php-src/win32/crypt_win32.c

563 lines
18 KiB
C

/*
* UFC-crypt: ultra fast crypt(3) implementation
*
* Copyright (C) 1991, Michael Glad, email: glad@daimi.aau.dk
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* @(#)crypt.c 2.2 10/04/91
*
* Semiportable C version
*
*/
#include <string.h>
#define bzero(addr, cnt) memset(addr, 0, cnt)
#define bcopy(from, to, len) memcpy(to, from, len)
/* Permutation done once on the 56 bit
key derived from the original 8 byte ASCII key.
*/
static unsigned long pc1[56] =
{ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
/* How much to rotate each 28 bit half of the pc1 permutated
56 bit key before using pc2 to give the i' key
*/
static unsigned long totrot[16] =
{ 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 };
/* Permutation giving the key of the i' DES round */
static unsigned long pc2[48] =
{ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
/* Reference copy of the expansion table which selects
bits from the 32 bit intermediate result.
*/
static unsigned long eref[48] =
{ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
};
static unsigned long disturbed_e[48];
static unsigned long e_inverse[64];
/* Permutation done on the result of sbox lookups */
static unsigned long perm32[32] =
{ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
/* The sboxes */
static unsigned long sbox[8][4][16]=
{ { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
{ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
},
{ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
{ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
{ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
},
{ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
{ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
{ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
{ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
},
{ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
{ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
{ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
{ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
},
{ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
{ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
{ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
{ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
},
{ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
{ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
{ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
{ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
},
{ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
{ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
{ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
{ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
},
{ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
{ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
{ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
}
};
#ifdef notdef
/* This is the initial permutation matrix -- we have no
use for it, but it is needed if you will develop
this module into a general DES package.
*/
static unsigned char inital_perm[64] =
{ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
#endif
/* Final permutation matrix -- not used directly */
static unsigned char final_perm[64] =
{ 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
};
/* The 16 DES keys in BITMASK format */
unsigned long keytab[16][2];
#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
/* Macro to set a bit (0..23) */
#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
/* sb arrays:
Workhorses of the inner loop of the DES implementation.
They do sbox lookup, shifting of this value, 32 bit
permutation and E permutation for the next round.
Kept in 'BITMASK' format.
*/
unsigned long sb0[8192],sb1[8192],sb2[8192],sb3[8192];
static unsigned long *sb[4] = {sb0,sb1,sb2,sb3};
/* eperm32tab: do 32 bit permutation and E selection
The first index is the byte number in the 32 bit value to be permuted
- second - is the value of this byte
- third - selects the two 32 bit values
The table is used and generated internally in init_des to speed it up
*/
static unsigned long eperm32tab[4][256][2];
/* mk_keytab_table: fast way of generating keytab from ASCII key
The first index is the byte number in the 8 byte ASCII key
- second - - - current DES round i.e. the key number
- third - distinguishes between the two 24 bit halfs of
the selected key
- fourth - selects the 7 bits actually used of each byte
The table is kept in the format generated by the BITMASK macro
*/
static unsigned long mk_keytab_table[8][16][2][128];
/* efp: undo an extra e selection and do final
permutation giving the DES result.
Invoked 6 bit a time on two 48 bit values
giving two 32 bit longs.
*/
static unsigned long efp[16][64][2];
static unsigned char bytemask[8] =
{ 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
static unsigned long longmask[32] =
{ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001
};
static unsigned long initialized = 0;
/* lookup a 6 bit value in sbox */
#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
/* Generate the mk_keytab_table once in a program execution */
void init_des()
{ unsigned long tbl_long,bit_within_long,comes_from_bit;
unsigned long bit,sg,j;
unsigned long bit_within_byte,key_byte,byte_value;
unsigned long round,mask;
bzero((char*)mk_keytab_table,sizeof mk_keytab_table);
for(round=0; round<16; round++)
for(bit=0; bit<48; bit++)
{ tbl_long = bit / 24;
bit_within_long = bit % 24;
/* from which bit in the key halves does it origin? */
comes_from_bit = pc2[bit] - 1;
/* undo the rotation done before pc2 */
if(comes_from_bit>=28)
comes_from_bit = 28 + (comes_from_bit + totrot[round]) % 28;
else
comes_from_bit = (comes_from_bit + totrot[round]) % 28;
/* undo the initial key half forming permutation */
comes_from_bit = pc1[comes_from_bit] - 1;
/* Now 'comes_from_bit' is the correct number (0..55)
of the keybit from which the bit being traced
in key 'round' comes from
*/
key_byte = comes_from_bit / 8;
bit_within_byte = (comes_from_bit % 8)+1;
mask = bytemask[bit_within_byte];
for(byte_value=0; byte_value<128; byte_value++)
if(byte_value & mask)
mk_keytab_table[key_byte][round][tbl_long][byte_value] |=
BITMASK(bit_within_long);
}
/* Now generate the table used to do an combined
32 bit permutation and e expansion
We use it because we have to permute 16384 32 bit
longs into 48 bit in order to initialize sb.
