php-src/Zend/zend_hash.c
Niels Dossche 272dc9a09c Merge branch 'PHP-8.1' into PHP-8.2
* PHP-8.1:
  Fix GH-11716: cli server crashes on SIGINT when compiled with ZEND_RC_DEBUG=1
2023-07-21 15:31:20 +02:00

3306 lines
81 KiB
C

/*
+----------------------------------------------------------------------+
| Zend Engine |
+----------------------------------------------------------------------+
| Copyright (c) Zend Technologies Ltd. (http://www.zend.com) |
+----------------------------------------------------------------------+
| This source file is subject to version 2.00 of the Zend license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.zend.com/license/2_00.txt. |
| If you did not receive a copy of the Zend license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@zend.com so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Andi Gutmans <andi@php.net> |
| Zeev Suraski <zeev@php.net> |
| Dmitry Stogov <dmitry@php.net> |
+----------------------------------------------------------------------+
*/
#include "zend.h"
#include "zend_globals.h"
#include "zend_variables.h"
#if defined(__aarch64__) || defined(_M_ARM64)
# include <arm_neon.h>
#endif
#ifdef __SSE2__
# include <mmintrin.h>
# include <emmintrin.h>
#endif
#if ZEND_DEBUG
# define HT_ASSERT(ht, expr) \
ZEND_ASSERT((expr) || (HT_FLAGS(ht) & HASH_FLAG_ALLOW_COW_VIOLATION))
#else
# define HT_ASSERT(ht, expr)
#endif
#define HT_ASSERT_RC1(ht) HT_ASSERT(ht, GC_REFCOUNT(ht) == 1)
#define HT_POISONED_PTR ((HashTable *) (intptr_t) -1)
#if ZEND_DEBUG
#define HT_OK 0x00
#define HT_IS_DESTROYING 0x01
#define HT_DESTROYED 0x02
#define HT_CLEANING 0x03
static void _zend_is_inconsistent(const HashTable *ht, const char *file, int line)
{
if ((HT_FLAGS(ht) & HASH_FLAG_CONSISTENCY) == HT_OK) {
return;
}
switch (HT_FLAGS(ht) & HASH_FLAG_CONSISTENCY) {
case HT_IS_DESTROYING:
zend_output_debug_string(1, "%s(%d) : ht=%p is being destroyed", file, line, ht);
break;
case HT_DESTROYED:
zend_output_debug_string(1, "%s(%d) : ht=%p is already destroyed", file, line, ht);
break;
case HT_CLEANING:
zend_output_debug_string(1, "%s(%d) : ht=%p is being cleaned", file, line, ht);
break;
default:
zend_output_debug_string(1, "%s(%d) : ht=%p is inconsistent", file, line, ht);
break;
}
ZEND_UNREACHABLE();
}
#define IS_CONSISTENT(a) _zend_is_inconsistent(a, __FILE__, __LINE__);
#define SET_INCONSISTENT(n) do { \
HT_FLAGS(ht) = (HT_FLAGS(ht) & ~HASH_FLAG_CONSISTENCY) | (n); \
} while (0)
#else
#define IS_CONSISTENT(a)
#define SET_INCONSISTENT(n)
#endif
#define ZEND_HASH_IF_FULL_DO_RESIZE(ht) \
if ((ht)->nNumUsed >= (ht)->nTableSize) { \
zend_hash_do_resize(ht); \
}
ZEND_API void *zend_hash_str_find_ptr_lc(const HashTable *ht, const char *str, size_t len) {
void *result;
char *lc_str;
/* Stack allocate small strings to improve performance */
ALLOCA_FLAG(use_heap)
lc_str = zend_str_tolower_copy(do_alloca(len + 1, use_heap), str, len);
result = zend_hash_str_find_ptr(ht, lc_str, len);
free_alloca(lc_str, use_heap);
return result;
}
ZEND_API void *zend_hash_find_ptr_lc(const HashTable *ht, zend_string *key) {
void *result;
zend_string *lc_key = zend_string_tolower(key);
result = zend_hash_find_ptr(ht, lc_key);
zend_string_release(lc_key);
return result;
}
static void ZEND_FASTCALL zend_hash_do_resize(HashTable *ht);
static zend_always_inline uint32_t zend_hash_check_size(uint32_t nSize)
{
#ifdef ZEND_WIN32
unsigned long index;
#endif
/* Use big enough power of 2 */
/* size should be between HT_MIN_SIZE and HT_MAX_SIZE */
if (nSize <= HT_MIN_SIZE) {
return HT_MIN_SIZE;
} else if (UNEXPECTED(nSize >= HT_MAX_SIZE)) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%u * %zu + %zu)", nSize, sizeof(Bucket), sizeof(Bucket));
}
#ifdef ZEND_WIN32
if (BitScanReverse(&index, nSize - 1)) {
return 0x2u << ((31 - index) ^ 0x1f);
} else {
/* nSize is ensured to be in the valid range, fall back to it
rather than using an undefined bis scan result. */
return nSize;
}
#elif (defined(__GNUC__) || __has_builtin(__builtin_clz)) && defined(PHP_HAVE_BUILTIN_CLZ)
return 0x2u << (__builtin_clz(nSize - 1) ^ 0x1f);
#else
nSize -= 1;
nSize |= (nSize >> 1);
nSize |= (nSize >> 2);
nSize |= (nSize >> 4);
nSize |= (nSize >> 8);
nSize |= (nSize >> 16);
return nSize + 1;
#endif
}
static zend_always_inline void zend_hash_real_init_packed_ex(HashTable *ht)
{
void *data;
if (UNEXPECTED(GC_FLAGS(ht) & IS_ARRAY_PERSISTENT)) {
data = pemalloc(HT_PACKED_SIZE_EX(ht->nTableSize, HT_MIN_MASK), 1);
} else if (EXPECTED(ht->nTableSize == HT_MIN_SIZE)) {
/* Use specialized API with constant allocation amount for a particularly common case. */
data = emalloc(HT_PACKED_SIZE_EX(HT_MIN_SIZE, HT_MIN_MASK));
} else {
data = emalloc(HT_PACKED_SIZE_EX(ht->nTableSize, HT_MIN_MASK));
}
HT_SET_DATA_ADDR(ht, data);
/* Don't overwrite iterator count. */
ht->u.v.flags = HASH_FLAG_PACKED | HASH_FLAG_STATIC_KEYS;
HT_HASH_RESET_PACKED(ht);
}
static zend_always_inline void zend_hash_real_init_mixed_ex(HashTable *ht)
{
void *data;
uint32_t nSize = ht->nTableSize;
ZEND_ASSERT(HT_SIZE_TO_MASK(nSize));
if (UNEXPECTED(GC_FLAGS(ht) & IS_ARRAY_PERSISTENT)) {
data = pemalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)), 1);
} else if (EXPECTED(nSize == HT_MIN_SIZE)) {
data = emalloc(HT_SIZE_EX(HT_MIN_SIZE, HT_SIZE_TO_MASK(HT_MIN_SIZE)));
ht->nTableMask = HT_SIZE_TO_MASK(HT_MIN_SIZE);
HT_SET_DATA_ADDR(ht, data);
/* Don't overwrite iterator count. */
ht->u.v.flags = HASH_FLAG_STATIC_KEYS;
#ifdef __SSE2__
do {
__m128i xmm0 = _mm_setzero_si128();
xmm0 = _mm_cmpeq_epi8(xmm0, xmm0);
_mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 0), xmm0);
_mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 4), xmm0);
_mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 8), xmm0);
_mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 12), xmm0);
} while (0);
#elif defined(__aarch64__) || defined(_M_ARM64)
do {
int32x4_t t = vdupq_n_s32(-1);
vst1q_s32((int32_t*)&HT_HASH_EX(data, 0), t);
vst1q_s32((int32_t*)&HT_HASH_EX(data, 4), t);
vst1q_s32((int32_t*)&HT_HASH_EX(data, 8), t);
vst1q_s32((int32_t*)&HT_HASH_EX(data, 12), t);
} while (0);
#else
HT_HASH_EX(data, 0) = -1;
HT_HASH_EX(data, 1) = -1;
HT_HASH_EX(data, 2) = -1;
HT_HASH_EX(data, 3) = -1;
HT_HASH_EX(data, 4) = -1;
HT_HASH_EX(data, 5) = -1;
HT_HASH_EX(data, 6) = -1;
HT_HASH_EX(data, 7) = -1;
HT_HASH_EX(data, 8) = -1;
HT_HASH_EX(data, 9) = -1;
HT_HASH_EX(data, 10) = -1;
HT_HASH_EX(data, 11) = -1;
HT_HASH_EX(data, 12) = -1;
HT_HASH_EX(data, 13) = -1;
HT_HASH_EX(data, 14) = -1;
HT_HASH_EX(data, 15) = -1;
#endif
return;
} else {
data = emalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)));
}
ht->nTableMask = HT_SIZE_TO_MASK(nSize);
HT_SET_DATA_ADDR(ht, data);
HT_FLAGS(ht) = HASH_FLAG_STATIC_KEYS;
HT_HASH_RESET(ht);
}
static zend_always_inline void zend_hash_real_init_ex(HashTable *ht, bool packed)
{
HT_ASSERT_RC1(ht);
ZEND_ASSERT(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED);
if (packed) {
zend_hash_real_init_packed_ex(ht);
} else {
zend_hash_real_init_mixed_ex(ht);
}
}
static const uint32_t uninitialized_bucket[-HT_MIN_MASK] =
{HT_INVALID_IDX, HT_INVALID_IDX};
ZEND_API const HashTable zend_empty_array = {
.gc.refcount = 2,
.gc.u.type_info = IS_ARRAY | (GC_IMMUTABLE << GC_FLAGS_SHIFT),
.u.flags = HASH_FLAG_UNINITIALIZED,
.nTableMask = HT_MIN_MASK,
{.arData = (Bucket*)&uninitialized_bucket[2]},
.nNumUsed = 0,
.nNumOfElements = 0,
.nTableSize = HT_MIN_SIZE,
.nInternalPointer = 0,
.nNextFreeElement = 0,
.pDestructor = ZVAL_PTR_DTOR
};
static zend_always_inline void _zend_hash_init_int(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, bool persistent)
{
GC_SET_REFCOUNT(ht, 1);
GC_TYPE_INFO(ht) = GC_ARRAY | (persistent ? ((GC_PERSISTENT|GC_NOT_COLLECTABLE) << GC_FLAGS_SHIFT) : 0);
HT_FLAGS(ht) = HASH_FLAG_UNINITIALIZED;
ht->nTableMask = HT_MIN_MASK;
HT_SET_DATA_ADDR(ht, &uninitialized_bucket);
ht->nNumUsed = 0;
ht->nNumOfElements = 0;
ht->nInternalPointer = 0;
ht->nNextFreeElement = ZEND_LONG_MIN;
ht->pDestructor = pDestructor;
ht->nTableSize = zend_hash_check_size(nSize);
}
ZEND_API void ZEND_FASTCALL _zend_hash_init(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, bool persistent)
{
_zend_hash_init_int(ht, nSize, pDestructor, persistent);
}
ZEND_API HashTable* ZEND_FASTCALL _zend_new_array_0(void)
{
HashTable *ht = emalloc(sizeof(HashTable));
_zend_hash_init_int(ht, HT_MIN_SIZE, ZVAL_PTR_DTOR, 0);
return ht;
}
ZEND_API HashTable* ZEND_FASTCALL _zend_new_array(uint32_t nSize)
{
HashTable *ht = emalloc(sizeof(HashTable));
_zend_hash_init_int(ht, nSize, ZVAL_PTR_DTOR, 0);
return ht;
}
ZEND_API HashTable* ZEND_FASTCALL zend_new_pair(zval *val1, zval *val2)
{
zval *zv;
HashTable *ht = emalloc(sizeof(HashTable));
_zend_hash_init_int(ht, HT_MIN_SIZE, ZVAL_PTR_DTOR, 0);
ht->nNumUsed = ht->nNumOfElements = ht->nNextFreeElement = 2;
zend_hash_real_init_packed_ex(ht);
zv = ht->arPacked;
ZVAL_COPY_VALUE(zv, val1);
zv++;
ZVAL_COPY_VALUE(zv, val2);
return ht;
}
ZEND_API void ZEND_FASTCALL zend_hash_packed_grow(HashTable *ht)
{
HT_ASSERT_RC1(ht);
if (ht->nTableSize >= HT_MAX_SIZE) {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%u * %zu + %zu)", ht->nTableSize * 2, sizeof(Bucket), sizeof(Bucket));
}
uint32_t newTableSize = ht->nTableSize * 2;
HT_SET_DATA_ADDR(ht, perealloc2(HT_GET_DATA_ADDR(ht), HT_PACKED_SIZE_EX(newTableSize, HT_MIN_MASK), HT_PACKED_USED_SIZE(ht), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT));
ht->nTableSize = newTableSize;
}
ZEND_API void ZEND_FASTCALL zend_hash_real_init(HashTable *ht, bool packed)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
zend_hash_real_init_ex(ht, packed);
}
ZEND_API void ZEND_FASTCALL zend_hash_real_init_packed(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
zend_hash_real_init_packed_ex(ht);
}
ZEND_API void ZEND_FASTCALL zend_hash_real_init_mixed(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
zend_hash_real_init_mixed_ex(ht);
}
