FREE(prev);
}
heap->segments_list = segment;
} else {
#endif
do {
prev = segment;
segment = segment->next_segment;
ZEND_MM_STORAGE_FREE(prev);
} while (segment);
heap->segments_list = NULL;
#ifndef ZEND_WIN32
}
#endif
}
if (heap->compact_size &&
heap->real_peak > heap->compact_size) {
storage->handlers->compact(storage);
}
zend_mm_init(heap);
if (heap->segments_list) {
heap->real_size = heap->segments_list->size;
heap->real_peak = heap->segments_list->size;
} else {
heap->real_size = 0;
heap->real_peak = 0;
}
heap->size = 0;
heap->peak = 0;
if (heap->segments_list) {
/* mark segment as a free block */
zend_mm_free_block *b = (zend_mm_free_block*)((char*)heap->segments_list + ZEND_MM_ALIGNED_SEGMENT_SIZE);
size_t block_size = heap->segments_list->size - ZEND_MM_ALIGNED_SEGMENT_SIZE - ZEND_MM_ALIGNED_HEADER_SIZE;
ZEND_MM_MARK_FIRST_BLOCK(b);
ZEND_MM_LAST_BLOCK(ZEND_MM_BLOCK_AT(b, block_size));
ZEND_MM_BLOCK(b, ZEND_MM_FREE_BLOCK, block_size);
zend_mm_add_to_free_list(heap, b);
}
if (heap->reserve_size) {
heap->reserve = _zend_mm_alloc_int(heap, heap->reserve_size ZEND_FILE_LINE_CC ZEND_FILE_LINE_EMPTY_CC);
}
heap->overflow = 0;
}
}
static void zend_mm_safe_error(zend_mm_heap *heap,
const char *format,
size_t limit,
#if ZEND_DEBUG
const char *filename,
uint lineno,
#endif
size_t size)
{
if (heap->reserve) {
_zend_mm_free_int(heap, heap->reserve ZEND_FILE_LINE_CC ZEND_FILE_LINE_EMPTY_CC);
heap->reserve = NULL;
}
if (heap->overflow == 0) {
const char *error_filename;
uint error_lineno;
TSRMLS_FETCH();
if (zend_is_compiling(TSRMLS_C)) {
error_filename = zend_get_compiled_filename(TSRMLS_C);
error_lineno = zend_get_compiled_lineno(TSRMLS_C);
} else if (EG(in_execution)) {
error_filename = EG(active_op_array)?EG(active_op_array)->filename:NULL;
error_lineno = EG(opline_ptr)?(*EG(opline_ptr))->lineno:0;
} else {
error_filename = NULL;
error_lineno = 0;
}
if (!error_filename) {
error_filename = "Unknown";
}
heap->overflow = 1;
zend_try {
zend_error_noreturn(E_ERROR,
format,
limit,
#if ZEND_DEBUG
filename,
lineno,
#endif
size);
} zend_catch {
if (heap->overflow == 2) {
fprintf(stderr, "\nFatal error: ");
fprintf(stderr,
format,
limit,
#if ZEND_DEBUG
filename,
lineno,
#endif
size);
fprintf(stderr, " in %s on line %d\n", error_filename, error_lineno);
}
/* See http://support.microsoft.com/kb/190351 */
#ifdef PHP_WIN32
fflush(stderr);
#endif
} zend_end_try();
} else {
heap->overflow = 2;
}
zend_bailout();
}
static zend_mm_free_block *zend_mm_search_large_block(zend_mm_heap *heap, size_t true_size)
{
zend_mm_free_block *best_fit;
size_t index = ZEND_MM_LARGE_BUCKET_INDEX(true_size);
size_t bitmap = heap->large_free_bitmap >> index;
zend_mm_free_block *p;
if (bitmap == 0) {
return NULL;
}
if (UNEXPECTED((bitmap & 1) != 0)) {
/* Search for best "large" free block */
zend_mm_free_block *rst = NULL;
size_t m;
size_t best_size = -1;
best_fit = NULL;
p = heap->large_free_buckets[index];
for (m = true_size << (ZEND_MM_NUM_BUCKETS - index); ; m <<= 1) {
if (UNEXPECTED(ZEND_MM_FREE_BLOCK_SIZE(p) == true_size)) {
return p->next_free_block;
} else if (ZEND_MM_FREE_BLOCK_SIZE(p) >= true_size &&
ZEND_MM_FREE_BLOCK_SIZE(p) < best_size) {
best_size = ZEND_MM_FREE_BLOCK_SIZE(p);
best_fit = p;
}
if ((m & (ZEND_MM_LONG_CONST(1) << (ZEND_MM_NUM_BUCKETS-1))) == 0) {
if (p->child[1]) {
rst = p->child[1];
}
if (p->child[0]) {
p = p->child[0];
} else {
break;
}
} else if (p->child[1]) {
p = p->child[1];
} else {
break;
}
}
for (p = rst; p; p = p->child[p->child[0] != NULL]) {
if (UNEXPECTED(ZEND_MM_FREE_BLOCK_SIZE(p) == true_size)) {
return p->next_free_block;
} else if (ZEND_MM_FREE_BLOCK_SIZE(p) > true_size &&
