mirror of
https://github.com/php/php-src.git
synced 2024-11-29 04:46:07 +08:00
563 lines
18 KiB
C
563 lines
18 KiB
C
/*
|
|
* UFC-crypt: ultra fast crypt(3) implementation
|
|
*
|
|
* Copyright (C) 1991, Michael Glad, email: glad@daimi.aau.dk
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the Free
|
|
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* @(#)crypt.c 2.2 10/04/91
|
|
*
|
|
* Semiportable C version
|
|
*
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#define bzero(addr, cnt) memset(addr, 0, cnt)
|
|
#define bcopy(from, to, len) memcpy(to, from, len)
|
|
|
|
/* Permutation done once on the 56 bit
|
|
key derived from the original 8 byte ASCII key.
|
|
*/
|
|
static unsigned long pc1[56] =
|
|
{ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
/* How much to rotate each 28 bit half of the pc1 permutated
|
|
56 bit key before using pc2 to give the i' key
|
|
*/
|
|
static unsigned long totrot[16] =
|
|
{ 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 };
|
|
|
|
/* Permutation giving the key of the i' DES round */
|
|
static unsigned long pc2[48] =
|
|
{ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/* Reference copy of the expansion table which selects
|
|
bits from the 32 bit intermediate result.
|
|
*/
|
|
static unsigned long eref[48] =
|
|
{ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
|
|
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
|
|
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
|
|
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
|
|
};
|
|
static unsigned long disturbed_e[48];
|
|
static unsigned long e_inverse[64];
|
|
|
|
/* Permutation done on the result of sbox lookups */
|
|
static unsigned long perm32[32] =
|
|
{ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
/* The sboxes */
|
|
static unsigned long sbox[8][4][16]=
|
|
{ { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
|
|
{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
|
|
{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
|
|
{ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
|
|
},
|
|
|
|
{ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
|
|
{ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
|
|
{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
|
|
{ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
|
|
},
|
|
|
|
{ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
|
|
{ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
|
|
{ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
|
|
{ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
|
|
},
|
|
|
|
{ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
|
|
{ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
|
|
{ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
|
|
{ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
|
|
},
|
|
|
|
{ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
|
|
{ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
|
|
{ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
|
|
{ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
|
|
},
|
|
|
|
{ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
|
|
{ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
|
|
{ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
|
|
{ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
|
|
},
|
|
|
|
{ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
|
|
{ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
|
|
{ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
|
|
{ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
|
|
},
|
|
|
|
{ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
|
|
{ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
|
|
{ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
|
|
{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
|
|
}
|
|
};
|
|
|
|
#ifdef notdef
|
|
|
|
/* This is the initial permutation matrix -- we have no
|
|
use for it, but it is needed if you will develop
|
|
this module into a general DES package.
|
|
*/
|
|
static unsigned char inital_perm[64] =
|
|
{ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
};
|
|
|
|
#endif
|
|
|
|
/* Final permutation matrix -- not used directly */
|
|
static unsigned char final_perm[64] =
|
|
{ 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
|
|
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
|
|
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
|
|
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
|
|
};
|
|
|
|
/* The 16 DES keys in BITMASK format */
|
|
unsigned long keytab[16][2];
|
|
|
|
#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
|
|
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
|
|
|
|
/* Macro to set a bit (0..23) */
|
|
#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
|
|
|
|
/* sb arrays:
|
|
|
|
Workhorses of the inner loop of the DES implementation.
|
|
They do sbox lookup, shifting of this value, 32 bit
|
|
permutation and E permutation for the next round.
|
|
|
|
Kept in 'BITMASK' format.
|
|
|
|
*/
|
|
|
|
unsigned long sb0[8192],sb1[8192],sb2[8192],sb3[8192];
|
|
static unsigned long *sb[4] = {sb0,sb1,sb2,sb3};
|
|
|
|
/* eperm32tab: do 32 bit permutation and E selection
|
|
|
|
The first index is the byte number in the 32 bit value to be permuted
|
|
- second - is the value of this byte
|
|
- third - selects the two 32 bit values
|
|
|
|
The table is used and generated internally in init_des to speed it up
|
|
|
|
*/
|
|
static unsigned long eperm32tab[4][256][2];
|
|
|
|
/* mk_keytab_table: fast way of generating keytab from ASCII key
|
|
|
|
The first index is the byte number in the 8 byte ASCII key
|
|
- second - - - current DES round i.e. the key number
|
|
- third - distinguishes between the two 24 bit halfs of
|
|
the selected key
|
|
- fourth - selects the 7 bits actually used of each byte
|
|
|
|
The table is kept in the format generated by the BITMASK macro
|
|
|
|
*/
|
|
static unsigned long mk_keytab_table[8][16][2][128];
|
|
|
|
|
|
/* efp: undo an extra e selection and do final
|
|
permutation giving the DES result.