ZEND_API void ZEND_FASTCALL zend_hash_packed_to_hash(HashTable *ht)
{
void *new_data, *old_data = HT_GET_DATA_ADDR(ht);
zval *src = ht->arPacked;
Bucket *dst;
uint32_t i;
uint32_t nSize = ht->nTableSize;
ZEND_ASSERT(HT_SIZE_TO_MASK(nSize));
HT_ASSERT_RC1(ht);
// Alloc before assign to avoid inconsistencies on OOM
new_data = pemalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
HT_FLAGS(ht) &= ~HASH_FLAG_PACKED;
ht->nTableMask = HT_SIZE_TO_MASK(ht->nTableSize);
HT_SET_DATA_ADDR(ht, new_data);
dst = ht->arData;
for (i = 0; i < ht->nNumUsed; i++) {
ZVAL_COPY_VALUE(&dst->val, src);
dst->h = i;
dst->key = NULL;
dst++;
src++;
}
pefree(old_data, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
zend_hash_rehash(ht);
}
ZEND_API void ZEND_FASTCALL zend_hash_to_packed(HashTable *ht)
{
void *new_data, *old_data = HT_GET_DATA_ADDR(ht);
Bucket *src = ht->arData;
zval *dst;
uint32_t i;
HT_ASSERT_RC1(ht);
new_data = pemalloc(HT_PACKED_SIZE_EX(ht->nTableSize, HT_MIN_MASK), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
HT_FLAGS(ht) |= HASH_FLAG_PACKED | HASH_FLAG_STATIC_KEYS;
ht->nTableMask = HT_MIN_MASK;
HT_SET_DATA_ADDR(ht, new_data);
HT_HASH_RESET_PACKED(ht);
dst = ht->arPacked;
for (i = 0; i < ht->nNumUsed; i++) {
ZVAL_COPY_VALUE(dst, &src->val);
dst++;
src++;
}
pefree(old_data, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
}
ZEND_API void ZEND_FASTCALL zend_hash_extend(HashTable *ht, uint32_t nSize, bool packed)
{
HT_ASSERT_RC1(ht);
if (nSize == 0) return;
ZEND_ASSERT(HT_SIZE_TO_MASK(nSize));
if (UNEXPECTED(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
if (nSize > ht->nTableSize) {
ht->nTableSize = zend_hash_check_size(nSize);
}
zend_hash_real_init(ht, packed);
} else {
if (packed) {
ZEND_ASSERT(HT_IS_PACKED(ht));
if (nSize > ht->nTableSize) {
uint32_t newTableSize = zend_hash_check_size(nSize);
HT_SET_DATA_ADDR(ht, perealloc2(HT_GET_DATA_ADDR(ht), HT_PACKED_SIZE_EX(newTableSize, HT_MIN_MASK), HT_PACKED_USED_SIZE(ht), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT));
ht->nTableSize = newTableSize;
}
} else {
ZEND_ASSERT(!HT_IS_PACKED(ht));
if (nSize > ht->nTableSize) {
void *new_data, *old_data = HT_GET_DATA_ADDR(ht);
Bucket *old_buckets = ht->arData;
nSize = zend_hash_check_size(nSize);
new_data = pemalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
ht->nTableSize = nSize;
ht->nTableMask = HT_SIZE_TO_MASK(ht->nTableSize);
HT_SET_DATA_ADDR(ht, new_data);
memcpy(ht->arData, old_buckets, sizeof(Bucket) * ht->nNumUsed);
pefree(old_data, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
zend_hash_rehash(ht);
}
}
}
}
ZEND_API void ZEND_FASTCALL zend_hash_discard(HashTable *ht, uint32_t nNumUsed)
{
Bucket *p, *end, *arData;
uint32_t nIndex;
ZEND_ASSERT(!HT_IS_PACKED(ht));
arData = ht->arData;
p = arData + ht->nNumUsed;
end = arData + nNumUsed;
ht->nNumUsed = nNumUsed;
while (p != end) {
p--;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
ht->nNumOfElements--;
/* Collision pointers always directed from higher to lower buckets */
#if 0
if (!(Z_NEXT(p->val) == HT_INVALID_IDX || HT_HASH_TO_BUCKET_EX(arData, Z_NEXT(p->val)) < p)) {
abort();
}
#endif
nIndex = p->h | ht->nTableMask;
HT_HASH_EX(arData, nIndex) = Z_NEXT(p->val);
}
}
static uint32_t zend_array_recalc_elements(HashTable *ht)
{
zval *val;
uint32_t num = ht->nNumOfElements;
ZEND_HASH_MAP_FOREACH_VAL(ht, val) {
if (Z_TYPE_P(val) == IS_INDIRECT) {
if (UNEXPECTED(Z_TYPE_P(Z_INDIRECT_P(val)) == IS_UNDEF)) {
num--;
}
}
} ZEND_HASH_FOREACH_END();
return num;
}
/* }}} */
ZEND_API uint32_t zend_array_count(HashTable *ht)
{
uint32_t num;
if (UNEXPECTED(HT_FLAGS(ht) & HASH_FLAG_HAS_EMPTY_IND)) {
num = zend_array_recalc_elements(ht);
if (UNEXPECTED(ht->nNumOfElements == num)) {
HT_FLAGS(ht) &= ~HASH_FLAG_HAS_EMPTY_IND;
}
} else if (UNEXPECTED(ht == &EG(symbol_table))) {
num = zend_array_recalc_elements(ht);
} else {
num = zend_hash_num_elements(ht);
}
return num;
}
/* }}} */
static zend_always_inline HashPosition _zend_hash_get_valid_pos(const HashTable *ht, HashPosition pos)
{
if (HT_IS_PACKED(ht)) {
while (pos < ht->nNumUsed && Z_ISUNDEF(ht->arPacked[pos])) {
pos++;
}
} else {
while (pos < ht->nNumUsed && Z_ISUNDEF(ht->arData[pos].val)) {
pos++;
}
}
return pos;
}
static zend_always_inline HashPosition _zend_hash_get_current_pos(const HashTable *ht)
{
return _zend_hash_get_valid_pos(ht, ht->nInternalPointer);
}
ZEND_API HashPosition ZEND_FASTCALL zend_hash_get_current_pos(const HashTable *ht)
{
return _zend_hash_get_current_pos(ht);
}
ZEND_API uint32_t ZEND_FASTCALL zend_hash_iterator_add(HashTable *ht, HashPosition pos)
{
HashTableIterator *iter = EG(ht_iterators);
HashTableIterator *end = iter + EG(ht_iterators_count);
uint32_t idx;
if (EXPECTED(!HT_ITERATORS_OVERFLOW(ht))) {
HT_INC_ITERATORS_COUNT(ht);
}
while (iter != end) {
if (iter->ht == NULL) {
iter->ht = ht;
iter->pos = pos;
idx = iter - EG(ht_iterators);
if (idx + 1 > EG(ht_iterators_used)) {
EG(ht_iterators_used) = idx + 1;
}
return idx;
}
iter++;
}
if (EG(ht_iterators) == EG(ht_iterators_slots)) {
EG(ht_iterators) = emalloc(sizeof(HashTableIterator) * (EG(ht_iterators_count) + 8));
memcpy(EG(ht_iterators), EG(ht_iterators_slots), sizeof(HashTableIterator) * EG(ht_iterators_count));
} else {
EG(ht_iterators) = erealloc(EG(ht_iterators), sizeof(HashTableIterator) * (EG(ht_iterators_count) + 8));
}
iter = EG(ht_iterators) + EG(ht_iterators_count);
EG(ht_iterators_count) += 8;
iter->ht = ht;
iter->pos = pos;
memset(iter + 1, 0, sizeof(HashTableIterator) * 7);
idx = iter - EG(ht_iterators);
EG(ht_iterators_used) = idx + 1;
return idx;
}
ZEND_API HashPosition ZEND_FASTCALL zend_hash_iterator_pos(uint32_t idx, HashTable *ht)
{
HashTableIterator *iter = EG(ht_iterators) + idx;
ZEND_ASSERT(idx != (uint32_t)-1);
if (UNEXPECTED(iter->ht != ht)) {
if (EXPECTED(iter->ht) && EXPECTED(iter->ht != HT_POISONED_PTR)
&& EXPECTED(!HT_ITERATORS_OVERFLOW(iter->ht))) {
HT_DEC_ITERATORS_COUNT(iter->ht);
}
if (EXPECTED(!HT_ITERATORS_OVERFLOW(ht))) {
HT_INC_ITERATORS_COUNT(ht);
}
iter->ht = ht;
iter->pos = _zend_hash_get_current_pos(ht);
}
return iter->pos;
}
ZEND_API HashPosition ZEND_FASTCALL zend_hash_iterator_pos_ex(uint32_t idx, zval *array)
{
HashTable *ht = Z_ARRVAL_P(array);
HashTableIterator *iter = EG(ht_iterators) + idx;
ZEND_ASSERT(idx != (uint32_t)-1);
if (UNEXPECTED(iter->ht != ht)) {
if (EXPECTED(iter->ht) && EXPECTED(iter->ht != HT_POISONED_PTR)
&& EXPECTED(!HT_ITERATORS_OVERFLOW(ht))) {
HT_DEC_ITERATORS_COUNT(iter->ht);
}
SEPARATE_ARRAY(array);
ht = Z_ARRVAL_P(array);
if (EXPECTED(!HT_ITERATORS_OVERFLOW(ht))) {
HT_INC_ITERATORS_COUNT(ht);
}
iter->ht = ht;
iter->pos = _zend_hash_get_current_pos(ht);
}
return iter->pos;
}
ZEND_API void ZEND_FASTCALL zend_hash_iterator_del(uint32_t idx)
{
HashTableIterator *iter = EG(ht_iterators) + idx;
ZEND_ASSERT(idx != (uint32_t)-1);
if (EXPECTED(iter->ht) && EXPECTED(iter->ht != HT_POISONED_PTR)
&& EXPECTED(!HT_ITERATORS_OVERFLOW(iter->ht))) {
ZEND_ASSERT(HT_ITERATORS_COUNT(iter->ht) != 0);
HT_DEC_ITERATORS_COUNT(iter->ht);
}
iter->ht = NULL;
if (idx == EG(ht_iterators_used) - 1) {
while (idx > 0 && EG(ht_iterators)[idx - 1].ht == NULL) {
idx--;
}
EG(ht_iterators_used) = idx;
}
}
static zend_never_inline void ZEND_FASTCALL _zend_hash_iterators_remove(HashTable *ht)
{
HashTableIterator *iter = EG(ht_iterators);
HashTableIterator *end = iter + EG(ht_iterators_used);
while (iter != end) {
if (iter->ht == ht) {
iter->ht = HT_POISONED_PTR;
}
iter++;
}
}
static zend_always_inline void zend_hash_iterators_remove(HashTable *ht)
{
if (UNEXPECTED(HT_HAS_ITERATORS(ht))) {
_zend_hash_iterators_remove(ht);
}
}
ZEND_API HashPosition ZEND_FASTCALL zend_hash_iterators_lower_pos(HashTable *ht, HashPosition start)
{
HashTableIterator *iter = EG(ht_iterators);
HashTableIterator *end = iter + EG(ht_iterators_used);
HashPosition res = ht->nNumUsed;
while (iter != end) {
if (iter->ht == ht) {
if (iter->pos >= start && iter->pos < res) {
res = iter->pos;
}
}
iter++;
}
return res;
}
ZEND_API void ZEND_FASTCALL _zend_hash_iterators_update(HashTable *ht, HashPosition from, HashPosition to)
{
HashTableIterator *iter = EG(ht_iterators);
HashTableIterator *end = iter + EG(ht_iterators_used);
while (iter != end) {
if (iter->ht == ht && iter->pos == from) {
iter->pos = to;
}
iter++;
}
}
ZEND_API void ZEND_FASTCALL zend_hash_iterators_advance(HashTable *ht, HashPosition step)
{
HashTableIterator *iter = EG(ht_iterators);
HashTableIterator *end = iter + EG(ht_iterators_used);
while (iter != end) {
if (iter->ht == ht) {
iter->pos += step;
}
iter++;
}
}
/* Hash must be known and precomputed before */
static zend_always_inline Bucket *zend_hash_find_bucket(const HashTable *ht, const zend_string *key)
{
uint32_t nIndex;
uint32_t idx;
Bucket *p, *arData;
ZEND_ASSERT(ZSTR_H(key) != 0 && "Hash must be known");
arData = ht->arData;
nIndex = ZSTR_H(key) | ht->nTableMask;
idx = HT_HASH_EX(arData, nIndex);
if (UNEXPECTED(idx == HT_INVALID_IDX)) {
return NULL;
}
p = HT_HASH_TO_BUCKET_EX(arData, idx);
if (EXPECTED(p->key == key)) { /* check for the same interned string */
return p;
}
while (1) {
if (p->h == ZSTR_H(key) &&
EXPECTED(p->key) &&
zend_string_equal_content(p->key, key)) {
return p;
}
idx = Z_NEXT(p->val);
if (idx == HT_INVALID_IDX) {
return NULL;
}
p = HT_HASH_TO_BUCKET_EX(arData, idx);
if (p->key == key) { /* check for the same interned string */
return p;
}
}
}
static zend_always_inline Bucket *zend_hash_str_find_bucket(const HashTable *ht, const char *str, size_t len, zend_ulong h)
{
uint32_t nIndex;
uint32_t idx;
Bucket *p, *arData;
arData = ht->arData;
nIndex = h | ht->nTableMask;
idx = HT_HASH_EX(arData, nIndex);
while (idx != HT_INVALID_IDX) {
ZEND_ASSERT(idx < HT_IDX_TO_HASH(ht->nTableSize));
p = HT_HASH_TO_BUCKET_EX(arData, idx);
if ((p->h == h)
&& p->key
&& zend_string_equals_cstr(p->key, str, len)) {
return p;
}
idx = Z_NEXT(p->val);
}
return NULL;
}
static zend_always_inline Bucket *zend_hash_index_find_bucket(const HashTable *ht, zend_ulong h)