ZEND_MM_FREE_BLOCK_SIZE(p) < best_size) {
best_size = ZEND_MM_FREE_BLOCK_SIZE(p);
best_fit = p;
}
}
if (best_fit) {
return best_fit->next_free_block;
}
bitmap = bitmap >> 1;
if (!bitmap) {
return NULL;
}
index++;
}
/* Search for smallest "large" free block */
best_fit = p = heap->large_free_buckets[index + zend_mm_low_bit(bitmap)];
while ((p = p->child[p->child[0] != NULL])) {
if (ZEND_MM_FREE_BLOCK_SIZE(p) < ZEND_MM_FREE_BLOCK_SIZE(best_fit)) {
best_fit = p;
}
}
return best_fit->next_free_block;
}
static void *_zend_mm_alloc_int(zend_mm_heap *heap, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_free_block *best_fit;
size_t true_size = ZEND_MM_TRUE_SIZE(size);
size_t block_size;
size_t remaining_size;
size_t segment_size;
zend_mm_segment *segment;
int keep_rest = 0;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
HANDLE_BLOCK_INTERRUPTIONS();
if (EXPECTED(ZEND_MM_SMALL_SIZE(true_size))) {
size_t index = ZEND_MM_BUCKET_INDEX(true_size);
size_t bitmap;
if (UNEXPECTED(true_size < size)) {
goto out_of_memory;
}
#if ZEND_MM_CACHE
if (EXPECTED(heap->cache[index] != NULL)) {
/* Get block from cache */
#if ZEND_MM_CACHE_STAT
heap->cache_stat[index].count--;
heap->cache_stat[index].hit++;
#endif
best_fit = heap->cache[index];
heap->cache[index] = best_fit->prev_free_block;
heap->cached -= true_size;
ZEND_MM_CHECK_MAGIC(best_fit, MEM_BLOCK_CACHED);
ZEND_MM_SET_DEBUG_INFO(best_fit, size, 1, 0);
HANDLE_UNBLOCK_INTERRUPTIONS();
return ZEND_MM_DATA_OF(best_fit);
}
#if ZEND_MM_CACHE_STAT
heap->cache_stat[index].miss++;
#endif
#endif
bitmap = heap->free_bitmap >> index;
if (bitmap) {
/* Found some "small" free block that can be used */
index += zend_mm_low_bit(bitmap);
best_fit = heap->free_buckets[index*2];
#if ZEND_MM_CACHE_STAT
heap->cache_stat[ZEND_MM_NUM_BUCKETS].hit++;
#endif
goto zend_mm_finished_searching_for_block;
}
}
#if ZEND_MM_CACHE_STAT
heap->cache_stat[ZEND_MM_NUM_BUCKETS].miss++;
#endif
best_fit = zend_mm_search_large_block(heap, true_size);
if (!best_fit && heap->real_size >= heap->limit - heap->block_size) {
zend_mm_free_block *p = heap->rest_buckets[0];
size_t best_size = -1;
while (p != ZEND_MM_REST_BUCKET(heap)) {
if (UNEXPECTED(ZEND_MM_FREE_BLOCK_SIZE(p) == true_size)) {
best_fit = p;
goto zend_mm_finished_searching_for_block;
} else if (ZEND_MM_FREE_BLOCK_SIZE(p) > true_size &&
ZEND_MM_FREE_BLOCK_SIZE(p) < best_size) {
best_size = ZEND_MM_FREE_BLOCK_SIZE(p);
best_fit = p;
}
p = p->prev_free_block;
}
}
if (!best_fit) {
if (true_size > heap->block_size - (ZEND_MM_ALIGNED_SEGMENT_SIZE + ZEND_MM_ALIGNED_HEADER_SIZE)) {
/* Make sure we add a memory block which is big enough,
segment must have header "size" and trailer "guard" block */
segment_size = true_size + ZEND_MM_ALIGNED_SEGMENT_SIZE + ZEND_MM_ALIGNED_HEADER_SIZE;
segment_size = (segment_size + (heap->block_size-1)) & ~(heap->block_size-1);
keep_rest = 1;
} else {
segment_size = heap->block_size;
}
if (segment_size < true_size ||
heap->real_size + segment_size > heap->limit) {
/* Memory limit overflow */
#if ZEND_MM_CACHE
zend_mm_free_cache(heap);
#endif
HANDLE_UNBLOCK_INTERRUPTIONS();
#if ZEND_DEBUG
zend_mm_safe_error(heap, "Allowed memory size of %ld bytes exhausted at %s:%d (tried to allocate %lu bytes)", heap->limit, __zend_filename, __zend_lineno, size);
#else
zend_mm_safe_error(heap, "Allowed memory size of %ld bytes exhausted (tried to allocate %lu bytes)", heap->limit, size);
#endif
}
segment = (zend_mm_segment *) ZEND_MM_STORAGE_ALLOC(segment_size);
if (!segment) {
/* Storage manager cannot allocate memory */
#if ZEND_MM_CACHE
zend_mm_free_cache(heap);
#endif
out_of_memory:
HANDLE_UNBLOCK_INTERRUPTIONS();
#if ZEND_DEBUG
zend_mm_safe_error(heap, "Out of memory (allocated %ld) at %s:%d (tried to allocate %lu bytes)", heap->real_size, __zend_filename, __zend_lineno, size);
#else
zend_mm_safe_error(heap, "Out of memory (allocated %ld) (tried to allocate %lu bytes)", heap->real_size, size);
#endif
return NULL;
}
heap->real_size += segment_size;
if (heap->real_size > heap->real_peak) {
heap->real_peak = heap->real_size;
}
segment->size = segment_size;
segment->next_segment = heap->segments_list;
heap->segments_list = segment;
best_fit = (zend_mm_free_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
ZEND_MM_MARK_FIRST_BLOCK(best_fit);
block_size = segment_size - ZEND_MM_ALIGNED_SEGMENT_SIZE - ZEND_MM_ALIGNED_HEADER_SIZE;
ZEND_MM_LAST_BLOCK(ZEND_MM_BLOCK_AT(best_fit, block_size));
} else {
zend_mm_finished_searching_for_block:
/* remove from free list */
ZEND_MM_CHECK_MAGIC(best_fit, MEM_BLOCK_FREED);
ZEND_MM_CHECK_COOKIE(best_fit);
ZEND_MM_CHECK_BLOCK_LINKAGE(best_fit);
zend_mm_remove_from_free_list(heap, best_fit);
block_size = ZEND_MM_FREE_BLOCK_SIZE(best_fit);
}
remaining_size = block_size - true_size;
if (remaining_size < ZEND_MM_ALIGNED_MIN_HEADER_SIZE) {
true_size = block_size;
ZEND_MM_BLOCK(best_fit, ZEND_MM_USED_BLOCK, true_size);
} else {
zend_mm_free_block *new_free_block;
/* prepare new free block */
ZEND_MM_BLOCK(best_fit, ZEND_MM_USED_BLOCK, true_size);
new_free_block = (zend_mm_free_block *) ZEND_MM_BLOCK_AT(best_fit, true_size);
ZEND_MM_BLOCK(new_free_block, ZEND_MM_FREE_BLOCK, remaining_size);
/* add the new free block to the free list */
if (EXPECTED(!keep_rest)) {
zend_mm_add_to_free_list(heap, new_free_block);
} else {
zend_mm_add_to_rest_list(heap, new_free_block);
}
}
ZEND_MM_SET_DEBUG_INFO(best_fit, size, 1, 1);
heap->size += true_size;
if (heap->peak < heap->size) {
heap->peak = heap->size;
}
HANDLE_UNBLOCK_INTERRUPTIONS();
return ZEND_MM_DATA_OF(best_fit);
}
static void _zend_mm_free_int(zend_mm_heap *heap, void *p ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_block *mm_block;
zend_mm_block *next_block;
size_t size;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
if (!ZEND_MM_VALID_PTR(p)) {
return;
}
HANDLE_BLOCK_INTERRUPTIONS();
mm_block = ZEND_MM_HEADER_OF(p);
size = ZEND_MM_BLOCK_SIZE(mm_block);
ZEND_MM_CHECK_PROTECTION(mm_block);
#if ZEND_DEBUG || ZEND_MM_HEAP_PROTECTION
memset(ZEND_MM_DATA_OF(mm_block), 0x5a, mm_block->debug.size);
#endif
#if ZEND_MM_CACHE
if (EXPECTED(ZEND_MM_SMALL_SIZE(size)) && EXPECTED(heap->cached < ZEND_MM_CACHE_SIZE)) {
size_t index = ZEND_MM_BUCKET_INDEX(size);
zend_mm_free_block **cache = &heap->cache[index];
((zend_mm_free_block*)mm_block)->prev_free_block = *cache;
*cache = (zend_mm_free_block*)mm_block;
heap->cached += size;
ZEND_MM_SET_MAGIC(mm_block, MEM_BLOCK_CACHED);
#if ZEND_MM_CACHE_STAT
if (++heap->cache_stat[index].count > heap->cache_stat[index].max_count) {
heap->cache_stat[index].max_count = heap->cache_stat[index].count;
}
#endif
HANDLE_UNBLOCK_INTERRUPTIONS();
return;
}
#endif
heap->size -= size;
next_block = ZEND_MM_BLOCK_AT(mm_block, size);
if (ZEND_MM_IS_FREE_BLOCK(next_block)) {
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) next_block);
size += ZEND_MM_FREE_BLOCK_SIZE(next_block);
}
if (ZEND_MM_PREV_BLOCK_IS_FREE(mm_block)) {
mm_block = ZEND_MM_PREV_BLOCK(mm_block);
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) mm_block);
size += ZEND_MM_FREE_BLOCK_SIZE(mm_block);
}
if (ZEND_MM_IS_FIRST_BLOCK(mm_block) &&
ZEND_MM_IS_GUARD_BLOCK(ZEND_MM_BLOCK_AT(mm_block, size))) {
zend_mm_del_segment(heap, (zend_mm_segment *) ((char *)mm_block - ZEND_MM_ALIGNED_SEGMENT_SIZE));