Looping 48 rounds per permutation becomes
just too slow...
*/
bzero((char*)eperm32tab,sizeof eperm32tab);
for(bit=0; bit<48; bit++)
{ unsigned long mask1,comes_from;
comes_from = perm32[eref[bit]-1]-1;
mask1 = bytemask[comes_from % 8];
for(j=256; j--;)
if(j & mask1)
eperm32tab[comes_from/8][j][bit/24] |= BITMASK(bit % 24);
}
/* Create the sb tables:
For each 12 bit segment of an 48 bit intermediate
result, the sb table precomputes the two 4 bit
values of the sbox lookups done with the two 6
bit halves, shifts them to their proper place,
sends them through perm32 and finally E expands
them so that they are ready for the next
DES round.
The value looked up is to be xored onto the
two 48 bit right halves.
*/
for(sg=0; sg<4; sg++)
{ unsigned long j1,j2;
unsigned long s1,s2;
for(j1=0; j1<64; j1++)
{ s1 = s_lookup(2*sg,j1);
for(j2=0; j2<64; j2++)
{ unsigned long to_permute,inx;
s2 = s_lookup(2*sg+1,j2);
to_permute = ((s1<<4) | s2) << (24-8*sg);
inx = ((j1<<6) | j2) << 1;
sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
}
}
}
initialized++;
}
/* Process the elements of the sb table permuting the
bits swapped in the expansion by the current salt.
*/
void shuffle_sb(k, saltbits)
unsigned long *k, saltbits;
{ int j, x;
for(j=4096; j--;) {
x = (k[0] ^ k[1]) & saltbits;
*k++ ^= x;
*k++ ^= x;
}
}
/* Setup the unit for a new salt
Hopefully we'll not see a new salt in each crypt call.
*/
static unsigned char current_salt[3]="&&"; /* invalid value */
static unsigned long oldsaltbits = 0;
void setup_salt(s)
char *s;
{ unsigned long i,j,saltbits;
if(!initialized)
init_des();
if(s[0]==current_salt[0] && s[1]==current_salt[1])
return;
current_salt[0]=s[0]; current_salt[1]=s[1];
/* This is the only crypt change to DES:
entries are swapped in the expansion table
according to the bits set in the salt.
*/
saltbits=0;
bcopy((char*)eref,(char*)disturbed_e,sizeof eref);
for(i=0; i<2; i++)
{ long c=ascii_to_bin(s[i]);
if(c<0 || c>63)
c=0;
for(j=0; j<6; j++)
if((c>>j) & 0x1)
{ disturbed_e[6*i+j ]=eref[6*i+j+24];
disturbed_e[6*i+j+24]=eref[6*i+j ];
saltbits |= BITMASK(6*i+j);
}
}
/* Permute the sb table values
to reflect the changed e
selection table
*/
shuffle_sb(sb0, oldsaltbits ^ saltbits);
shuffle_sb(sb1, oldsaltbits ^ saltbits);
shuffle_sb(sb2, oldsaltbits ^ saltbits);
shuffle_sb(sb3, oldsaltbits ^ saltbits);
oldsaltbits = saltbits;
/* Create an inverse matrix for disturbed_e telling
where to plug out bits if undoing disturbed_e
*/
for(i=48; i--;)
{ e_inverse[disturbed_e[i]-1 ] = i;
e_inverse[disturbed_e[i]-1+32] = i+48;
}
/* create efp: the matrix used to
undo the E expansion and effect final permutation
*/
bzero((char*)efp,sizeof efp);
for(i=0; i<64; i++)
{ unsigned long o_bit,o_long;
unsigned long word_value,mask1,mask2,comes_from_f_bit,comes_from_e_bit;
unsigned long comes_from_word,bit_within_word;
/* See where bit i belongs in the two 32 bit long's */
o_long = i / 32; /* 0..1 */
o_bit = i % 32; /* 0..31 */
/* And find a bit in the e permutated value setting this bit.