{
uint32_t nIndex;
uint32_t idx;
Bucket *p, *arData;
arData = ht->arData;
nIndex = h | ht->nTableMask;
idx = HT_HASH_EX(arData, nIndex);
while (idx != HT_INVALID_IDX) {
ZEND_ASSERT(idx < HT_IDX_TO_HASH(ht->nTableSize));
p = HT_HASH_TO_BUCKET_EX(arData, idx);
if (p->h == h && !p->key) {
return p;
}
idx = Z_NEXT(p->val);
}
return NULL;
}
static zend_always_inline zval *_zend_hash_add_or_update_i(HashTable *ht, zend_string *key, zval *pData, uint32_t flag)
{
zend_ulong h;
uint32_t nIndex;
uint32_t idx;
Bucket *p, *arData;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
zend_string_hash_val(key);
if (UNEXPECTED(HT_FLAGS(ht) & (HASH_FLAG_UNINITIALIZED|HASH_FLAG_PACKED))) {
if (EXPECTED(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
zend_hash_real_init_mixed(ht);
goto add_to_hash;
} else {
zend_hash_packed_to_hash(ht);
}
} else if ((flag & HASH_ADD_NEW) == 0 || ZEND_DEBUG) {
p = zend_hash_find_bucket(ht, key);
if (p) {
zval *data;
ZEND_ASSERT((flag & HASH_ADD_NEW) == 0);
if (flag & HASH_LOOKUP) {
return &p->val;
} else if (flag & HASH_ADD) {
if (!(flag & HASH_UPDATE_INDIRECT)) {
return NULL;
}
ZEND_ASSERT(&p->val != pData);
data = &p->val;
if (Z_TYPE_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
if (Z_TYPE_P(data) != IS_UNDEF) {
return NULL;
}
} else {
return NULL;
}
} else {
ZEND_ASSERT(&p->val != pData);
data = &p->val;
if ((flag & HASH_UPDATE_INDIRECT) && Z_TYPE_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
}
}
if (ht->pDestructor) {
ht->pDestructor(data);
}
ZVAL_COPY_VALUE(data, pData);
return data;
}
}
ZEND_HASH_IF_FULL_DO_RESIZE(ht); /* If the Hash table is full, resize it */
add_to_hash:
if (!ZSTR_IS_INTERNED(key)) {
zend_string_addref(key);
HT_FLAGS(ht) &= ~HASH_FLAG_STATIC_KEYS;
}
idx = ht->nNumUsed++;
ht->nNumOfElements++;
arData = ht->arData;
p = arData + idx;
p->key = key;
p->h = h = ZSTR_H(key);
nIndex = h | ht->nTableMask;
Z_NEXT(p->val) = HT_HASH_EX(arData, nIndex);
HT_HASH_EX(arData, nIndex) = HT_IDX_TO_HASH(idx);
if (flag & HASH_LOOKUP) {
ZVAL_NULL(&p->val);
} else {
ZVAL_COPY_VALUE(&p->val, pData);
}
return &p->val;
}
static zend_always_inline zval *_zend_hash_str_add_or_update_i(HashTable *ht, const char *str, size_t len, zend_ulong h, zval *pData, uint32_t flag)
{
zend_string *key;
uint32_t nIndex;
uint32_t idx;
Bucket *p;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (UNEXPECTED(HT_FLAGS(ht) & (HASH_FLAG_UNINITIALIZED|HASH_FLAG_PACKED))) {
if (EXPECTED(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
zend_hash_real_init_mixed(ht);
goto add_to_hash;
} else {
zend_hash_packed_to_hash(ht);
}
} else if ((flag & HASH_ADD_NEW) == 0) {
p = zend_hash_str_find_bucket(ht, str, len, h);
if (p) {
zval *data;
if (flag & HASH_LOOKUP) {
return &p->val;
} else if (flag & HASH_ADD) {
if (!(flag & HASH_UPDATE_INDIRECT)) {
return NULL;
}
ZEND_ASSERT(&p->val != pData);
data = &p->val;
if (Z_TYPE_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
if (Z_TYPE_P(data) != IS_UNDEF) {
return NULL;
}
} else {
return NULL;
}
} else {
ZEND_ASSERT(&p->val != pData);
data = &p->val;
if ((flag & HASH_UPDATE_INDIRECT) && Z_TYPE_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
}
}
if (ht->pDestructor) {
ht->pDestructor(data);
}
ZVAL_COPY_VALUE(data, pData);
return data;
}
}
ZEND_HASH_IF_FULL_DO_RESIZE(ht); /* If the Hash table is full, resize it */
add_to_hash:
idx = ht->nNumUsed++;
ht->nNumOfElements++;
p = ht->arData + idx;
p->key = key = zend_string_init(str, len, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
#if ZEND_RC_DEBUG
if (GC_FLAGS(ht) & GC_PERSISTENT_LOCAL) {
GC_MAKE_PERSISTENT_LOCAL(key);
}
#endif
p->h = ZSTR_H(key) = h;
HT_FLAGS(ht) &= ~HASH_FLAG_STATIC_KEYS;
if (flag & HASH_LOOKUP) {
ZVAL_NULL(&p->val);
} else {
ZVAL_COPY_VALUE(&p->val, pData);
}
nIndex = h | ht->nTableMask;
Z_NEXT(p->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx);
return &p->val;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_add_or_update(HashTable *ht, zend_string *key, zval *pData, uint32_t flag)
{
if (flag == HASH_ADD) {
return zend_hash_add(ht, key, pData);
} else if (flag == HASH_ADD_NEW) {
return zend_hash_add_new(ht, key, pData);
} else if (flag == HASH_UPDATE) {
return zend_hash_update(ht, key, pData);
} else {
ZEND_ASSERT(flag == (HASH_UPDATE|HASH_UPDATE_INDIRECT));
return zend_hash_update_ind(ht, key, pData);
}
}
ZEND_API zval* ZEND_FASTCALL zend_hash_add(HashTable *ht, zend_string *key, zval *pData)
{
return _zend_hash_add_or_update_i(ht, key, pData, HASH_ADD);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_update(HashTable *ht, zend_string *key, zval *pData)
{
return _zend_hash_add_or_update_i(ht, key, pData, HASH_UPDATE);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_update_ind(HashTable *ht, zend_string *key, zval *pData)
{
return _zend_hash_add_or_update_i(ht, key, pData, HASH_UPDATE | HASH_UPDATE_INDIRECT);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_add_new(HashTable *ht, zend_string *key, zval *pData)
{
return _zend_hash_add_or_update_i(ht, key, pData, HASH_ADD_NEW);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_lookup(HashTable *ht, zend_string *key)
{
return _zend_hash_add_or_update_i(ht, key, NULL, HASH_LOOKUP);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_add_or_update(HashTable *ht, const char *str, size_t len, zval *pData, uint32_t flag)
{
if (flag == HASH_ADD) {
return zend_hash_str_add(ht, str, len, pData);
} else if (flag == HASH_ADD_NEW) {
return zend_hash_str_add_new(ht, str, len, pData);
} else if (flag == HASH_UPDATE) {
return zend_hash_str_update(ht, str, len, pData);
} else {
ZEND_ASSERT(flag == (HASH_UPDATE|HASH_UPDATE_INDIRECT));
return zend_hash_str_update_ind(ht, str, len, pData);
}
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_update(HashTable *ht, const char *str, size_t len, zval *pData)
{
zend_ulong h = zend_hash_func(str, len);
return _zend_hash_str_add_or_update_i(ht, str, len, h, pData, HASH_UPDATE);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_update_ind(HashTable *ht, const char *str, size_t len, zval *pData)
{
zend_ulong h = zend_hash_func(str, len);
return _zend_hash_str_add_or_update_i(ht, str, len, h, pData, HASH_UPDATE | HASH_UPDATE_INDIRECT);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_add(HashTable *ht, const char *str, size_t len, zval *pData)
{
zend_ulong h = zend_hash_func(str, len);
return _zend_hash_str_add_or_update_i(ht, str, len, h, pData, HASH_ADD);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_add_new(HashTable *ht, const char *str, size_t len, zval *pData)
{
zend_ulong h = zend_hash_func(str, len);
return _zend_hash_str_add_or_update_i(ht, str, len, h, pData, HASH_ADD_NEW);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_add_empty_element(HashTable *ht, zend_ulong h)
{
zval dummy;
ZVAL_NULL(&dummy);
return zend_hash_index_add(ht, h, &dummy);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_add_empty_element(HashTable *ht, zend_string *key)
{
zval dummy;
ZVAL_NULL(&dummy);
return zend_hash_add(ht, key, &dummy);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_add_empty_element(HashTable *ht, const char *str, size_t len)
{
zval dummy;
ZVAL_NULL(&dummy);
return zend_hash_str_add(ht, str, len, &dummy);
}
static zend_always_inline zval *_zend_hash_index_add_or_update_i(HashTable *ht, zend_ulong h, zval *pData, uint32_t flag)
{
uint32_t nIndex;
uint32_t idx;
Bucket *p;
zval *zv;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if ((flag & HASH_ADD_NEXT) && h == ZEND_LONG_MIN) {
h = 0;
}
if (HT_IS_PACKED(ht)) {
if ((flag & (HASH_ADD_NEW|HASH_ADD_NEXT)) != (HASH_ADD_NEW|HASH_ADD_NEXT)
&& h < ht->nNumUsed) {
zv = ht->arPacked + h;
if (Z_TYPE_P(zv) != IS_UNDEF) {
if (flag & HASH_LOOKUP) {
return zv;
}
replace:
if (flag & HASH_ADD) {
return NULL;
}
if (ht->pDestructor) {
ht->pDestructor(zv);
}
ZVAL_COPY_VALUE(zv, pData);
return zv;
} else { /* we have to keep the order :( */
goto convert_to_hash;
}
} else if (EXPECTED(h < ht->nTableSize)) {
add_to_packed:
zv = ht->arPacked + h;
/* incremental initialization of empty Buckets */
if ((flag & (HASH_ADD_NEW|HASH_ADD_NEXT)) != (HASH_ADD_NEW|HASH_ADD_NEXT)) {
if (h > ht->nNumUsed) {
zval *q = ht->arPacked + ht->nNumUsed;
while (q != zv) {
ZVAL_UNDEF(q);
q++;
}
}
}
ht->nNextFreeElement = ht->nNumUsed = h + 1;
ht->nNumOfElements++;
if (flag & HASH_LOOKUP) {
ZVAL_NULL(zv);
} else {
ZVAL_COPY_VALUE(zv, pData);
}
return zv;
} else if ((h >> 1) < ht->nTableSize &&
(ht->nTableSize >> 1) < ht->nNumOfElements) {
zend_hash_packed_grow(ht);
goto add_to_packed;
} else {
if (ht->nNumUsed >= ht->nTableSize) {
ht->nTableSize += ht->nTableSize;
}
convert_to_hash:
zend_hash_packed_to_hash(ht);
}
} else if (HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED) {
if (h < ht->nTableSize) {
zend_hash_real_init_packed_ex(ht);
goto add_to_packed;
}
zend_hash_real_init_mixed(ht);
} else {
if ((flag & HASH_ADD_NEW) == 0 || ZEND_DEBUG) {
p = zend_hash_index_find_bucket(ht, h);
if (p) {
if (flag & HASH_LOOKUP) {
return &p->val;
}
ZEND_ASSERT((flag & HASH_ADD_NEW) == 0);
zv = &p->val;
goto replace;
}
}
ZEND_HASH_IF_FULL_DO_RESIZE(ht); /* If the Hash table is full, resize it */
}
idx = ht->nNumUsed++;
nIndex = h | ht->nTableMask;
p = ht->arData + idx;
Z_NEXT(p->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx);
if ((zend_long)h >= ht->nNextFreeElement) {
ht->nNextFreeElement = (zend_long)h < ZEND_LONG_MAX ? h + 1 : ZEND_LONG_MAX;
}
ht->nNumOfElements++;
p->h = h;
p->key = NULL;
if (flag & HASH_LOOKUP) {
ZVAL_NULL(&p->val);
} else {
ZVAL_COPY_VALUE(&p->val, pData);
}
return &p->val;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_add_or_update(HashTable *ht, zend_ulong h, zval *pData, uint32_t flag)
{
if (flag == HASH_ADD) {
return zend_hash_index_add(ht, h, pData);
} else if (flag == (HASH_ADD|HASH_ADD_NEW)) {
return zend_hash_index_add_new(ht, h, pData);
} else if (flag == (HASH_ADD|HASH_ADD_NEXT)) {