} else {
ZEND_MM_BLOCK(mm_block, ZEND_MM_FREE_BLOCK, size);
zend_mm_add_to_free_list(heap, (zend_mm_free_block *) mm_block);
}
HANDLE_UNBLOCK_INTERRUPTIONS();
}
static void *_zend_mm_realloc_int(zend_mm_heap *heap, void *p, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_block *mm_block = ZEND_MM_HEADER_OF(p);
zend_mm_block *next_block;
size_t true_size;
size_t orig_size;
void *ptr;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
if (UNEXPECTED(!p) || !ZEND_MM_VALID_PTR(p)) {
return _zend_mm_alloc_int(heap, size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
HANDLE_BLOCK_INTERRUPTIONS();
mm_block = ZEND_MM_HEADER_OF(p);
true_size = ZEND_MM_TRUE_SIZE(size);
orig_size = ZEND_MM_BLOCK_SIZE(mm_block);
ZEND_MM_CHECK_PROTECTION(mm_block);
if (UNEXPECTED(true_size < size)) {
goto out_of_memory;
}
if (true_size <= orig_size) {
size_t remaining_size = orig_size - true_size;
if (remaining_size >= ZEND_MM_ALIGNED_MIN_HEADER_SIZE) {
zend_mm_free_block *new_free_block;
next_block = ZEND_MM_BLOCK_AT(mm_block, orig_size);
if (ZEND_MM_IS_FREE_BLOCK(next_block)) {
remaining_size += ZEND_MM_FREE_BLOCK_SIZE(next_block);
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) next_block);
}
/* prepare new free block */
ZEND_MM_BLOCK(mm_block, ZEND_MM_USED_BLOCK, true_size);
new_free_block = (zend_mm_free_block *) ZEND_MM_BLOCK_AT(mm_block, true_size);
ZEND_MM_BLOCK(new_free_block, ZEND_MM_FREE_BLOCK, remaining_size);
/* add the new free block to the free list */
zend_mm_add_to_free_list(heap, new_free_block);
heap->size += (true_size - orig_size);
}
ZEND_MM_SET_DEBUG_INFO(mm_block, size, 0, 0);
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
#if ZEND_MM_CACHE
if (ZEND_MM_SMALL_SIZE(true_size)) {
size_t index = ZEND_MM_BUCKET_INDEX(true_size);
if (heap->cache[index] != NULL) {
zend_mm_free_block *best_fit;
zend_mm_free_block **cache;
#if ZEND_MM_CACHE_STAT
heap->cache_stat[index].count--;
heap->cache_stat[index].hit++;
#endif
best_fit = heap->cache[index];
heap->cache[index] = best_fit->prev_free_block;
ZEND_MM_CHECK_MAGIC(best_fit, MEM_BLOCK_CACHED);
ZEND_MM_SET_DEBUG_INFO(best_fit, size, 1, 0);
ptr = ZEND_MM_DATA_OF(best_fit);
#if ZEND_DEBUG || ZEND_MM_HEAP_PROTECTION
memcpy(ptr, p, mm_block->debug.size);
#else
memcpy(ptr, p, orig_size - ZEND_MM_ALIGNED_HEADER_SIZE);
#endif
heap->cached -= true_size - orig_size;
index = ZEND_MM_BUCKET_INDEX(orig_size);
cache = &heap->cache[index];
((zend_mm_free_block*)mm_block)->prev_free_block = *cache;
*cache = (zend_mm_free_block*)mm_block;
ZEND_MM_SET_MAGIC(mm_block, MEM_BLOCK_CACHED);
#if ZEND_MM_CACHE_STAT
if (++heap->cache_stat[index].count > heap->cache_stat[index].max_count) {
heap->cache_stat[index].max_count = heap->cache_stat[index].count;
}
#endif
HANDLE_UNBLOCK_INTERRUPTIONS();
return ptr;
}
}
#endif
next_block = ZEND_MM_BLOCK_AT(mm_block, orig_size);
if (ZEND_MM_IS_FREE_BLOCK(next_block)) {
ZEND_MM_CHECK_COOKIE(next_block);
ZEND_MM_CHECK_BLOCK_LINKAGE(next_block);
if (orig_size + ZEND_MM_FREE_BLOCK_SIZE(next_block) >= true_size) {
size_t block_size = orig_size + ZEND_MM_FREE_BLOCK_SIZE(next_block);
size_t remaining_size = block_size - true_size;
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) next_block);
if (remaining_size < ZEND_MM_ALIGNED_MIN_HEADER_SIZE) {
true_size = block_size;
ZEND_MM_BLOCK(mm_block, ZEND_MM_USED_BLOCK, true_size);
} else {
zend_mm_free_block *new_free_block;
/* prepare new free block */
ZEND_MM_BLOCK(mm_block, ZEND_MM_USED_BLOCK, true_size);
new_free_block = (zend_mm_free_block *) ZEND_MM_BLOCK_AT(mm_block, true_size);