|
|
|
|
Invoked 6 bit a time on two 48 bit values
|
|
giving two 32 bit longs.
|
|
*/
|
|
static unsigned long efp[16][64][2];
|
|
|
|
|
|
static unsigned char bytemask[8] =
|
|
{ 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
|
|
|
|
|
static unsigned long longmask[32] =
|
|
{ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
static unsigned long initialized = 0;
|
|
|
|
/* lookup a 6 bit value in sbox */
|
|
|
|
#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
|
|
|
|
/* Generate the mk_keytab_table once in a program execution */
|
|
|
|
void init_des()
|
|
{ unsigned long tbl_long,bit_within_long,comes_from_bit;
|
|
unsigned long bit,sg,j;
|
|
unsigned long bit_within_byte,key_byte,byte_value;
|
|
unsigned long round,mask;
|
|
|
|
bzero((char*)mk_keytab_table,sizeof mk_keytab_table);
|
|
|
|
for(round=0; round<16; round++)
|
|
for(bit=0; bit<48; bit++)
|
|
{ tbl_long = bit / 24;
|
|
bit_within_long = bit % 24;
|
|
|
|
/* from which bit in the key halves does it origin? */
|
|
comes_from_bit = pc2[bit] - 1;
|
|
|
|
/* undo the rotation done before pc2 */
|
|
if(comes_from_bit>=28)
|
|
comes_from_bit = 28 + (comes_from_bit + totrot[round]) % 28;
|
|
else
|
|
comes_from_bit = (comes_from_bit + totrot[round]) % 28;
|
|
|
|
/* undo the initial key half forming permutation */
|
|
comes_from_bit = pc1[comes_from_bit] - 1;
|
|
|
|
/* Now 'comes_from_bit' is the correct number (0..55)
|
|
of the keybit from which the bit being traced
|
|
in key 'round' comes from
|
|
*/
|
|
|
|
key_byte = comes_from_bit / 8;
|
|
bit_within_byte = (comes_from_bit % 8)+1;
|
|
|
|
mask = bytemask[bit_within_byte];
|
|
|
|
for(byte_value=0; byte_value<128; byte_value++)
|
|
if(byte_value & mask)
|
|
mk_keytab_table[key_byte][round][tbl_long][byte_value] |=
|
|
BITMASK(bit_within_long);
|
|
}
|
|
|
|
/* Now generate the table used to do an combined
|
|
32 bit permutation and e expansion
|
|
|
|
We use it because we have to permute 16384 32 bit
|
|
longs into 48 bit in order to initialize sb.
|
|
|
|
Looping 48 rounds per permutation becomes
|
|
just too slow...
|
|
|
|
*/
|
|
|
|
bzero((char*)eperm32tab,sizeof eperm32tab);
|
|
for(bit=0; bit<48; bit++)
|
|
{ unsigned long mask1,comes_from;
|
|
|
|
comes_from = perm32[eref[bit]-1]-1;
|
|
mask1 = bytemask[comes_from % 8];
|
|
|
|
for(j=256; j--;)
|
|
if(j & mask1)
|
|
eperm32tab[comes_from/8][j][bit/24] |= BITMASK(bit % 24);
|
|
}
|
|
|
|
/* Create the sb tables:
|
|
|
|
For each 12 bit segment of an 48 bit intermediate
|
|
result, the sb table precomputes the two 4 bit
|
|
values of the sbox lookups done with the two 6
|
|
bit halves, shifts them to their proper place,
|
|
sends them through perm32 and finally E expands
|
|
them so that they are ready for the next
|
|
DES round.
|
|
|
|
The value looked up is to be xored onto the
|
|
two 48 bit right halves.
|
|
*/
|
|
|
|
for(sg=0; sg<4; sg++)
|
|
{ unsigned long j1,j2;
|
|
unsigned long s1,s2;
|
|
|
|
for(j1=0; j1<64; j1++)
|
|
{ s1 = s_lookup(2*sg,j1);
|
|
for(j2=0; j2<64; j2++)
|
|
{ unsigned long to_permute,inx;
|
|
|
|
s2 = s_lookup(2*sg+1,j2);
|
|
to_permute = ((s1<<4) | s2) << (24-8*sg);
|
|
inx = ((j1<<6) | j2) << 1;
|
|
|
|
sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
|
|
sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
|
|
|
sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
|
|
|
sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
|
|
|
sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
|
|
}
|
|
}
|
|
}
|
|
initialized++;
|
|
}
|
|
|
|
/* Process the elements of the sb table permuting the
|
|
bits swapped in the expansion by the current salt.