ZEND_ASSERT(h == ht->nNextFreeElement);
return zend_hash_next_index_insert(ht, pData);
} else if (flag == (HASH_ADD|HASH_ADD_NEW|HASH_ADD_NEXT)) {
ZEND_ASSERT(h == ht->nNextFreeElement);
return zend_hash_next_index_insert_new(ht, pData);
} else {
ZEND_ASSERT(flag == HASH_UPDATE);
return zend_hash_index_update(ht, h, pData);
}
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_add(HashTable *ht, zend_ulong h, zval *pData)
{
return _zend_hash_index_add_or_update_i(ht, h, pData, HASH_ADD);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_add_new(HashTable *ht, zend_ulong h, zval *pData)
{
return _zend_hash_index_add_or_update_i(ht, h, pData, HASH_ADD | HASH_ADD_NEW);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_update(HashTable *ht, zend_ulong h, zval *pData)
{
return _zend_hash_index_add_or_update_i(ht, h, pData, HASH_UPDATE);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_next_index_insert(HashTable *ht, zval *pData)
{
return _zend_hash_index_add_or_update_i(ht, ht->nNextFreeElement, pData, HASH_ADD | HASH_ADD_NEXT);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_next_index_insert_new(HashTable *ht, zval *pData)
{
return _zend_hash_index_add_or_update_i(ht, ht->nNextFreeElement, pData, HASH_ADD | HASH_ADD_NEW | HASH_ADD_NEXT);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_lookup(HashTable *ht, zend_ulong h)
{
return _zend_hash_index_add_or_update_i(ht, h, NULL, HASH_LOOKUP);
}
ZEND_API zval* ZEND_FASTCALL zend_hash_set_bucket_key(HashTable *ht, Bucket *b, zend_string *key)
{
uint32_t nIndex;
uint32_t idx, i;
Bucket *p, *arData;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
ZEND_ASSERT(!HT_IS_PACKED(ht));
(void)zend_string_hash_val(key);
p = zend_hash_find_bucket(ht, key);
if (UNEXPECTED(p)) {
return (p == b) ? &p->val : NULL;
}
if (!ZSTR_IS_INTERNED(key)) {
zend_string_addref(key);
HT_FLAGS(ht) &= ~HASH_FLAG_STATIC_KEYS;
}
arData = ht->arData;
/* del from hash */
idx = HT_IDX_TO_HASH(b - arData);
nIndex = b->h | ht->nTableMask;
i = HT_HASH_EX(arData, nIndex);
if (i == idx) {
HT_HASH_EX(arData, nIndex) = Z_NEXT(b->val);
} else {
p = HT_HASH_TO_BUCKET_EX(arData, i);
while (Z_NEXT(p->val) != idx) {
i = Z_NEXT(p->val);
p = HT_HASH_TO_BUCKET_EX(arData, i);
}
Z_NEXT(p->val) = Z_NEXT(b->val);
}
zend_string_release(b->key);
/* add to hash */
idx = b - arData;
b->key = key;
b->h = ZSTR_H(key);
nIndex = b->h | ht->nTableMask;
idx = HT_IDX_TO_HASH(idx);
i = HT_HASH_EX(arData, nIndex);
if (i == HT_INVALID_IDX || i < idx) {
Z_NEXT(b->val) = i;
HT_HASH_EX(arData, nIndex) = idx;
} else {
p = HT_HASH_TO_BUCKET_EX(arData, i);
while (Z_NEXT(p->val) != HT_INVALID_IDX && Z_NEXT(p->val) > idx) {
i = Z_NEXT(p->val);
p = HT_HASH_TO_BUCKET_EX(arData, i);
}
Z_NEXT(b->val) = Z_NEXT(p->val);
Z_NEXT(p->val) = idx;
}
return &b->val;
}
static void ZEND_FASTCALL zend_hash_do_resize(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
ZEND_ASSERT(!HT_IS_PACKED(ht));
if (ht->nNumUsed > ht->nNumOfElements + (ht->nNumOfElements >> 5)) { /* additional term is there to amortize the cost of compaction */
zend_hash_rehash(ht);
} else if (ht->nTableSize < HT_MAX_SIZE) { /* Let's double the table size */
void *new_data, *old_data = HT_GET_DATA_ADDR(ht);
uint32_t nSize = ht->nTableSize + ht->nTableSize;
Bucket *old_buckets = ht->arData;
ZEND_ASSERT(HT_SIZE_TO_MASK(nSize));
new_data = pemalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
ht->nTableSize = nSize;
ht->nTableMask = HT_SIZE_TO_MASK(ht->nTableSize);
HT_SET_DATA_ADDR(ht, new_data);
memcpy(ht->arData, old_buckets, sizeof(Bucket) * ht->nNumUsed);
pefree(old_data, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
zend_hash_rehash(ht);
} else {
zend_error_noreturn(E_ERROR, "Possible integer overflow in memory allocation (%u * %zu + %zu)", ht->nTableSize * 2, sizeof(Bucket) + sizeof(uint32_t), sizeof(Bucket));
}
}
ZEND_API void ZEND_FASTCALL zend_hash_rehash(HashTable *ht)
{
Bucket *p;
uint32_t nIndex, i;
IS_CONSISTENT(ht);
if (UNEXPECTED(ht->nNumOfElements == 0)) {
if (!(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
ht->nNumUsed = 0;
HT_HASH_RESET(ht);
}
return;
}
HT_HASH_RESET(ht);
i = 0;
p = ht->arData;
if (HT_IS_WITHOUT_HOLES(ht)) {
do {
nIndex = p->h | ht->nTableMask;
Z_NEXT(p->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(i);
p++;
} while (++i < ht->nNumUsed);
} else {
uint32_t old_num_used = ht->nNumUsed;
do {
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) {
uint32_t j = i;
Bucket *q = p;
if (EXPECTED(!HT_HAS_ITERATORS(ht))) {
while (++i < ht->nNumUsed) {
p++;
if (EXPECTED(Z_TYPE_INFO(p->val) != IS_UNDEF)) {
ZVAL_COPY_VALUE(&q->val, &p->val);
q->h = p->h;
nIndex = q->h | ht->nTableMask;
q->key = p->key;
Z_NEXT(q->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(j);
if (UNEXPECTED(ht->nInternalPointer == i)) {
ht->nInternalPointer = j;
}
q++;
j++;
}
}
} else {
uint32_t iter_pos = zend_hash_iterators_lower_pos(ht, i + 1);
while (++i < ht->nNumUsed) {
p++;
if (EXPECTED(Z_TYPE_INFO(p->val) != IS_UNDEF)) {
ZVAL_COPY_VALUE(&q->val, &p->val);
q->h = p->h;
nIndex = q->h | ht->nTableMask;
q->key = p->key;
Z_NEXT(q->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(j);
if (UNEXPECTED(ht->nInternalPointer == i)) {
ht->nInternalPointer = j;
}
if (UNEXPECTED(i >= iter_pos)) {
do {
zend_hash_iterators_update(ht, iter_pos, j);
iter_pos = zend_hash_iterators_lower_pos(ht, iter_pos + 1);
} while (iter_pos < i);
}
q++;
j++;
}
}
}
ht->nNumUsed = j;
break;
}
nIndex = p->h | ht->nTableMask;
Z_NEXT(p->val) = HT_HASH(ht, nIndex);
HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(i);
p++;
} while (++i < ht->nNumUsed);
/* Migrate pointer to one past the end of the array to the new one past the end, so that
* newly inserted elements are picked up correctly. */
if (UNEXPECTED(HT_HAS_ITERATORS(ht))) {
_zend_hash_iterators_update(ht, old_num_used, ht->nNumUsed);
}
}
}
static zend_always_inline void _zend_hash_packed_del_val(HashTable *ht, uint32_t idx, zval *zv)
{
idx = HT_HASH_TO_IDX(idx);
ht->nNumOfElements--;
if (ht->nInternalPointer == idx || UNEXPECTED(HT_HAS_ITERATORS(ht))) {
uint32_t new_idx;
new_idx = idx;
while (1) {
new_idx++;
if (new_idx >= ht->nNumUsed) {
break;
} else if (Z_TYPE(ht->arPacked[new_idx]) != IS_UNDEF) {
break;
}
}
if (ht->nInternalPointer == idx) {
ht->nInternalPointer = new_idx;
}
zend_hash_iterators_update(ht, idx, new_idx);
}
if (ht->nNumUsed - 1 == idx) {
do {
ht->nNumUsed--;
} while (ht->nNumUsed > 0 && (UNEXPECTED(Z_TYPE(ht->arPacked[ht->nNumUsed-1]) == IS_UNDEF)));
ht->nInternalPointer = MIN(ht->nInternalPointer, ht->nNumUsed);
}
if (ht->pDestructor) {
zval tmp;
ZVAL_COPY_VALUE(&tmp, zv);
ZVAL_UNDEF(zv);
ht->pDestructor(&tmp);
} else {
ZVAL_UNDEF(zv);
}
}
static zend_always_inline void _zend_hash_del_el_ex(HashTable *ht, uint32_t idx, Bucket *p, Bucket *prev)
{
if (prev) {
Z_NEXT(prev->val) = Z_NEXT(p->val);
} else {
HT_HASH(ht, p->h | ht->nTableMask) = Z_NEXT(p->val);
}
idx = HT_HASH_TO_IDX(idx);
ht->nNumOfElements--;
if (ht->nInternalPointer == idx || UNEXPECTED(HT_HAS_ITERATORS(ht))) {
uint32_t new_idx;
new_idx = idx;
while (1) {
new_idx++;
if (new_idx >= ht->nNumUsed) {
break;
} else if (Z_TYPE(ht->arData[new_idx].val) != IS_UNDEF) {
break;
}
}
if (ht->nInternalPointer == idx) {
ht->nInternalPointer = new_idx;
}
zend_hash_iterators_update(ht, idx, new_idx);
}
if (ht->nNumUsed - 1 == idx) {
do {
ht->nNumUsed--;
} while (ht->nNumUsed > 0 && (UNEXPECTED(Z_TYPE(ht->arData[ht->nNumUsed-1].val) == IS_UNDEF)));
ht->nInternalPointer = MIN(ht->nInternalPointer, ht->nNumUsed);
}
if (ht->pDestructor) {
zval tmp;
ZVAL_COPY_VALUE(&tmp, &p->val);
ZVAL_UNDEF(&p->val);
ht->pDestructor(&tmp);
} else {
ZVAL_UNDEF(&p->val);
}
}
static zend_always_inline void _zend_hash_del_el(HashTable *ht, uint32_t idx, Bucket *p)
{
Bucket *prev = NULL;
uint32_t nIndex;
uint32_t i;
nIndex = p->h | ht->nTableMask;
i = HT_HASH(ht, nIndex);
if (i != idx) {
prev = HT_HASH_TO_BUCKET(ht, i);
while (Z_NEXT(prev->val) != idx) {
i = Z_NEXT(prev->val);
prev = HT_HASH_TO_BUCKET(ht, i);
}
}
if (p->key) {
zend_string_release(p->key);
p->key = NULL;
}
_zend_hash_del_el_ex(ht, idx, p, prev);
}
ZEND_API void ZEND_FASTCALL zend_hash_packed_del_val(HashTable *ht, zval *zv)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
ZEND_ASSERT(HT_IS_PACKED(ht));
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(zv - ht->arPacked), zv);
}
ZEND_API void ZEND_FASTCALL zend_hash_del_bucket(HashTable *ht, Bucket *p)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
ZEND_ASSERT(!HT_IS_PACKED(ht));
_zend_hash_del_el(ht, HT_IDX_TO_HASH(p - ht->arData), p);
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_del(HashTable *ht, zend_string *key)
{
zend_ulong h;
uint32_t nIndex;
uint32_t idx;
Bucket *p;
Bucket *prev = NULL;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
h = zend_string_hash_val(key);
nIndex = h | ht->nTableMask;
idx = HT_HASH(ht, nIndex);
while (idx != HT_INVALID_IDX) {
p = HT_HASH_TO_BUCKET(ht, idx);
if ((p->key == key) ||
(p->h == h &&
p->key &&
zend_string_equal_content(p->key, key))) {
zend_string_release(p->key);
p->key = NULL;
_zend_hash_del_el_ex(ht, idx, p, prev);
return SUCCESS;
}
prev = p;
idx = Z_NEXT(p->val);
}
return FAILURE;
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_del_ind(HashTable *ht, zend_string *key)
{
zend_ulong h;
uint32_t nIndex;
uint32_t idx;
Bucket *p;
Bucket *prev = NULL;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
h = zend_string_hash_val(key);
nIndex = h | ht->nTableMask;
idx = HT_HASH(ht, nIndex);
while (idx != HT_INVALID_IDX) {
p = HT_HASH_TO_BUCKET(ht, idx);
if ((p->key == key) ||
(p->h == h &&
p->key &&
zend_string_equal_content(p->key, key))) {
if (Z_TYPE(p->val) == IS_INDIRECT) {
zval *data = Z_INDIRECT(p->val);
if (UNEXPECTED(Z_TYPE_P(data) == IS_UNDEF)) {
return FAILURE;
} else {
if (ht->pDestructor) {
zval tmp;
ZVAL_COPY_VALUE(&tmp, data);
ZVAL_UNDEF(data);
ht->pDestructor(&tmp);
} else {