ZEND_MM_BLOCK(new_free_block, ZEND_MM_FREE_BLOCK, remaining_size);
/* add the new free block to the free list */
if (ZEND_MM_IS_FIRST_BLOCK(mm_block) &&
ZEND_MM_IS_GUARD_BLOCK(ZEND_MM_BLOCK_AT(new_free_block, remaining_size))) {
zend_mm_add_to_rest_list(heap, new_free_block);
} else {
zend_mm_add_to_free_list(heap, new_free_block);
}
}
ZEND_MM_SET_DEBUG_INFO(mm_block, size, 0, 0);
heap->size = heap->size + true_size - orig_size;
if (heap->peak < heap->size) {
heap->peak = heap->size;
}
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
} else if (ZEND_MM_IS_FIRST_BLOCK(mm_block) &&
ZEND_MM_IS_GUARD_BLOCK(ZEND_MM_BLOCK_AT(next_block, ZEND_MM_FREE_BLOCK_SIZE(next_block)))) {
zend_mm_remove_from_free_list(heap, (zend_mm_free_block *) next_block);
goto realloc_segment;
}
} else if (ZEND_MM_IS_FIRST_BLOCK(mm_block) && ZEND_MM_IS_GUARD_BLOCK(next_block)) {
zend_mm_segment *segment;
zend_mm_segment *segment_copy;
size_t segment_size;
size_t block_size;
size_t remaining_size;
realloc_segment:
/* segment size, size of block and size of guard block */
if (true_size > heap->block_size - (ZEND_MM_ALIGNED_SEGMENT_SIZE + ZEND_MM_ALIGNED_HEADER_SIZE)) {
segment_size = true_size+ZEND_MM_ALIGNED_SEGMENT_SIZE+ZEND_MM_ALIGNED_HEADER_SIZE;
segment_size = (segment_size + (heap->block_size-1)) & ~(heap->block_size-1);
} else {
segment_size = heap->block_size;
}
segment_copy = (zend_mm_segment *) ((char *)mm_block - ZEND_MM_ALIGNED_SEGMENT_SIZE);
if (segment_size < true_size ||
heap->real_size + segment_size - segment_copy->size > heap->limit) {
if (ZEND_MM_IS_FREE_BLOCK(next_block)) {
zend_mm_add_to_free_list(heap, (zend_mm_free_block *) next_block);
}
#if ZEND_MM_CACHE
zend_mm_free_cache(heap);
#endif
HANDLE_UNBLOCK_INTERRUPTIONS();
#if ZEND_DEBUG
zend_mm_safe_error(heap, "Allowed memory size of %ld bytes exhausted at %s:%d (tried to allocate %ld bytes)", heap->limit, __zend_filename, __zend_lineno, size);
#else
zend_mm_safe_error(heap, "Allowed memory size of %ld bytes exhausted (tried to allocate %ld bytes)", heap->limit, size);
#endif
return NULL;
}
segment = ZEND_MM_STORAGE_REALLOC(segment_copy, segment_size);
if (!segment) {
#if ZEND_MM_CACHE
zend_mm_free_cache(heap);
#endif
out_of_memory:
HANDLE_UNBLOCK_INTERRUPTIONS();
#if ZEND_DEBUG
zend_mm_safe_error(heap, "Out of memory (allocated %ld) at %s:%d (tried to allocate %ld bytes)", heap->real_size, __zend_filename, __zend_lineno, size);
#else
zend_mm_safe_error(heap, "Out of memory (allocated %ld) (tried to allocate %ld bytes)", heap->real_size, size);
#endif
return NULL;
}
heap->real_size += segment_size - segment->size;
if (heap->real_size > heap->real_peak) {
heap->real_peak = heap->real_size;
}
segment->size = segment_size;
if (segment != segment_copy) {
zend_mm_segment **seg = &heap->segments_list;
while (*seg != segment_copy) {
seg = &(*seg)->next_segment;
}
*seg = segment;
mm_block = (zend_mm_block *) ((char *) segment + ZEND_MM_ALIGNED_SEGMENT_SIZE);
ZEND_MM_MARK_FIRST_BLOCK(mm_block);
}
block_size = segment_size - ZEND_MM_ALIGNED_SEGMENT_SIZE - ZEND_MM_ALIGNED_HEADER_SIZE;
remaining_size = block_size - true_size;
/* setup guard block */
ZEND_MM_LAST_BLOCK(ZEND_MM_BLOCK_AT(mm_block, block_size));
if (remaining_size < ZEND_MM_ALIGNED_MIN_HEADER_SIZE) {
true_size = block_size;
ZEND_MM_BLOCK(mm_block, ZEND_MM_USED_BLOCK, true_size);
} else {
zend_mm_free_block *new_free_block;
/* prepare new free block */
ZEND_MM_BLOCK(mm_block, ZEND_MM_USED_BLOCK, true_size);
new_free_block = (zend_mm_free_block *) ZEND_MM_BLOCK_AT(mm_block, true_size);
ZEND_MM_BLOCK(new_free_block, ZEND_MM_FREE_BLOCK, remaining_size);
/* add the new free block to the free list */