Note: the e selection may have selected the same bit several
times. By the initialization of e_inverse, we only look
for one specific instance.
*/
comes_from_f_bit = final_perm[i]-1; /* 0..63 */
comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
comes_from_word = comes_from_e_bit / 6; /* 0..15 */
bit_within_word = comes_from_e_bit % 6; /* 0..5 */
mask1 = longmask[bit_within_word+26];
mask2 = longmask[o_bit];
for(word_value=64; word_value--;)
if(word_value & mask1)
efp[comes_from_word][word_value][o_long] |= mask2;
}
}
/* Generate the key table before running the 25 DES rounds */
void mk_keytab(key)
char *key;
{ unsigned long i,j;
unsigned long *k,*mkt;
char t;
bzero((char*)keytab, sizeof keytab);
mkt = &mk_keytab_table[0][0][0][0];
for(i=0; (t=(*key++) & 0x7f) && i<8; i++)
for(j=0,k = &keytab[0][0]; j<16; j++)
{ *k++ |= mkt[t]; mkt += 128;
*k++ |= mkt[t]; mkt += 128;
}
for(; i<8; i++)
for(j=0,k = &keytab[0][0]; j<16; j++)
{ *k++ |= mkt[0]; mkt += 128;
*k++ |= mkt[0]; mkt += 128;
}
}
/* Do final permutations and convert to ASCII */
char *output_conversion(l1,l2,r1,r2,salt)
unsigned long l1,l2,r1,r2;
char *salt;
{ static char outbuf[14];
unsigned long i;
unsigned long s,v1,v2;
/* Unfortunately we've done an extra E
expansion -- undo it at the same time.
*/
v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
v1 |= efp[ 2][(l1>>=6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
v1 |= efp[ 1][(l1>>=10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
v1 |= efp[ 0][(l1>>=6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
v1 |= efp[ 6][(l2>>=6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
v1 |= efp[ 5][(l2>>=10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
v1 |= efp[ 4][(l2>>=6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
v1 |= efp[10][(r1>>=6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
v1 |= efp[ 9][(r1>>=10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
v1 |= efp[ 8][(r1>>=6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
v1 |= efp[14][(r2>>=6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
v1 |= efp[13][(r2>>=10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
v1 |= efp[12][(r2>>=6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
outbuf[0] = salt[0];
outbuf[1] = salt[1] ? salt[1] : salt[0];
for(i=0; i<5; i++)
outbuf[i+2] = bin_to_ascii((v1>>(26-6*i)) & 0x3f);
s = (v2 & 0xf) << 2; /* Save the rightmost 4 bit a moment */
v2 = (v2>>2) | ((v1 & 0x3)<<30); /* Shift two bits of v1 onto v2 */
for(i=5; i<10; i++)
outbuf[i+2] = bin_to_ascii((v2>>(56-6*i)) & 0x3f);
outbuf[12] = bin_to_ascii(s);
outbuf[13] = 0;
return outbuf;
}
#define SBA(sb, v) (*(unsigned long*)((char*)(sb)+(v)))
#define F(I, O1, O2, SBX, SBY) \
s = *k++ ^ I; \
O1 ^= SBA(SBX, (s & 0xffff)); O2 ^= SBA(SBX, ((s & 0xffff) + 4)); \
O1 ^= SBA(SBY, (s >>= 16)); O2 ^= SBA(SBY, ((s) + 4));
#define G(I1, I2, O1, O2) \
F(I1, O1, O2, sb1, sb0) F(I2, O1, O2, sb3, sb2)
#define H G(r1, r2, l1, l2) ; G(l1, l2, r1, r2)
char *des_crypt(key, salt)
char *key;
char *salt;
{ unsigned long l1, l2, r1, r2, i, j, s, *k;
setup_salt(salt);
mk_keytab(key);
l1=l2=r1=r2=0;
for(j=0; j<25; j++) {
k = &keytab[0][0];
for(i=8; i--; ) {
H;
}
s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
}
return output_conversion(l1, l2, r1, r2, salt);
}
#include "php.h"
#include "md5crypt.h"
PHPAPI char *
crypt (const char *pw, const char *salt)
{
if (strlen(salt)>MD5_MAGIC_LEN && strncmp(salt, MD5_MAGIC, MD5_MAGIC_LEN)==0) {
return md5_crypt(pw, salt);
} else {
return des_crypt(pw, salt);
}
}