ZVAL_UNDEF(data);
}
HT_FLAGS(ht) |= HASH_FLAG_HAS_EMPTY_IND;
}
} else {
zend_string_release(p->key);
p->key = NULL;
_zend_hash_del_el_ex(ht, idx, p, prev);
}
return SUCCESS;
}
prev = p;
idx = Z_NEXT(p->val);
}
return FAILURE;
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_str_del_ind(HashTable *ht, const char *str, size_t len)
{
zend_ulong h;
uint32_t nIndex;
uint32_t idx;
Bucket *p;
Bucket *prev = NULL;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
h = zend_inline_hash_func(str, len);
nIndex = h | ht->nTableMask;
idx = HT_HASH(ht, nIndex);
while (idx != HT_INVALID_IDX) {
p = HT_HASH_TO_BUCKET(ht, idx);
if ((p->h == h)
&& p->key
&& zend_string_equals_cstr(p->key, str, len)) {
if (Z_TYPE(p->val) == IS_INDIRECT) {
zval *data = Z_INDIRECT(p->val);
if (UNEXPECTED(Z_TYPE_P(data) == IS_UNDEF)) {
return FAILURE;
} else {
if (ht->pDestructor) {
ht->pDestructor(data);
}
ZVAL_UNDEF(data);
HT_FLAGS(ht) |= HASH_FLAG_HAS_EMPTY_IND;
}
} else {
zend_string_release(p->key);
p->key = NULL;
_zend_hash_del_el_ex(ht, idx, p, prev);
}
return SUCCESS;
}
prev = p;
idx = Z_NEXT(p->val);
}
return FAILURE;
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_str_del(HashTable *ht, const char *str, size_t len)
{
zend_ulong h;
uint32_t nIndex;
uint32_t idx;
Bucket *p;
Bucket *prev = NULL;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
h = zend_inline_hash_func(str, len);
nIndex = h | ht->nTableMask;
idx = HT_HASH(ht, nIndex);
while (idx != HT_INVALID_IDX) {
p = HT_HASH_TO_BUCKET(ht, idx);
if ((p->h == h)
&& p->key
&& zend_string_equals_cstr(p->key, str, len)) {
zend_string_release(p->key);
p->key = NULL;
_zend_hash_del_el_ex(ht, idx, p, prev);
return SUCCESS;
}
prev = p;
idx = Z_NEXT(p->val);
}
return FAILURE;
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_index_del(HashTable *ht, zend_ulong h)
{
uint32_t nIndex;
uint32_t idx;
Bucket *p;
Bucket *prev = NULL;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (HT_IS_PACKED(ht)) {
if (h < ht->nNumUsed) {
zval *zv = ht->arPacked + h;
if (Z_TYPE_P(zv) != IS_UNDEF) {
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(h), zv);
return SUCCESS;
}
}
return FAILURE;
}
nIndex = h | ht->nTableMask;
idx = HT_HASH(ht, nIndex);
while (idx != HT_INVALID_IDX) {
p = HT_HASH_TO_BUCKET(ht, idx);
if ((p->h == h) && (p->key == NULL)) {
_zend_hash_del_el_ex(ht, idx, p, prev);
return SUCCESS;
}
prev = p;
idx = Z_NEXT(p->val);
}
return FAILURE;
}
ZEND_API void ZEND_FASTCALL zend_hash_destroy(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT(ht, GC_REFCOUNT(ht) <= 1);
if (ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
if (ht->pDestructor) {
zval *zv = ht->arPacked;
zval *end = zv + ht->nNumUsed;
SET_INCONSISTENT(HT_IS_DESTROYING);
if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(zv);
} while (++zv != end);
} else {
do {
if (EXPECTED(Z_TYPE_P(zv) != IS_UNDEF)) {
ht->pDestructor(zv);
}
} while (++zv != end);
}
SET_INCONSISTENT(HT_DESTROYED);
}
zend_hash_iterators_remove(ht);
} else {
Bucket *p = ht->arData;
Bucket *end = p + ht->nNumUsed;
if (ht->pDestructor) {
SET_INCONSISTENT(HT_IS_DESTROYING);
if (HT_HAS_STATIC_KEYS_ONLY(ht)) {
if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(&p->val);
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
ht->pDestructor(&p->val);
}
} while (++p != end);
}
} else if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
ht->pDestructor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
}
} while (++p != end);
}
SET_INCONSISTENT(HT_DESTROYED);
} else {
if (!HT_HAS_STATIC_KEYS_ONLY(ht)) {
do {
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
} while (++p != end);
}
}
zend_hash_iterators_remove(ht);
}
} else if (EXPECTED(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
return;
}
pefree(HT_GET_DATA_ADDR(ht), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
}
ZEND_API void ZEND_FASTCALL zend_array_destroy(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT(ht, GC_REFCOUNT(ht) <= 1);
/* break possible cycles */
GC_REMOVE_FROM_BUFFER(ht);
GC_TYPE_INFO(ht) = GC_NULL /*???| (GC_WHITE << 16)*/;
if (ht->nNumUsed) {
/* In some rare cases destructors of regular arrays may be changed */
if (UNEXPECTED(ht->pDestructor != ZVAL_PTR_DTOR)) {
zend_hash_destroy(ht);
goto free_ht;
}
SET_INCONSISTENT(HT_IS_DESTROYING);
if (HT_IS_PACKED(ht)) {
zval *zv = ht->arPacked;
zval *end = zv + ht->nNumUsed;
do {
i_zval_ptr_dtor(zv);
} while (++zv != end);
} else {
Bucket *p = ht->arData;
Bucket *end = p + ht->nNumUsed;
if (HT_HAS_STATIC_KEYS_ONLY(ht)) {
do {
i_zval_ptr_dtor(&p->val);
} while (++p != end);
} else if (HT_IS_WITHOUT_HOLES(ht)) {
do {
i_zval_ptr_dtor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release_ex(p->key, 0);
}
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
i_zval_ptr_dtor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release_ex(p->key, 0);
}
}
} while (++p != end);
}
}
} else if (EXPECTED(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
goto free_ht;
}
SET_INCONSISTENT(HT_DESTROYED);
efree(HT_GET_DATA_ADDR(ht));
free_ht:
zend_hash_iterators_remove(ht);
FREE_HASHTABLE(ht);
}
ZEND_API void ZEND_FASTCALL zend_hash_clean(HashTable *ht)
{
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
zval *zv = ht->arPacked;
zval *end = zv + ht->nNumUsed;
if (ht->pDestructor) {
if (HT_HAS_STATIC_KEYS_ONLY(ht)) {
if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(zv);
} while (++zv != end);
} else {
do {
if (EXPECTED(Z_TYPE_P(zv) != IS_UNDEF)) {
ht->pDestructor(zv);
}
} while (++zv != end);
}
}
}
} else {
Bucket *p = ht->arData;
Bucket *end = p + ht->nNumUsed;
if (ht->pDestructor) {
if (HT_HAS_STATIC_KEYS_ONLY(ht)) {
if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(&p->val);
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
ht->pDestructor(&p->val);
}
} while (++p != end);
}
} else if (HT_IS_WITHOUT_HOLES(ht)) {
do {
ht->pDestructor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
ht->pDestructor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
}
} while (++p != end);
}
} else {
if (!HT_HAS_STATIC_KEYS_ONLY(ht)) {
do {
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
} while (++p != end);
}
}
HT_HASH_RESET(ht);
}
}
ht->nNumUsed = 0;
ht->nNumOfElements = 0;
ht->nNextFreeElement = ZEND_LONG_MIN;
ht->nInternalPointer = 0;
}
ZEND_API void ZEND_FASTCALL zend_symtable_clean(HashTable *ht)
{
Bucket *p, *end;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (ht->nNumUsed) {
ZEND_ASSERT(!HT_IS_PACKED(ht));
p = ht->arData;
end = p + ht->nNumUsed;
if (HT_HAS_STATIC_KEYS_ONLY(ht)) {
do {
i_zval_ptr_dtor(&p->val);
} while (++p != end);
} else if (HT_IS_WITHOUT_HOLES(ht)) {
do {
i_zval_ptr_dtor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
} while (++p != end);
} else {
do {
if (EXPECTED(Z_TYPE(p->val) != IS_UNDEF)) {
i_zval_ptr_dtor(&p->val);
if (EXPECTED(p->key)) {
zend_string_release(p->key);
}
}
} while (++p != end);
}
HT_HASH_RESET(ht);
}
ht->nNumUsed = 0;
ht->nNumOfElements = 0;
ht->nNextFreeElement = ZEND_LONG_MIN;
ht->nInternalPointer = 0;
}
ZEND_API void ZEND_FASTCALL zend_hash_graceful_destroy(HashTable *ht)
{
uint32_t idx;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (HT_IS_PACKED(ht)) {
zval *zv = ht->arPacked;
for (idx = 0; idx < ht->nNumUsed; idx++, zv++) {
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
} else {
Bucket *p = ht->arData;
for (idx = 0; idx < ht->nNumUsed; idx++, p++) {
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
}
if (!(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
pefree(HT_GET_DATA_ADDR(ht), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
}
SET_INCONSISTENT(HT_DESTROYED);
}
ZEND_API void ZEND_FASTCALL zend_hash_graceful_reverse_destroy(HashTable *ht)
{
uint32_t idx;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
idx = ht->nNumUsed;
if (HT_IS_PACKED(ht)) {
zval *zv = ht->arPacked + ht->nNumUsed;
while (idx > 0) {
idx--;
zv--;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
} else {
Bucket *p = ht->arData + ht->nNumUsed;
while (idx > 0) {
idx--;
p--;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
}
if (!(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED)) {
pefree(HT_GET_DATA_ADDR(ht), GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
}
SET_INCONSISTENT(HT_DESTROYED);
}
/* This is used to recurse elements and selectively delete certain entries
* from a hashtable. apply_func() receives the data and decides if the entry
* should be deleted or recursion should be stopped. The following three
* return codes are possible:
* ZEND_HASH_APPLY_KEEP - continue
* ZEND_HASH_APPLY_STOP - stop iteration
* ZEND_HASH_APPLY_REMOVE - delete the element, combinable with the former
*/
ZEND_API void ZEND_FASTCALL zend_hash_apply(HashTable *ht, apply_func_t apply_func)
{
uint32_t idx;
int result;
IS_CONSISTENT(ht);
if (HT_IS_PACKED(ht)) {
for (idx = 0; idx < ht->nNumUsed; idx++) {
zval *zv = ht->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
result = apply_func(zv);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
} else {
for (idx = 0; idx < ht->nNumUsed; idx++) {
Bucket *p = ht->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
result = apply_func(&p->val);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
}
}
ZEND_API void ZEND_FASTCALL zend_hash_apply_with_argument(HashTable *ht, apply_func_arg_t apply_func, void *argument)
{
uint32_t idx;
int result;
IS_CONSISTENT(ht);
if (HT_IS_PACKED(ht)) {
for (idx = 0; idx < ht->nNumUsed; idx++) {
zval *zv = ht->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
result = apply_func(zv, argument);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
} else {
for (idx = 0; idx < ht->nNumUsed; idx++) {
Bucket *p = ht->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
result = apply_func(&p->val, argument);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
}
}
ZEND_API void zend_hash_apply_with_arguments(HashTable *ht, apply_func_args_t apply_func, int num_args, ...)