zend_mm_add_to_rest_list(heap, new_free_block);
}
ZEND_MM_SET_DEBUG_INFO(mm_block, size, 1, 1);
heap->size = heap->size + true_size - orig_size;
if (heap->peak < heap->size) {
heap->peak = heap->size;
}
HANDLE_UNBLOCK_INTERRUPTIONS();
return ZEND_MM_DATA_OF(mm_block);
}
ptr = _zend_mm_alloc_int(heap, size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
#if ZEND_DEBUG || ZEND_MM_HEAP_PROTECTION
memcpy(ptr, p, mm_block->debug.size);
#else
memcpy(ptr, p, orig_size - ZEND_MM_ALIGNED_HEADER_SIZE);
#endif
_zend_mm_free_int(heap, p ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
HANDLE_UNBLOCK_INTERRUPTIONS();
return ptr;
}
ZEND_API void *_zend_mm_alloc(zend_mm_heap *heap, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
return _zend_mm_alloc_int(heap, size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API void _zend_mm_free(zend_mm_heap *heap, void *p ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
_zend_mm_free_int(heap, p ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API void *_zend_mm_realloc(zend_mm_heap *heap, void *ptr, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
return _zend_mm_realloc_int(heap, ptr, size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API size_t _zend_mm_block_size(zend_mm_heap *heap, void *p ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
zend_mm_block *mm_block;
if (!ZEND_MM_VALID_PTR(p)) {
return 0;
}
mm_block = ZEND_MM_HEADER_OF(p);
ZEND_MM_CHECK_PROTECTION(mm_block);
#if ZEND_DEBUG || ZEND_MM_HEAP_PROTECTION
return mm_block->debug.size;
#else
return ZEND_MM_BLOCK_SIZE(mm_block);
#endif
}
/**********************/
/* Allocation Manager */
/**********************/
typedef struct _zend_alloc_globals {
zend_mm_heap *mm_heap;
} zend_alloc_globals;
#ifdef ZTS
static int alloc_globals_id;
# define AG(v) TSRMG(alloc_globals_id, zend_alloc_globals *, v)
#else
# define AG(v) (alloc_globals.v)
static zend_alloc_globals alloc_globals;
#endif
ZEND_API int is_zend_mm(TSRMLS_D)
{
return AG(mm_heap)->use_zend_alloc;
}
ZEND_API void *_emalloc(size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
TSRMLS_FETCH();
if (UNEXPECTED(!AG(mm_heap)->use_zend_alloc)) {
return AG(mm_heap)->_malloc(size);
}
return _zend_mm_alloc_int(AG(mm_heap), size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API void _efree(void *ptr ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
TSRMLS_FETCH();
if (UNEXPECTED(!AG(mm_heap)->use_zend_alloc)) {
AG(mm_heap)->_free(ptr);
return;
}
_zend_mm_free_int(AG(mm_heap), ptr ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API void *_erealloc(void *ptr, size_t size, int allow_failure ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
TSRMLS_FETCH();
if (UNEXPECTED(!AG(mm_heap)->use_zend_alloc)) {
return AG(mm_heap)->_realloc(ptr, size);
}
return _zend_mm_realloc_int(AG(mm_heap), ptr, size ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API size_t _zend_mem_block_size(void *ptr TSRMLS_DC ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
if (UNEXPECTED(!AG(mm_heap)->use_zend_alloc)) {
return 0;
}
return _zend_mm_block_size(AG(mm_heap), ptr ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
#if defined(__GNUC__) && (defined(__native_client__) || defined(i386))
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
size_t res = nmemb;
unsigned long overflow = 0;
__asm__ ("mull %3\n\taddl %4,%0\n\tadcl $0,%1"
: "=&a"(res), "=&d" (overflow)
: "%0"(res),
"rm"(size),
"rm"(offset));
if (UNEXPECTED(overflow)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return res;
}
#elif defined(__GNUC__) && defined(__x86_64__)
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