|
|
*/
|
|
|
|
void shuffle_sb(k, saltbits)
|
|
unsigned long *k, saltbits;
|
|
{ int j, x;
|
|
for(j=4096; j--;) {
|
|
x = (k[0] ^ k[1]) & saltbits;
|
|
*k++ ^= x;
|
|
*k++ ^= x;
|
|
}
|
|
}
|
|
|
|
/* Setup the unit for a new salt
|
|
Hopefully we'll not see a new salt in each crypt call.
|
|
*/
|
|
|
|
static unsigned char current_salt[3]="&&"; /* invalid value */
|
|
static unsigned long oldsaltbits = 0;
|
|
|
|
void setup_salt(s)
|
|
char *s;
|
|
{ unsigned long i,j,saltbits;
|
|
|
|
if(!initialized)
|
|
init_des();
|
|
|
|
if(s[0]==current_salt[0] && s[1]==current_salt[1])
|
|
return;
|
|
current_salt[0]=s[0]; current_salt[1]=s[1];
|
|
|
|
/* This is the only crypt change to DES:
|
|
entries are swapped in the expansion table
|
|
according to the bits set in the salt.
|
|
*/
|
|
|
|
saltbits=0;
|
|
bcopy((char*)eref,(char*)disturbed_e,sizeof eref);
|
|
for(i=0; i<2; i++)
|
|
{ long c=ascii_to_bin(s[i]);
|
|
if(c<0 || c>63)
|
|
c=0;
|
|
for(j=0; j<6; j++)
|
|
if((c>>j) & 0x1)
|
|
{ disturbed_e[6*i+j ]=eref[6*i+j+24];
|
|
disturbed_e[6*i+j+24]=eref[6*i+j ];
|
|
saltbits |= BITMASK(6*i+j);
|
|
}
|
|
}
|
|
|
|
/* Permute the sb table values
|
|
to reflect the changed e
|
|
selection table
|
|
*/
|
|
|
|
shuffle_sb(sb0, oldsaltbits ^ saltbits);
|
|
shuffle_sb(sb1, oldsaltbits ^ saltbits);
|
|
shuffle_sb(sb2, oldsaltbits ^ saltbits);
|
|
shuffle_sb(sb3, oldsaltbits ^ saltbits);
|
|
|
|
oldsaltbits = saltbits;
|
|
|
|
/* Create an inverse matrix for disturbed_e telling
|
|
where to plug out bits if undoing disturbed_e
|
|
*/
|
|
|
|
for(i=48; i--;)
|
|
{ e_inverse[disturbed_e[i]-1 ] = i;
|
|
e_inverse[disturbed_e[i]-1+32] = i+48;
|
|
}
|
|
|
|
/* create efp: the matrix used to
|
|
undo the E expansion and effect final permutation
|
|
*/
|
|
|
|
bzero((char*)efp,sizeof efp);
|
|
for(i=0; i<64; i++)
|
|
{ unsigned long o_bit,o_long;
|
|
unsigned long word_value,mask1,mask2,comes_from_f_bit,comes_from_e_bit;
|
|
unsigned long comes_from_word,bit_within_word;
|
|
|
|
/* See where bit i belongs in the two 32 bit long's */
|
|
o_long = i / 32; /* 0..1 */
|
|
o_bit = i % 32; /* 0..31 */
|
|
|
|
/* And find a bit in the e permutated value setting this bit.
|
|
|
|
Note: the e selection may have selected the same bit several
|
|
times. By the initialization of e_inverse, we only look
|
|
for one specific instance.
|
|
*/
|
|
comes_from_f_bit = final_perm[i]-1; /* 0..63 */
|
|
comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
|
|
comes_from_word = comes_from_e_bit / 6; /* 0..15 */
|
|
bit_within_word = comes_from_e_bit % 6; /* 0..5 */
|
|
|
|
mask1 = longmask[bit_within_word+26];
|
|
mask2 = longmask[o_bit];
|
|
|
|
for(word_value=64; word_value--;)
|
|
if(word_value & mask1)
|
|
efp[comes_from_word][word_value][o_long] |= mask2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Generate the key table before running the 25 DES rounds */
|
|
|
|
void mk_keytab(key)
|
|
char *key;
|
|
{ unsigned long i,j;
|
|
unsigned long *k,*mkt;
|
|
char t;
|
|
|
|
bzero((char*)keytab, sizeof keytab);
|
|
mkt = &mk_keytab_table[0][0][0][0];
|
|
|
|
for(i=0; (t=(*key++) & 0x7f) && i<8; i++)
|
|
for(j=0,k = &keytab[0][0]; j<16; j++)
|
|
{ *k++ |= mkt[t]; mkt += 128;
|
|
*k++ |= mkt[t]; mkt += 128;
|
|
}
|
|
for(; i<8; i++)
|
|
for(j=0,k = &keytab[0][0]; j<16; j++)
|
|
{ *k++ |= mkt[0]; mkt += 128;
|
|
*k++ |= mkt[0]; mkt += 128;
|
|
}
|
|
}
|
|
|
|
/* Do final permutations and convert to ASCII */
|
|
|
|
char *output_conversion(l1,l2,r1,r2,salt)
|
|
unsigned long l1,l2,r1,r2;
|
|
char *salt;
|
|
{ static char outbuf[14];
|
|
unsigned long i;
|
|
unsigned long s,v1,v2;
|
|
|
|
/* Unfortunately we've done an extra E
|
|
expansion -- undo it at the same time.