{
uint32_t idx;
va_list args;
zend_hash_key hash_key;
int result;
IS_CONSISTENT(ht);
if (HT_IS_PACKED(ht)) {
for (idx = 0; idx < ht->nNumUsed; idx++) {
zval *zv = ht->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
va_start(args, num_args);
hash_key.h = idx;
hash_key.key = NULL;
result = apply_func(zv, num_args, args, &hash_key);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
if (result & ZEND_HASH_APPLY_STOP) {
va_end(args);
break;
}
va_end(args);
}
} else {
for (idx = 0; idx < ht->nNumUsed; idx++) {
Bucket *p = ht->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
va_start(args, num_args);
hash_key.h = p->h;
hash_key.key = p->key;
result = apply_func(&p->val, num_args, args, &hash_key);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
if (result & ZEND_HASH_APPLY_STOP) {
va_end(args);
break;
}
va_end(args);
}
}
}
ZEND_API void ZEND_FASTCALL zend_hash_reverse_apply(HashTable *ht, apply_func_t apply_func)
{
uint32_t idx;
int result;
IS_CONSISTENT(ht);
idx = ht->nNumUsed;
if (HT_IS_PACKED(ht)) {
zval *zv;
while (idx > 0) {
idx--;
zv = ht->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
result = apply_func(zv);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_packed_del_val(ht, HT_IDX_TO_HASH(idx), zv);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
} else {
Bucket *p;
while (idx > 0) {
idx--;
p = ht->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
result = apply_func(&p->val);
if (result & ZEND_HASH_APPLY_REMOVE) {
HT_ASSERT_RC1(ht);
_zend_hash_del_el(ht, HT_IDX_TO_HASH(idx), p);
}
if (result & ZEND_HASH_APPLY_STOP) {
break;
}
}
}
}
ZEND_API void ZEND_FASTCALL zend_hash_copy(HashTable *target, HashTable *source, copy_ctor_func_t pCopyConstructor)
{
uint32_t idx;
zval *new_entry, *data;
IS_CONSISTENT(source);
IS_CONSISTENT(target);
HT_ASSERT_RC1(target);
if (HT_IS_PACKED(source)) {
for (idx = 0; idx < source->nNumUsed; idx++) {
zval *zv = source->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
new_entry = zend_hash_index_update(target, idx, zv);
if (pCopyConstructor) {
pCopyConstructor(new_entry);
}
}
return;
}
for (idx = 0; idx < source->nNumUsed; idx++) {
Bucket *p = source->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
/* INDIRECT element may point to UNDEF-ined slots */
data = &p->val;
if (Z_TYPE_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
if (UNEXPECTED(Z_TYPE_P(data) == IS_UNDEF)) {
continue;
}
}
if (p->key) {
new_entry = zend_hash_update(target, p->key, data);
} else {
new_entry = zend_hash_index_update(target, p->h, data);
}
if (pCopyConstructor) {
pCopyConstructor(new_entry);
}
}
}
static zend_always_inline bool zend_array_dup_value(HashTable *source, HashTable *target, zval *data, zval *dest, bool packed, bool with_holes)
{
if (with_holes) {
if (!packed && Z_TYPE_INFO_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
}
if (UNEXPECTED(Z_TYPE_INFO_P(data) == IS_UNDEF)) {
return 0;
}
} else if (!packed) {
/* INDIRECT element may point to UNDEF-ined slots */
if (Z_TYPE_INFO_P(data) == IS_INDIRECT) {
data = Z_INDIRECT_P(data);
if (UNEXPECTED(Z_TYPE_INFO_P(data) == IS_UNDEF)) {
return 0;
}
}
}
do {
if (Z_OPT_REFCOUNTED_P(data)) {
if (Z_ISREF_P(data) && Z_REFCOUNT_P(data) == 1 &&
(Z_TYPE_P(Z_REFVAL_P(data)) != IS_ARRAY ||
Z_ARRVAL_P(Z_REFVAL_P(data)) != source)) {
data = Z_REFVAL_P(data);
if (!Z_OPT_REFCOUNTED_P(data)) {
break;
}
}
Z_ADDREF_P(data);
}
} while (0);
ZVAL_COPY_VALUE(dest, data);
return 1;
}
static zend_always_inline bool zend_array_dup_element(HashTable *source, HashTable *target, uint32_t idx, Bucket *p, Bucket *q, bool packed, bool static_keys, bool with_holes)
{
if (!zend_array_dup_value(source, target, &p->val, &q->val, packed, with_holes)) {
return 0;
}
if (!packed) {
uint32_t nIndex;
q->h = p->h;
q->key = p->key;
if (!static_keys && q->key) {
zend_string_addref(q->key);
}
nIndex = q->h | target->nTableMask;
Z_NEXT(q->val) = HT_HASH(target, nIndex);
HT_HASH(target, nIndex) = HT_IDX_TO_HASH(idx);
}
return 1;
}
static zend_always_inline void zend_array_dup_packed_elements(HashTable *source, HashTable *target, bool with_holes)
{
zval *p = source->arPacked;
zval *q = target->arPacked;
zval *end = p + source->nNumUsed;
do {
if (!zend_array_dup_value(source, target, p, q, 1, with_holes)) {
if (with_holes) {
ZVAL_UNDEF(q);
}
}
p++; q++;
} while (p != end);
}
static zend_always_inline uint32_t zend_array_dup_elements(HashTable *source, HashTable *target, bool static_keys, bool with_holes)
{
uint32_t idx = 0;
Bucket *p = source->arData;
Bucket *q = target->arData;
Bucket *end = p + source->nNumUsed;
do {
if (!zend_array_dup_element(source, target, idx, p, q, 0, static_keys, with_holes)) {
uint32_t target_idx = idx;
idx++; p++;
while (p != end) {
if (zend_array_dup_element(source, target, target_idx, p, q, 0, static_keys, with_holes)) {
if (source->nInternalPointer == idx) {
target->nInternalPointer = target_idx;
}
target_idx++; q++;
}
idx++; p++;
}
return target_idx;
}
idx++; p++; q++;
} while (p != end);
return idx;
}
ZEND_API HashTable* ZEND_FASTCALL zend_array_dup(HashTable *source)
{
uint32_t idx;
HashTable *target;
IS_CONSISTENT(source);
ALLOC_HASHTABLE(target);
GC_SET_REFCOUNT(target, 1);
GC_TYPE_INFO(target) = GC_ARRAY;
target->pDestructor = ZVAL_PTR_DTOR;
if (source->nNumOfElements == 0) {
HT_FLAGS(target) = HASH_FLAG_UNINITIALIZED;
target->nTableMask = HT_MIN_MASK;
target->nNumUsed = 0;
target->nNumOfElements = 0;
target->nNextFreeElement = source->nNextFreeElement;
target->nInternalPointer = 0;
target->nTableSize = HT_MIN_SIZE;
HT_SET_DATA_ADDR(target, &uninitialized_bucket);
} else if (GC_FLAGS(source) & IS_ARRAY_IMMUTABLE) {
HT_FLAGS(target) = HT_FLAGS(source) & HASH_FLAG_MASK;
target->nTableMask = source->nTableMask;
target->nNumUsed = source->nNumUsed;
target->nNumOfElements = source->nNumOfElements;
target->nNextFreeElement = source->nNextFreeElement;
target->nTableSize = source->nTableSize;
if (HT_IS_PACKED(source)) {
HT_SET_DATA_ADDR(target, emalloc(HT_PACKED_SIZE(target)));
target->nInternalPointer = source->nInternalPointer;
memcpy(HT_GET_DATA_ADDR(target), HT_GET_DATA_ADDR(source), HT_PACKED_USED_SIZE(source));
} else {
HT_SET_DATA_ADDR(target, emalloc(HT_SIZE(target)));
target->nInternalPointer = source->nInternalPointer;
memcpy(HT_GET_DATA_ADDR(target), HT_GET_DATA_ADDR(source), HT_USED_SIZE(source));
}
} else if (HT_IS_PACKED(source)) {
HT_FLAGS(target) = HT_FLAGS(source) & HASH_FLAG_MASK;
target->nTableMask = HT_MIN_MASK;
target->nNumUsed = source->nNumUsed;
target->nNumOfElements = source->nNumOfElements;
target->nNextFreeElement = source->nNextFreeElement;
target->nTableSize = source->nTableSize;
HT_SET_DATA_ADDR(target, emalloc(HT_PACKED_SIZE_EX(target->nTableSize, HT_MIN_MASK)));
target->nInternalPointer =
(source->nInternalPointer < source->nNumUsed) ?
source->nInternalPointer : 0;
HT_HASH_RESET_PACKED(target);
if (HT_IS_WITHOUT_HOLES(target)) {
zend_array_dup_packed_elements(source, target, 0);
} else {
zend_array_dup_packed_elements(source, target, 1);
}
} else {
HT_FLAGS(target) = HT_FLAGS(source) & HASH_FLAG_MASK;
target->nTableMask = source->nTableMask;
target->nNextFreeElement = source->nNextFreeElement;
target->nInternalPointer =
(source->nInternalPointer < source->nNumUsed) ?