size_t res = nmemb;
unsigned long overflow = 0;
#ifdef __ILP32__ /* x32 */
# define LP_SUFF "l"
#else /* amd64 */
# define LP_SUFF "q"
#endif
__asm__ ("mul" LP_SUFF " %3\n\t"
"add %4,%0\n\t"
"adc $0,%1"
: "=&a"(res), "=&d" (overflow)
: "%0"(res),
"rm"(size),
"rm"(offset));
#undef LP_SUFF
if (UNEXPECTED(overflow)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return res;
}
#elif defined(__GNUC__) && defined(__arm__)
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
size_t res;
unsigned long overflow;
__asm__ ("umlal %0,%1,%2,%3"
: "=r"(res), "=r"(overflow)
: "r"(nmemb),
"r"(size),
"0"(offset),
"1"(0));
if (UNEXPECTED(overflow)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return res;
}
#elif defined(__GNUC__) && defined(__aarch64__)
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
size_t res;
unsigned long overflow;
__asm__ ("mul %0,%2,%3\n\tumulh %1,%2,%3\n\tadds %0,%0,%4\n\tadc %1,%1,xzr"
: "=&r"(res), "=&r"(overflow)
: "r"(nmemb),
"r"(size),
"r"(offset));
if (UNEXPECTED(overflow)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return res;
}
#elif SIZEOF_SIZE_T == 4 && defined(HAVE_ZEND_LONG64)
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
zend_ulong64 res = (zend_ulong64)nmemb * (zend_ulong64)size + (zend_ulong64)offset;
if (UNEXPECTED(res > (zend_ulong64)0xFFFFFFFFL)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return (size_t) res;
}
#else
static inline size_t safe_address(size_t nmemb, size_t size, size_t offset)
{
size_t res = nmemb * size + offset;
double _d = (double)nmemb * (double)size + (double)offset;
double _delta = (double)res - _d;
if (UNEXPECTED((_d + _delta ) != _d)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%zu * %zu + %zu)", nmemb, size, offset);
return 0;
}
return res;
}
#endif
ZEND_API void *_safe_emalloc(size_t nmemb, size_t size, size_t offset ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
return emalloc_rel(safe_address(nmemb, size, offset));
}
ZEND_API void *_safe_malloc(size_t nmemb, size_t size, size_t offset)
{
return pemalloc(safe_address(nmemb, size, offset), 1);
}
ZEND_API void *_safe_erealloc(void *ptr, size_t nmemb, size_t size, size_t offset ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
return erealloc_rel(ptr, safe_address(nmemb, size, offset));
}
ZEND_API void *_safe_realloc(void *ptr, size_t nmemb, size_t size, size_t offset)
{
return perealloc(ptr, safe_address(nmemb, size, offset), 1);
}
ZEND_API void *_ecalloc(size_t nmemb, size_t size ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
void *p;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
HANDLE_BLOCK_INTERRUPTIONS();
p = _safe_emalloc(nmemb, size, 0 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
if (UNEXPECTED(p == NULL)) {
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
memset(p, 0, size * nmemb);
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
ZEND_API char *_estrdup(const char *s ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
int length;
char *p;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
HANDLE_BLOCK_INTERRUPTIONS();
length = strlen(s)+1;
p = (char *) _emalloc(length ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
if (UNEXPECTED(p == NULL)) {
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
memcpy(p, s, length);
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
ZEND_API char *_estrndup(const char *s, uint length ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
char *p;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
HANDLE_BLOCK_INTERRUPTIONS();
p = (char *) _emalloc(length+1 ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