|
|
*/
|
|
|
|
v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
|
|
|
|
v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
|
|
v1 |= efp[ 2][(l1>>=6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
|
|
v1 |= efp[ 1][(l1>>=10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
|
|
v1 |= efp[ 0][(l1>>=6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
|
|
|
|
v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
|
|
v1 |= efp[ 6][(l2>>=6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
|
|
v1 |= efp[ 5][(l2>>=10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
|
|
v1 |= efp[ 4][(l2>>=6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
|
|
|
|
v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
|
|
v1 |= efp[10][(r1>>=6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
|
|
v1 |= efp[ 9][(r1>>=10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
|
|
v1 |= efp[ 8][(r1>>=6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
|
|
|
|
v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
|
|
v1 |= efp[14][(r2>>=6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
|
|
v1 |= efp[13][(r2>>=10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
|
|
v1 |= efp[12][(r2>>=6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
|
|
|
|
outbuf[0] = salt[0];
|
|
outbuf[1] = salt[1] ? salt[1] : salt[0];
|
|
|
|
for(i=0; i<5; i++)
|
|
outbuf[i+2] = bin_to_ascii((v1>>(26-6*i)) & 0x3f);
|
|
|
|
s = (v2 & 0xf) << 2; /* Save the rightmost 4 bit a moment */
|
|
v2 = (v2>>2) | ((v1 & 0x3)<<30); /* Shift two bits of v1 onto v2 */
|
|
|
|
for(i=5; i<10; i++)
|
|
outbuf[i+2] = bin_to_ascii((v2>>(56-6*i)) & 0x3f);
|
|
|
|
outbuf[12] = bin_to_ascii(s);
|
|
outbuf[13] = 0;
|
|
|
|
return outbuf;
|
|
}
|
|
|
|
#define SBA(sb, v) (*(unsigned long*)((char*)(sb)+(v)))
|
|
|
|
#define F(I, O1, O2, SBX, SBY) \
|
|
s = *k++ ^ I; \
|
|
O1 ^= SBA(SBX, (s & 0xffff)); O2 ^= SBA(SBX, ((s & 0xffff) + 4)); \
|
|
O1 ^= SBA(SBY, (s >>= 16)); O2 ^= SBA(SBY, ((s) + 4));
|
|
|
|
#define G(I1, I2, O1, O2) \
|
|
F(I1, O1, O2, sb1, sb0) F(I2, O1, O2, sb3, sb2)
|
|
|
|
#define H G(r1, r2, l1, l2) ; G(l1, l2, r1, r2)
|
|
|
|
char *des_crypt(key, salt)
|
|
char *key;
|
|
char *salt;
|
|
{ unsigned long l1, l2, r1, r2, i, j, s, *k;
|
|
|
|
setup_salt(salt);
|
|
mk_keytab(key);
|
|
|
|
l1=l2=r1=r2=0;
|
|
|
|
for(j=0; j<25; j++) {
|
|
k = &keytab[0][0];
|
|
for(i=8; i--; ) {
|
|
H;
|
|
}
|
|
s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
|
|
}
|
|
|
|
return output_conversion(l1, l2, r1, r2, salt);
|
|
}
|
|
|
|
#include "php.h"
|
|
#include "md5crypt.h"
|
|
|
|
PHPAPI char *
|
|
crypt (const char *pw, const char *salt)
|
|
{
|
|
if (strlen(salt)>MD5_MAGIC_LEN && strncmp(salt, MD5_MAGIC, MD5_MAGIC_LEN)==0) {
|
|
return md5_crypt(pw, salt);
|
|
} else {
|
|
return des_crypt(pw, salt);
|
|
}
|
|
}
|