source->nInternalPointer : 0;
target->nTableSize = source->nTableSize;
HT_SET_DATA_ADDR(target, emalloc(HT_SIZE(target)));
HT_HASH_RESET(target);
if (HT_HAS_STATIC_KEYS_ONLY(target)) {
if (HT_IS_WITHOUT_HOLES(source)) {
idx = zend_array_dup_elements(source, target, 1, 0);
} else {
idx = zend_array_dup_elements(source, target, 1, 1);
}
} else {
if (HT_IS_WITHOUT_HOLES(source)) {
idx = zend_array_dup_elements(source, target, 0, 0);
} else {
idx = zend_array_dup_elements(source, target, 0, 1);
}
}
target->nNumUsed = idx;
target->nNumOfElements = idx;
}
return target;
}
ZEND_API HashTable* zend_array_to_list(HashTable *source)
{
HashTable *result = _zend_new_array(zend_hash_num_elements(source));
zend_hash_real_init_packed(result);
ZEND_HASH_FILL_PACKED(result) {
zval *entry;
ZEND_HASH_FOREACH_VAL(source, entry) {
if (UNEXPECTED(Z_ISREF_P(entry) && Z_REFCOUNT_P(entry) == 1)) {
entry = Z_REFVAL_P(entry);
}
Z_TRY_ADDREF_P(entry);
ZEND_HASH_FILL_ADD(entry);
} ZEND_HASH_FOREACH_END();
} ZEND_HASH_FILL_END();
return result;
}
ZEND_API void ZEND_FASTCALL zend_hash_merge(HashTable *target, HashTable *source, copy_ctor_func_t pCopyConstructor, bool overwrite)
{
uint32_t idx;
Bucket *p;
zval *t, *s;
IS_CONSISTENT(source);
IS_CONSISTENT(target);
HT_ASSERT_RC1(target);
if (overwrite) {
if (HT_IS_PACKED(source)) {
for (idx = 0; idx < source->nNumUsed; idx++) {
s = source->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(s) == IS_UNDEF)) {
continue;
}
t = zend_hash_index_update(target, idx, s);
if (pCopyConstructor) {
pCopyConstructor(t);
}
}
return;
}
for (idx = 0; idx < source->nNumUsed; idx++) {
p = source->arData + idx;
s = &p->val;
if (UNEXPECTED(Z_TYPE_P(s) == IS_INDIRECT)) {
s = Z_INDIRECT_P(s);
}
if (UNEXPECTED(Z_TYPE_P(s) == IS_UNDEF)) {
continue;
}
if (p->key) {
t = _zend_hash_add_or_update_i(target, p->key, s, HASH_UPDATE | HASH_UPDATE_INDIRECT);
if (pCopyConstructor) {
pCopyConstructor(t);
}
} else {
t = zend_hash_index_update(target, p->h, s);
if (pCopyConstructor) {
pCopyConstructor(t);
}
}
}
} else {
if (HT_IS_PACKED(source)) {
for (idx = 0; idx < source->nNumUsed; idx++) {
s = source->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(s) == IS_UNDEF)) {
continue;
}
t = zend_hash_index_add(target, idx, s);
if (t && pCopyConstructor) {
pCopyConstructor(t);
}
}
return;
}
for (idx = 0; idx < source->nNumUsed; idx++) {
p = source->arData + idx;
s = &p->val;
if (UNEXPECTED(Z_TYPE_P(s) == IS_INDIRECT)) {
s = Z_INDIRECT_P(s);
}
if (UNEXPECTED(Z_TYPE_P(s) == IS_UNDEF)) {
continue;
}
if (p->key) {
t = _zend_hash_add_or_update_i(target, p->key, s, HASH_ADD | HASH_UPDATE_INDIRECT);
if (t && pCopyConstructor) {
pCopyConstructor(t);
}
} else {
t = zend_hash_index_add(target, p->h, s);
if (t && pCopyConstructor) {
pCopyConstructor(t);
}
}
}
}
}
static bool ZEND_FASTCALL zend_hash_replace_checker_wrapper(HashTable *target, zval *source_data, zend_ulong h, zend_string *key, void *pParam, merge_checker_func_t merge_checker_func)
{
zend_hash_key hash_key;
hash_key.h = h;
hash_key.key = key;
return merge_checker_func(target, source_data, &hash_key, pParam);
}
ZEND_API void ZEND_FASTCALL zend_hash_merge_ex(HashTable *target, HashTable *source, copy_ctor_func_t pCopyConstructor, merge_checker_func_t pMergeSource, void *pParam)
{
uint32_t idx;
Bucket *p;
zval *t;
IS_CONSISTENT(source);
IS_CONSISTENT(target);
HT_ASSERT_RC1(target);
ZEND_ASSERT(!HT_IS_PACKED(source));
for (idx = 0; idx < source->nNumUsed; idx++) {
p = source->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
if (zend_hash_replace_checker_wrapper(target, &p->val, p->h, p->key, pParam, pMergeSource)) {
t = zend_hash_update(target, p->key, &p->val);
if (pCopyConstructor) {
pCopyConstructor(t);
}
}
}
}
/* Returns the hash table data if found and NULL if not. */
ZEND_API zval* ZEND_FASTCALL zend_hash_find(const HashTable *ht, zend_string *key)
{
Bucket *p;
IS_CONSISTENT(ht);
(void)zend_string_hash_val(key);
p = zend_hash_find_bucket(ht, key);
return p ? &p->val : NULL;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_find_known_hash(const HashTable *ht, const zend_string *key)
{
Bucket *p;
IS_CONSISTENT(ht);
p = zend_hash_find_bucket(ht, key);
return p ? &p->val : NULL;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_str_find(const HashTable *ht, const char *str, size_t len)
{
zend_ulong h;
Bucket *p;
IS_CONSISTENT(ht);
h = zend_inline_hash_func(str, len);
p = zend_hash_str_find_bucket(ht, str, len, h);
return p ? &p->val : NULL;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_index_find(const HashTable *ht, zend_ulong h)
{
Bucket *p;
IS_CONSISTENT(ht);
if (HT_IS_PACKED(ht)) {
if (h < ht->nNumUsed) {
zval *zv = ht->arPacked + h;
if (Z_TYPE_P(zv) != IS_UNDEF) {
return zv;
}
}
return NULL;
}
p = zend_hash_index_find_bucket(ht, h);
return p ? &p->val : NULL;
}
ZEND_API zval* ZEND_FASTCALL _zend_hash_index_find(const HashTable *ht, zend_ulong h)
{
Bucket *p;
IS_CONSISTENT(ht);
ZEND_ASSERT(!HT_IS_PACKED(ht));
p = zend_hash_index_find_bucket(ht, h);
return p ? &p->val : NULL;
}
ZEND_API void ZEND_FASTCALL zend_hash_internal_pointer_reset_ex(HashTable *ht, HashPosition *pos)
{
IS_CONSISTENT(ht);
HT_ASSERT(ht, &ht->nInternalPointer != pos || GC_REFCOUNT(ht) == 1);
*pos = _zend_hash_get_valid_pos(ht, 0);
}
/* This function will be extremely optimized by remembering
* the end of the list
*/
ZEND_API void ZEND_FASTCALL zend_hash_internal_pointer_end_ex(HashTable *ht, HashPosition *pos)
{
uint32_t idx;
IS_CONSISTENT(ht);
HT_ASSERT(ht, &ht->nInternalPointer != pos || GC_REFCOUNT(ht) == 1);
idx = ht->nNumUsed;
if (HT_IS_PACKED(ht)) {
while (idx > 0) {
idx--;
if (Z_TYPE(ht->arPacked[idx]) != IS_UNDEF) {
*pos = idx;
return;
}
}
} else {
while (idx > 0) {
idx--;
if (Z_TYPE(ht->arData[idx].val) != IS_UNDEF) {
*pos = idx;
return;
}
}
}
*pos = ht->nNumUsed;
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_move_forward_ex(HashTable *ht, HashPosition *pos)
{
uint32_t idx;
IS_CONSISTENT(ht);
HT_ASSERT(ht, &ht->nInternalPointer != pos || GC_REFCOUNT(ht) == 1);
idx = _zend_hash_get_valid_pos(ht, *pos);
if (idx < ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
while (1) {
idx++;
if (idx >= ht->nNumUsed) {
*pos = ht->nNumUsed;
return SUCCESS;
}
if (Z_TYPE(ht->arPacked[idx]) != IS_UNDEF) {
*pos = idx;
return SUCCESS;
}
}
} else {
while (1) {
idx++;
if (idx >= ht->nNumUsed) {
*pos = ht->nNumUsed;
return SUCCESS;
}
if (Z_TYPE(ht->arData[idx].val) != IS_UNDEF) {
*pos = idx;
return SUCCESS;
}
}
}
} else {
return FAILURE;
}
}
ZEND_API zend_result ZEND_FASTCALL zend_hash_move_backwards_ex(HashTable *ht, HashPosition *pos)
{
uint32_t idx = *pos;
IS_CONSISTENT(ht);
HT_ASSERT(ht, &ht->nInternalPointer != pos || GC_REFCOUNT(ht) == 1);
if (idx < ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
while (idx > 0) {
idx--;
if (Z_TYPE(ht->arPacked[idx]) != IS_UNDEF) {
*pos = idx;
return SUCCESS;
}
}
} else {
while (idx > 0) {
idx--;
if (Z_TYPE(ht->arData[idx].val) != IS_UNDEF) {
*pos = idx;
return SUCCESS;
}
}
}
*pos = ht->nNumUsed;
return SUCCESS;
} else {
return FAILURE;
}
}
/* This function should be made binary safe */
ZEND_API int ZEND_FASTCALL zend_hash_get_current_key_ex(const HashTable *ht, zend_string **str_index, zend_ulong *num_index, const HashPosition *pos)
{
uint32_t idx;
Bucket *p;
IS_CONSISTENT(ht);
idx = _zend_hash_get_valid_pos(ht, *pos);
if (idx < ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
*num_index = idx;
return HASH_KEY_IS_LONG;
}
p = ht->arData + idx;
if (p->key) {
*str_index = p->key;
return HASH_KEY_IS_STRING;
} else {
*num_index = p->h;
return HASH_KEY_IS_LONG;
}
}
return HASH_KEY_NON_EXISTENT;
}
ZEND_API void ZEND_FASTCALL zend_hash_get_current_key_zval_ex(const HashTable *ht, zval *key, const HashPosition *pos)
{
uint32_t idx;
Bucket *p;
IS_CONSISTENT(ht);
idx = _zend_hash_get_valid_pos(ht, *pos);
if (idx >= ht->nNumUsed) {
ZVAL_NULL(key);
} else {
if (HT_IS_PACKED(ht)) {
ZVAL_LONG(key, idx);
return;
}
p = ht->arData + idx;
if (p->key) {
ZVAL_STR_COPY(key, p->key);
} else {
ZVAL_LONG(key, p->h);
}
}
}
ZEND_API int ZEND_FASTCALL zend_hash_get_current_key_type_ex(HashTable *ht, HashPosition *pos)
{
uint32_t idx;
Bucket *p;
IS_CONSISTENT(ht);
idx = _zend_hash_get_valid_pos(ht, *pos);
if (idx < ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
return HASH_KEY_IS_LONG;
}
p = ht->arData + idx;
if (p->key) {
return HASH_KEY_IS_STRING;
} else {
return HASH_KEY_IS_LONG;
}
}
return HASH_KEY_NON_EXISTENT;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_get_current_data_ex(HashTable *ht, HashPosition *pos)
{
uint32_t idx;
Bucket *p;
IS_CONSISTENT(ht);
idx = _zend_hash_get_valid_pos(ht, *pos);
if (idx < ht->nNumUsed) {
if (HT_IS_PACKED(ht)) {
return &ht->arPacked[idx];
}
p = ht->arData + idx;
return &p->val;
} else {
return NULL;
}
}
ZEND_API void zend_hash_bucket_swap(Bucket *p, Bucket *q)
{
zval val;
zend_ulong h;
zend_string *key;
val = p->val;
h = p->h;
key = p->key;
p->val = q->val;
p->h = q->h;
p->key = q->key;
q->val = val;
q->h = h;
q->key = key;
}
ZEND_API void zend_hash_bucket_renum_swap(Bucket *p, Bucket *q)
{
zval val;
val = p->val;
p->val = q->val;
q->val = val;
}
ZEND_API void zend_hash_bucket_packed_swap(Bucket *p, Bucket *q)
{
zval val;
zend_ulong h;
val = p->val;
h = p->h;
p->val = q->val;
p->h = q->h;
q->val = val;
q->h = h;
}
ZEND_API void ZEND_FASTCALL zend_hash_sort_ex(HashTable *ht, sort_func_t sort, bucket_compare_func_t compar, bool renumber)
{
Bucket *p;
uint32_t i, j;
IS_CONSISTENT(ht);
HT_ASSERT_RC1(ht);
if (!(ht->nNumOfElements>1) && !(renumber && ht->nNumOfElements>0)) {
/* Doesn't require sorting */
return;
}
if (HT_IS_PACKED(ht)) {
zend_hash_packed_to_hash(ht); // TODO: ???