if (UNEXPECTED(p == NULL)) {
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
memcpy(p, s, length);
p[length] = 0;
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
ZEND_API char *zend_strndup(const char *s, uint length)
{
char *p;
#ifdef ZEND_SIGNALS
TSRMLS_FETCH();
#endif
HANDLE_BLOCK_INTERRUPTIONS();
p = (char *) malloc(length+1);
if (UNEXPECTED(p == NULL)) {
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
if (length) {
memcpy(p, s, length);
}
p[length] = 0;
HANDLE_UNBLOCK_INTERRUPTIONS();
return p;
}
ZEND_API int zend_set_memory_limit(size_t memory_limit)
{
TSRMLS_FETCH();
AG(mm_heap)->limit = (memory_limit >= AG(mm_heap)->block_size) ? memory_limit : AG(mm_heap)->block_size;
return SUCCESS;
}
ZEND_API size_t zend_memory_usage(int real_usage TSRMLS_DC)
{
if (real_usage) {
return AG(mm_heap)->real_size;
} else {
size_t usage = AG(mm_heap)->size;
#if ZEND_MM_CACHE
usage -= AG(mm_heap)->cached;
#endif
return usage;
}
}
ZEND_API size_t zend_memory_peak_usage(int real_usage TSRMLS_DC)
{
if (real_usage) {
return AG(mm_heap)->real_peak;
} else {
return AG(mm_heap)->peak;
}
}
ZEND_API void shutdown_memory_manager(int silent, int full_shutdown TSRMLS_DC)
{
zend_mm_shutdown(AG(mm_heap), full_shutdown, silent TSRMLS_CC);
}
static void alloc_globals_ctor(zend_alloc_globals *alloc_globals TSRMLS_DC)
{
char *tmp = getenv("USE_ZEND_ALLOC");
if (tmp && !zend_atoi(tmp, 0)) {
alloc_globals->mm_heap = malloc(sizeof(struct _zend_mm_heap));
memset(alloc_globals->mm_heap, 0, sizeof(struct _zend_mm_heap));
alloc_globals->mm_heap->use_zend_alloc = 0;
alloc_globals->mm_heap->_malloc = malloc;
alloc_globals->mm_heap->_free = free;
alloc_globals->mm_heap->_realloc = realloc;
} else {
alloc_globals->mm_heap = zend_mm_startup();
}
}
#ifdef ZTS
static void alloc_globals_dtor(zend_alloc_globals *alloc_globals TSRMLS_DC)
{
shutdown_memory_manager(1, 1 TSRMLS_CC);
}
#endif
ZEND_API void start_memory_manager(TSRMLS_D)
{
#ifdef ZTS
ts_allocate_id(&alloc_globals_id, sizeof(zend_alloc_globals), (ts_allocate_ctor) alloc_globals_ctor, (ts_allocate_dtor) alloc_globals_dtor);
#else
alloc_globals_ctor(&alloc_globals);
#endif
}
ZEND_API zend_mm_heap *zend_mm_set_heap(zend_mm_heap *new_heap TSRMLS_DC)
{
zend_mm_heap *old_heap;
old_heap = AG(mm_heap);
AG(mm_heap) = new_heap;
return old_heap;
}
ZEND_API zend_mm_storage *zend_mm_get_storage(zend_mm_heap *heap)
{
return heap->storage;
}
ZEND_API void zend_mm_set_custom_handlers(zend_mm_heap *heap,
void* (*_malloc)(size_t),
void (*_free)(void*),
void* (*_realloc)(void*, size_t))
{
heap->use_zend_alloc = 0;
heap->_malloc = _malloc;
heap->_free = _free;
heap->_realloc = _realloc;
}
#if ZEND_DEBUG
ZEND_API int _mem_block_check(void *ptr, int silent ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
TSRMLS_FETCH();
if (!AG(mm_heap)->use_zend_alloc) {
return 1;
}
return zend_mm_check_ptr(AG(mm_heap), ptr, silent ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
}
ZEND_API void _full_mem_check(int silent ZEND_FILE_LINE_DC ZEND_FILE_LINE_ORIG_DC)
{
int errors;
TSRMLS_FETCH();
if (!AG(mm_heap)->use_zend_alloc) {
return;
}
zend_debug_alloc_output("------------------------------------------------\n");
zend_debug_alloc_output("Full Memory Check at %s:%d\n" ZEND_FILE_LINE_RELAY_CC);
errors = zend_mm_check_heap(AG(mm_heap), silent ZEND_FILE_LINE_RELAY_CC ZEND_FILE_LINE_ORIG_RELAY_CC);
zend_debug_alloc_output("End of full memory check %s:%d (%d errors)\n" ZEND_FILE_LINE_RELAY_CC, errors);
zend_debug_alloc_output("------------------------------------------------\n");
}
#endif
/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* indent-tabs-mode: t
* End:
*/