}
if (HT_IS_WITHOUT_HOLES(ht)) {
/* Store original order of elements in extra space to allow stable sorting. */
for (i = 0; i < ht->nNumUsed; i++) {
Z_EXTRA(ht->arData[i].val) = i;
}
} else {
/* Remove holes and store original order. */
for (j = 0, i = 0; j < ht->nNumUsed; j++) {
p = ht->arData + j;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
if (i != j) {
ht->arData[i] = *p;
}
Z_EXTRA(ht->arData[i].val) = i;
i++;
}
ht->nNumUsed = i;
}
if (!(HT_FLAGS(ht) & HASH_FLAG_PACKED)) {
/* We broke the hash colisions chains overriding Z_NEXT() by Z_EXTRA().
* Reset the hash headers table as well to avoid possilbe inconsistent
* access on recursive data structures.
*
* See Zend/tests/bug63882_2.phpt
*/
HT_HASH_RESET(ht);
}
sort((void *)ht->arData, ht->nNumUsed, sizeof(Bucket), (compare_func_t) compar,
(swap_func_t)(renumber? zend_hash_bucket_renum_swap :
(HT_IS_PACKED(ht) ? zend_hash_bucket_packed_swap : zend_hash_bucket_swap)));
ht->nInternalPointer = 0;
if (renumber) {
for (j = 0; j < i; j++) {
p = ht->arData + j;
p->h = j;
if (p->key) {
zend_string_release(p->key);
p->key = NULL;
}
}
ht->nNextFreeElement = i;
}
if (HT_IS_PACKED(ht)) {
if (!renumber) {
zend_hash_packed_to_hash(ht);
}
} else {
if (renumber) {
void *new_data, *old_data = HT_GET_DATA_ADDR(ht);
Bucket *old_buckets = ht->arData;
zval *zv;
new_data = pemalloc(HT_PACKED_SIZE_EX(ht->nTableSize, HT_MIN_MASK), (GC_FLAGS(ht) & IS_ARRAY_PERSISTENT));
HT_FLAGS(ht) |= HASH_FLAG_PACKED | HASH_FLAG_STATIC_KEYS;
ht->nTableMask = HT_MIN_MASK;
HT_SET_DATA_ADDR(ht, new_data);
p = old_buckets;
zv = ht->arPacked;
for (i = 0; i < ht->nTableSize; i++) {
ZVAL_COPY_VALUE(zv, &p->val);
zv++;
p++;
}
pefree(old_data, GC_FLAGS(ht) & IS_ARRAY_PERSISTENT);
HT_HASH_RESET_PACKED(ht);
} else {
zend_hash_rehash(ht);
}
}
}
static zend_always_inline int zend_hash_compare_impl(HashTable *ht1, HashTable *ht2, compare_func_t compar, bool ordered) {
uint32_t idx1, idx2;
zend_string *key1, *key2;
zend_ulong h1, h2;
zval *pData1, *pData2;;
int result;
if (ht1->nNumOfElements != ht2->nNumOfElements) {
return ht1->nNumOfElements > ht2->nNumOfElements ? 1 : -1;
}
for (idx1 = 0, idx2 = 0; idx1 < ht1->nNumUsed; idx1++) {
if (HT_IS_PACKED(ht1)) {
pData1 = ht1->arPacked + idx1;
h1 = idx1;
key1 = NULL;
} else {
Bucket *p = ht1->arData + idx1;
pData1 = &p->val;
h1 = p->h;
key1 = p->key;
}
if (Z_TYPE_P(pData1) == IS_UNDEF) continue;
if (ordered) {
if (HT_IS_PACKED(ht2)) {
while (1) {
ZEND_ASSERT(idx2 != ht2->nNumUsed);
pData2 = ht2->arPacked + idx2;
h2 = idx2;
key2 = NULL;
if (Z_TYPE_P(pData2) != IS_UNDEF) break;
idx2++;
}
} else {
while (1) {
Bucket *p;
ZEND_ASSERT(idx2 != ht2->nNumUsed);
p = ht2->arData + idx2;
pData2 = &p->val;
h2 = p->h;
key2 = p->key;
if (Z_TYPE_P(pData2) != IS_UNDEF) break;
idx2++;
}
}
if (key1 == NULL && key2 == NULL) { /* numeric indices */
if (h1 != h2) {
return h1 > h2 ? 1 : -1;
}
} else if (key1 != NULL && key2 != NULL) { /* string indices */
if (ZSTR_LEN(key1) != ZSTR_LEN(key2)) {
return ZSTR_LEN(key1) > ZSTR_LEN(key2) ? 1 : -1;
}
result = memcmp(ZSTR_VAL(key1), ZSTR_VAL(key2), ZSTR_LEN(key1));
if (result != 0) {
return result;
}
} else {
/* Mixed key types: A string key is considered as larger */
return key1 != NULL ? 1 : -1;
}
idx2++;
} else {
if (key1 == NULL) { /* numeric index */
pData2 = zend_hash_index_find(ht2, h1);
if (pData2 == NULL) {
return 1;
}
} else { /* string index */
pData2 = zend_hash_find(ht2, key1);
if (pData2 == NULL) {
return 1;
}
}
}
if (Z_TYPE_P(pData1) == IS_INDIRECT) {
pData1 = Z_INDIRECT_P(pData1);
}
if (Z_TYPE_P(pData2) == IS_INDIRECT) {
pData2 = Z_INDIRECT_P(pData2);
}
if (Z_TYPE_P(pData1) == IS_UNDEF) {
if (Z_TYPE_P(pData2) != IS_UNDEF) {
return -1;
}
} else if (Z_TYPE_P(pData2) == IS_UNDEF) {
return 1;
} else {
result = compar(pData1, pData2);
if (result != 0) {
return result;
}
}
}
return 0;
}
ZEND_API int zend_hash_compare(HashTable *ht1, HashTable *ht2, compare_func_t compar, bool ordered)
{
int result;
IS_CONSISTENT(ht1);
IS_CONSISTENT(ht2);
if (ht1 == ht2) {
return 0;
}
/* It's enough to protect only one of the arrays.
* The second one may be referenced from the first and this may cause
* false recursion detection.
*/
if (UNEXPECTED(GC_IS_RECURSIVE(ht1))) {
zend_error_noreturn(E_ERROR, "Nesting level too deep - recursive dependency?");
}
GC_TRY_PROTECT_RECURSION(ht1);
result = zend_hash_compare_impl(ht1, ht2, compar, ordered);
GC_TRY_UNPROTECT_RECURSION(ht1);
return result;
}
ZEND_API zval* ZEND_FASTCALL zend_hash_minmax(const HashTable *ht, compare_func_t compar, uint32_t flag)
{
uint32_t idx;
zval *res;
IS_CONSISTENT(ht);
if (ht->nNumOfElements == 0 ) {
return NULL;
}
if (HT_IS_PACKED(ht)) {
zval *zv;
idx = 0;
while (1) {
if (idx == ht->nNumUsed) {
return NULL;
}
if (Z_TYPE(ht->arPacked[idx]) != IS_UNDEF) break;
idx++;
}
res = ht->arPacked + idx;
for (; idx < ht->nNumUsed; idx++) {
zv = ht->arPacked + idx;
if (UNEXPECTED(Z_TYPE_P(zv) == IS_UNDEF)) continue;
if (flag) {
if (compar(res, zv) < 0) { /* max */
res = zv;
}
} else {
if (compar(res, zv) > 0) { /* min */
res = zv;
}
}
}
} else {
Bucket *p;
idx = 0;
while (1) {
if (idx == ht->nNumUsed) {
return NULL;
}
if (Z_TYPE(ht->arData[idx].val) != IS_UNDEF) break;
idx++;
}
res = &ht->arData[idx].val;
for (; idx < ht->nNumUsed; idx++) {
p = ht->arData + idx;
if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) continue;
if (flag) {
if (compar(res, &p->val) < 0) { /* max */
res = &p->val;
}
} else {
if (compar(res, &p->val) > 0) { /* min */
res = &p->val;
}
}
}
}
return res;
}
ZEND_API bool ZEND_FASTCALL _zend_handle_numeric_str_ex(const char *key, size_t length, zend_ulong *idx)
{
const char *tmp = key;
const char *end = key + length;
if (*tmp == '-') {
tmp++;
}
if ((*tmp == '0' && length > 1) /* numbers with leading zeros */
|| (end - tmp > MAX_LENGTH_OF_LONG - 1) /* number too long */
|| (SIZEOF_ZEND_LONG == 4 &&
end - tmp == MAX_LENGTH_OF_LONG - 1 &&
*tmp > '2')) { /* overflow */
return 0;
}
*idx = (*tmp - '0');
while (1) {
++tmp;
if (tmp == end) {
if (*key == '-') {
if (*idx-1 > ZEND_LONG_MAX) { /* overflow */
return 0;
}
*idx = 0 - *idx;
} else if (*idx > ZEND_LONG_MAX) { /* overflow */
return 0;
}
return 1;
}
if (*tmp <= '9' && *tmp >= '0') {
*idx = (*idx * 10) + (*tmp - '0');
} else {
return 0;
}
}
}
/* Takes a "symtable" hashtable (contains integer and non-numeric string keys)
* and converts it to a "proptable" (contains only string keys).
* If the symtable didn't need duplicating, its refcount is incremented.
*/
ZEND_API HashTable* ZEND_FASTCALL zend_symtable_to_proptable(HashTable *ht)
{
zend_ulong num_key;
zend_string *str_key;
zval *zv;
if (UNEXPECTED(HT_IS_PACKED(ht))) {
goto convert;
}
ZEND_HASH_MAP_FOREACH_STR_KEY(ht, str_key) {
if (!str_key) {
goto convert;
}
} ZEND_HASH_FOREACH_END();
if (!(GC_FLAGS(ht) & IS_ARRAY_IMMUTABLE)) {
GC_ADDREF(ht);
}
return ht;
convert:
{
HashTable *new_ht = zend_new_array(zend_hash_num_elements(ht));
ZEND_HASH_FOREACH_KEY_VAL(ht, num_key, str_key, zv) {
if (!str_key) {
str_key = zend_long_to_str(num_key);
zend_string_delref(str_key);
}
do {
if (Z_OPT_REFCOUNTED_P(zv)) {
if (Z_ISREF_P(zv) && Z_REFCOUNT_P(zv) == 1) {
zv = Z_REFVAL_P(zv);
if (!Z_OPT_REFCOUNTED_P(zv)) {
break;
}
}
Z_ADDREF_P(zv);
}
} while (0);
zend_hash_update(new_ht, str_key, zv);
} ZEND_HASH_FOREACH_END();
return new_ht;
}
}
/* Takes a "proptable" hashtable (contains only string keys) and converts it to
* a "symtable" (contains integer and non-numeric string keys).
* If the proptable didn't need duplicating, its refcount is incremented.
*/
ZEND_API HashTable* ZEND_FASTCALL zend_proptable_to_symtable(HashTable *ht, bool always_duplicate)
{
zend_ulong num_key;
zend_string *str_key;
zval *zv;
if (!HT_IS_PACKED(ht)) {
ZEND_HASH_MAP_FOREACH_STR_KEY(ht, str_key) {
/* The `str_key &&` here might seem redundant: property tables should
* only have string keys. Unfortunately, this isn't true, at the very
* least because of ArrayObject, which stores a symtable where the
* property table should be.
*/
if (str_key && ZEND_HANDLE_NUMERIC(str_key, num_key)) {
goto convert;
}
} ZEND_HASH_FOREACH_END();
}
if (always_duplicate) {
return zend_array_dup(ht);
}
if (EXPECTED(!(GC_FLAGS(ht) & IS_ARRAY_IMMUTABLE))) {
GC_ADDREF(ht);
}
return ht;
convert:
{
HashTable *new_ht = zend_new_array(zend_hash_num_elements(ht));
ZEND_HASH_MAP_FOREACH_KEY_VAL_IND(ht, num_key, str_key, zv) {
do {
if (Z_OPT_REFCOUNTED_P(zv)) {
if (Z_ISREF_P(zv) && Z_REFCOUNT_P(zv) == 1) {
zv = Z_REFVAL_P(zv);
if (!Z_OPT_REFCOUNTED_P(zv)) {
break;
}
}
Z_ADDREF_P(zv);
}
} while (0);
/* Again, thank ArrayObject for `!str_key ||`. */
if (!str_key || ZEND_HANDLE_NUMERIC(str_key, num_key)) {
zend_hash_index_update(new_ht, num_key, zv);
} else {
zend_hash_update(new_ht, str_key, zv);
}
} ZEND_HASH_FOREACH_END();
return new_ht;
}
}